Основы микробиологии

Место микробиологии и иммунологии в современной медицине. Основные принципы классификации микробов, бактерий, грибов и др. Методы санитарно-микробиологического исследования воды. Оценка иммунного статуса: основные показатели и методы их определения.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 24.01.2015
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

64. Классификация гиперчувствительности по Джейлу и Кумбсу

Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллергии: анафилактический (I тип), цитотоксический (II тип), иммунокомплексный (III тип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый -- к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ -- лимфоидно-макрофагальная реакция.

Аллергическая реакция I типа связана с биологическими эффектами IgE и G4, названных реагинами, которые обладают цитофильностью -- сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки -- залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. В результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.

Цитотоксические антитела (IgG, IgM), направленные против поверхностных структур (антигенов) соматических клеток макроорганизма, связываются с клеточными мембранами клеток-мишеней и запускают различные механизмы антителозависимой цитотоксичности (аллергическая реакция II типа). Массивный цитолиз сопровождается соответствующими клиническими проявлениями. Классическим примером является гемолитическая болезнь в результате резус-конфликта или переливания иногруппной крови.

Цитотоксическим действием обладают также комплексы атиген--антитело, образующиеся в организме пациента в большом количестве после введения массивной дозы антигена (аллергическая реакция III типа). В связи с кумулятивным эффектом клиническая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от применения иммунных гетерологичных сывороток с лечебно-профилактической целью («сывороточная болезнь»), а также при вдыхании белковой пыли («легкое фермера»).

Лабораторная диагностика аллергии при аллергических реакциях I типа основана на выявлении суммарных и специфических реагинов (IgE, IgG4) в сыворотке крови пациента. При аллергических реакциях II типа в сыворотке крови определяют цитотоксические антитела (антиэритроцитарные, антилейкоцитарные, антитромбоцитарные и др.). При аллергических реакциях III типа в сыворотке крови выявляют иммунные комплексы. Для обнаружения аллергических реакций IV типа применяют кожно-аллергические пробы, которые широко используют в диагностике некоторых инфекционных и паразитарных заболеваний и микозов (туберкулез, лепра, бруцеллез, туляремия и др.).

Тип реакцииФактор патогенезаМеханизм патогенезаКлинический пример

I. анафилактический (ГНТ)IgE, IgG4Образование рецепторного комплекса IgE (G4)-АсК тучных клеток и базофилов > Взамодействие эпитопа аллергена с рецепторным комплексом > Активация тучных клеток и базофилов > Высвобождение медиаторов воспаления и других биологически активных веществАнафилаксия, анафилактический шок, поллинозы

II. цитотоксический (ГНТ)IgM

IgGВыработка цитотоксических антител > Активация антителозависимого цитолиза

Лекарственная волчанка, аустоиммунная гемолитическая болезнь, аутоиммунная тромбоцитопения

III. иммунокомплексный (ГНТ)IgM

IgGОбразование избытка иммунных комплексов > Отложение иммунных комплексов на базальных мембранах, эндотелии и в соединительнотканной строме > Активация антителозависимой клеточно-опосредованной цитотоксичности > Запуск иммунного воспаленияСывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «лёгкое фермера»

IV. клеточно-опосредованный (ГЗТ)Т-лимфоцитыСенсибилизация Т-лимфоцитов > Активация макрофага > Запуск иммунного воспаленияКожно-аллергическая проба, контактная аллергия, белковая аллергия замедленного типа

65. Механизмы гиперчувствительности замедленного типа. Клинико-диагностическое значение

К аллергическим реакциям относят два типа реагирования на чужеродное вещество: гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). К ГНТ относятся аллергические реакции, проявляющиеся уже через 20--30 мин после повторной встречи с антигеном, а к ГЗТ -- реакции, возникающие не ранее чем через 24--48 ч. Механизм и клинические проявления ГНТ и ГЗТ различны. ГНТ связана с выработкой антител, а ГЗТ -- с клеточными реакциями.

ГЗТ впервые описана Р. Кохом (1890). Эта форма проявления не связана с антителами, опосредована клеточными механизмами с участием Т-лимфоцитов. К ГЗТ относятся следующие формы проявления: туберкулиновая реакция, замедленная аллергия к белкам, контактная аллергия.

В отличие от реакций I, II и III типов реакции IV типа не связаны с антителами, а обусловлены клеточными реакциями, прежде всего Т-лимфоцитами. Реакции замедленного типа могут возникать при сенсибилизации организма:

1. Микроорганизмами и микробными антигенами (бактериальными, грибковыми, протозойными, вирусными); 2. Гельминтами; 3. Природными и искусственно синтезированными гаптенами (лекарственные препараты, красители); 4. Некоторыми белками.

Следовательно, реакция замедленного типа может вызываться практически всеми антигенами. Но наиболее ярко она проявляется на введение полисахаридов, низкомолекулярных пептидов, т. е. малоиммуногенных антигенов. При этом реакцию вызывают малые дозы антигенов и лучше всего при внутрикожном введении.

Механизм аллергической реакции этого типа состоит в сенсибилизации Т-лимфоцитов-хелперов антигеном. Сенсибилизация лимфоцитов вызывает выделение медиаторов, в частности интерлейкина-2, которые активируют макрофаги и тем самым вовлекают их в процесс разрушения антигена, вызвавшего сенсибилизацию лимфоцитов. Цитотоксичность проявляют также и сами Т-лимфоциты. О роли лимфоцитов в возникновении аллергий клеточного типа свидетельствуют возможность передачи аллергии от сенсибилизированного животного несенсибилизированному с помощью введения лимфоцитов, а также подавление реакции при помощи антилимфоцитарной сыворотки.

Морфологическая картина при аллергиях клеточного типа носит воспалительный характер, обусловленный реакцией лимфоцитов и макрофагов на образующийся комплекс антигена с сенсибилизированными лимфоцитами.

Аллергические реакции клеточного типа проявляются в виде туберкулиновой реакции, замедленной аллергии к белкам, контактной аллергии.

Туберкулиновая реакция возникает через 5--6 ч после внутрикожного введения сенсибилизированным туберкулезной палочкой животным или человеку туберкулина, т. е. антигенов туберкулезной палочки. Выражается реакция в виде покраснения, припухлости, уплотнения на месте введения туберкулина. Сопровождается иногда повышением температуры тела, лимфопенией. Развитие реакции достигает максимума через 24--48 ч. Туберкулиновая реакция используется с диагностической целью для выявления заболеваний туберкулезом или контактов организма с туберкулезной палочкой.

Замедленная аллергия возникает при сенсибилизации малыми дозами белковых антигенов с адъювантом, а также конъю-гатами белков с гаптенами. В этих случаях аллергическая реакция возникает не раньше чем через 5 дней и длится 2--3 нед. Видимо, здесь играют роль замедленное действие конъюгированных белков на лимфоидную ткань и сенсибилизация Т-лимфо-цитов.

Контактная аллергия возникает, если антигенами являются низкомолекулярные органические и неорганические вещества, которые в организме соединяются с белками, образуя конъюга-ты. Конъюгированные соединения, выполняя роль гаптенов, вызывают сенсибилизацию. Контактная аллергия может возникать при длительном контакте с химическими веществами, в том числе фармацевтическими препаратами, красками, косметическими препаратами (губная помада, краска для ресниц). Проявляется контактная аллергия в виде всевозможных дерматитов, т. е. поражений поверхностных слоев кожи.

Значение. Все реакции гиперчувствительности, в том числе и ГЗТ имеют большое значение. Их механизмы лежат в основе воспаления, которое способствует локализации инфекционного агента или иного антигена в пределах определённых тканей и формированию полноценной иммунной реакции защитного характера.

66. Аллергические пробы, их сущности, применение

Аллергические пробы - биологические реакции для диагностики ряда заболеваний, основанные на повышенной чувствительности организма, вызванной аллергеном.

При многих инфекционных заболеваниях за счет активации клеточного иммунитета развивается повышенная чувствительность организма к возбудителям и продуктам их жизнедеятельности. На этом основаны аллергические пробы, используемые для диагностики бактериальных, вирусных, протозойных инфекций, микозов и гельминтозов. Аллергические пробы обладают специфичностью, но нередко они бывают положительными у переболевших и привитых.

Все аллергические пробы подразделяют на две группы -- пробы in vivo и in vitro.

К первой группе {in vivo) относятся кожные пробы, осуществляемые непосредственно на пациенте и выявляющие аллергию немедленного (через 20 мин) и замедленного (через 24 -- 48 ч) типов.

Аллергические пробы in vitro основаны на выявлении сенсибилизации вне организма больного. Их применяют тогда, когда по тем или иным причинам нельзя произвести кожные пробы, либо в тех случаях, когда кожные реакции дают неясные результаты.

Для проведения аллергических проб используют аллергены -- диагностические препараты, предназначенные для выявления специфической сенсибилизации организма. Инфекционные аллергены, используемые в диагностике инфекционных заболеваний, представляют собой очищенные фильтраты бульонных культур, реже взвеси убитых микроорганизмов или АГ, выделенные из них.

Кожные пробы. Инфекционные аллергены вводят, как правило, внутрикожно или накожно, путем втирания в скарифицированные участки кожи. При внутрикожном способе в среднюю треть передней поверхности предплечья специальной тонкой иглой вводят 0,1 мл аллергена. Через 28 -- 48 ч оценивают результаты реакции ГЗТ, определяя на месте введения размеры папулы.

Неинфекционные аллергены (пыльца растений, бытовая пыль, пищевые продукты, лекарственные и химические препараты) вводят в кожу уколом (прик-тест), накожно путем скарификации и втирания или внутрикожной инъекцией разведенного раствора аллергена. В качестве отрицательного контроля используют ИХН, в качестве положительного -- раствор гистамина. Результаты учитывают в течение 20 мин (ГНТ) по величине папулы (иногда до 20 мм в диаметре), наличию отека и зуда. Внутрикожные пробы ставят в случае отрицательного или сомнительного результата прик-теста. По сравнению с последним, дозу аллергена уменьшают в 100-5000 раз.

Кожные пробы на наличие ГЗТ широко применяют для выявления инфицированности людей микобактериями туберкулеза (проба Манту), возбудителями бруцеллеза (проба Бюрне), лепры (реакция Митсуды), туляремии, сапа, актиномикоза, дерматомикозов, токсоплазмоза, некоторых гельминтозов и др.

Пробы in vitro. Эти методы исследования безопасны для больного, достаточно чувствительны, позволяют количественно оценить уровень аллергизации организма.

В настоящее время разработаны тесты для определения сенсибилизации, основанные на реакциях Т- и B-лимфоцитов, тканевых базофилов, выявлении общих специфических IgE в сыворотке крови и др. К ним относятся реакции торможения миграции лейкоцитов и бласттрансформации лимфоцитов, специфическое розеткообразование, базофильный тест Шелли, реакция дегрануляции тканевых базофилов, а также аллергосорбентные методы (определение специфических IgE в сыворотке крови).

Реакция торможения миграции лейкоцитов (РТМЛ). РТМЛ основана на подавлении миграции моноцитов и других лейкоцитов под действием медиаторов, вырабатываемых сенсибилизированными лимфоцитами, в присутствии специфического аллергена.

Реакция бласттрансформации лимфоцитов (РБТ). В основе этой реакции лежит способность нормальных лимфоцитов периферической крови вступать в митоз и превращаться в бластные формы при культивировании их in vitro под действием специфических факторов -- аллергенов и неспецифических стимуляторов митогенеза -- митогенов (фитогемагглютинин, конканавалин А, липополисахариды и другие вещества).

Реакция специфического розеткообразования. Розетки -- характерные образования, возникающие in vitro в результате прилипания эритроцитов к поверхности иммунокомпетентных клеток. Розеткообразование может происходить спонтанно, поскольку Т-лимфоциты человека содержат рецепторы к эритроцитам барана. Спонтанное розеткообразование здоровых людей составляет 52 -- 53% и служит показателем функционального состояния Т-лимфоцитов. Этот феномен воспроизводится также и в том случае, если используют эритроциты, на которых фиксированы соответствующие аллергены.

Реакция дегрануляции тканевых базофилов. Методика основана на том, что под действием аллергена происходит дегрануляция тканевых базофилов крысы, предварительно сенсибилизированных цитофильными AT из сыворотки крови больного.

Базофильный тест Шелли. Известно, что базофильные гранулоциты человека или кролика также дегранулируются в присутствии сыворотки больного и аллергена, к которому чувствителен данный пациент.

Определение антител класса IgE in vitro. Лабораторная диагностика заболеваний, в основе которых лежит ГНТ, основана на определении аллергенспецифических IgEанти-IgE. При использовании радиоактивной метки метод носит название радиоаллергосорбентного теста (PACT), но чаще в качестве метки используют фермент или флюоресцирующее вещество (ФАСТ). Время анализа -- 6 -- 7 часов. Принцип метода: фиксированный на твердой основе известный аллерген инкубируют с сывороткой крови больного; находящиеся в сыворотке специфические IgEанти-IgE связываются с аллергеном и, таким образом, остаются фиксированными на основе и могут вступать в специфическое взаимодействие с добавляемыми мечеными анти-IgE

67. Гиперчувствительностъ немедленного типа. Механизмы возникновения, клиническая значимость

Гиперчувствительность немедленного типа (ГНТ) -- гиперчувствительность, обусловленная антителами (IgE, IgG, IgM) против аллергенов. Развивается через несколько минут или часов после воздействия аллергена: расширяются сосуды, повышается их проницаемость, развиваются зуд, бронхоспазм, сыпь, отеки. Поздняя фаза ГНТ дополняется действием продуктов эозинофилов и нейтрофилов.

К ГНТ относятся I, II и III типы аллергических реакций (по Джеллу и Кумбсу): I тип -- анафилактический, обусловленный главным образом действием IgE; II тип -- цитотоксический, обусловленный действием IgG, IgM; III тип -- иммунокомплексный, развивающийся при образовании иммунного комплекса IgG, IgM с антигенами. В отдельный тип выделяют антирецепторные реакции.

Основные типы реакций гиперчувствительности

I тип -- анафилактический. При первичном контакте с антигеном образуются IgE, которые прикрепляются Fc-фрагментом к тучным клеткам и базофилам. Повторно введенный антиген перекрестно связывается с IgE на клетках, вызывая их дегрануляцию, выброс гистамина и других медиаторов аллергии.

Первичное поступление аллергена вызывает продукцию плазмацитами IgE, IgG4. Синтезированные IgE прикрепляются Fc-фрагментом к Fc-pe цепторам (FceRl) базофилов в крови и тучных клеток в слизистых оболочках, соединительной ткани. При повторном поступлении аллергена на тучных клетках и базофилах образуюто комплексы IgE с аллергеном (перекрестная сшивка FceRl антигеном), вызывающие дегрануляцию клеток.

Клинические проявления гиперчувствительности I типа

Клинические проявления гиперчувствительности I типа могут протекать на фоне атопии. Атопия -- наследственная предрасположенность к развитию ГНТ, обусловленная повышенной выработкой IgE-антител к аллергену, повышенным количеством Fc-рецепторов для этих антител на тучных клетках, особенностями распределения тучных клеток и повышенной проницаемостью тканевых барьеров.

Анафилактический шок -- протекает остро с развитием коллапса, отеков, спазма гладкой мускулатуры; часто заканчивается смертью. Крапивница -- увеличивается проницаемость сосудов, кожа краснеет, появляются пузыри, зуд. Бронхиальная астма -- развиваются воспаление, бронхо-спазм, усиливается секреция слизи в бронхах.

II тип -- цитотоксический. Антиген, расположенный на клетке «узнается» антителами классов IgG, IgM. При взаимодействии типа «клетка-антиген-антитело» происходит активация комплемента и разрушение клетки по трем направлениям: комплементзависимый цитолиз; фагоцитоз; антителозависимая клеточная цитотоксичность. Время реакции -- минуты или часы.

Ко II типу гиперчувствительности близки антирецепторные реакции (так называемый IV тип гиперчувствительности), основой которых являются антирецепторные антитела, например антитела против рецепторов к гормонам.

Клинические проявления II типа. По II типу гиперчувствительности развиваются некоторые аутоиммунные болезни, обусловленные появлением аутоантител к антигенам собственных тканей: злокачественная миастения, аутоиммунная гемолитическая анемия, вульгарная пузырчатка, синдром Гудпасчера, аутоиммунный гипертиреоидизм, инсулинозави-симый диабет II типа.

Аутоиммунную гемолитическую анемию вызывают антитела против Rh-антигена эритроцитов; эритроциты разрушаются в результате активации комплемента и фагоцитоза. Лекарственно-индуцируемые гемолитическая анемия, гранулоцитопения и тромбоцитопения сопровождаются появлением антител против лекарства -- гаптена и цитолизом клеток, содержащих этот антиген.

III тип -- иммунокомплексный. Антитела классов IgG, IgM образуют с растворимыми антигенами иммунные комплексы, которые активируют комплемент. При избытке антигенов или недостатке комплемента иммунные комплексы откладываются на стенке сосудов, базальных мембранах, т. е. структурах, имеющих Fc-рецепторы.

Первичными компонентами III типа гиперчувствительности являются растворимые иммунные комплексы антиген-антитело и комплемент (анафилатоксины С4а, СЗа, С5а). При избытке антигенов или недостатке комплемента иммунные комплексы откладываются на стенке сосудов, базальных мембранах, т.е. структурах, имеющих Fc-рецепторы. Повреждения обусловлены тромбоцитами, нейтрофилами, иммунными комплексами, комплементом. Привлекаются провоспалительные цитокины, включая TNF-a и хемокины. На поздних стадиях в процесс вовлекаются макрофаги.

Реакция может быть общей (например, сывороточная болезнь) или вовлекать отдельные органы, ткани, включая кожу (например, системная эритематозная волчанка, реакция Артюса), почки (например, волчаночный нефрит), легкие (например, аспергиллез) или другие органы. Эта реакция может быть обусловлена многими микроорганизмами. Она развивается через 3-10 часов после экспозиции антигена, как в реакции Артюса. Антиген может быть экзогенный (хронические бактериальные, вирусные, грибковые или прото-зойные инфекции) или эндогенный, как при системной эри-тематозной волчанке.

Клинические проявления III типа. Сывороточная болезнь происходит при введении высоких доз антигена, например лошадиной противостолбнячной сыворотки. Через 6-7 дней в крови появляются антитела против лошадиного белка, которые, взаимодействуя с данным антигеном, образуют иммунные комплексы, откладывающиеся в стенках кровеносных сосудов и тканях. Развиваются системные васкулиты, артриты (отложение комплексов в суставах), нефрит (отложение комплексов в почках).

Реакция Артюса развивается при повторном внутрикожном введении антигена, который локально образует иммунные комплексы с ранее накопившимися антителами. Проявляется отеком, геморрагическим воспалением и некрозом.

68. Анафилактический шок и сывороточная болезнь. Причины возникновения. Механизм. Их предупреждение

Анафилаксия представляет собой реакцию немедленного типа, возникающую при парентеральном повторном введении антигена в ответ на повреждающее действие комплекса антиген -- антитело и характеризующуюся стереотипно протекающей клинической и морфологической картиной.

Основную роль в анафилаксии играет цитотропный IgE, имеющий сродство к клеткам, в частности базофилам и тучным клеткам. После первого контакта организма с антигеном образуется IgE, который вследствие цитотропности адсорбируется на поверхности названных выше клеток. При повторном попадании в организм этого же антигена IgE связывает антиген с образованием на мембране клеток комплекса IgE -- антиген. Комплекс повреждает клетки, которые в ответ на это выделяют медиаторы -- гистамин и гистаминоподобные вещества (серотонин, кинин). Эти медиаторы связываются рецепторами, имеющимися на поверхности функциональных мышечных, секреторных, слизистых и других клеток, вызывая их соответствующие реакции. Это ведет к сокращению гладкой мускулатуры бронхов, кишечника, мочевого пузыря, повышению проницаемости сосудов и другим функциональным и морфологическим изменениям, которые сопровождаются клиническим проявлением. Клинически анафилаксия проявляется в виде одышки, удушья, слабости, беспокойства, судорог, непроизвольного мочеиспускания, дефекации и др. Анафилактическая реакция протекает в три фазы: в 1-й фазе происходит сама реакция антиген -- антитело; во 2-й фазе выделяются медиаторы анафилактической реакции; в 3-й фазе проявляются функциональные изменения.

Анафилактическая реакция возникает спустя несколько минут или часов после повторного введения антигена. Протекает в виде анафилактического шока или как местные проявления. Интенсивность реакции зависит от дозы антигена, количества образующихся антител, вида животного и может закончиться выздоровлением или смертью. Анафилаксию легко можно вызвать в эксперименте на животных. Оптимальной моделью для воспроизведения анафилаксии является морская свинка. Анафилаксия может возникать на введение любого антигена любым способом (подкожно, через дыхательные пути, пищеварительный тракт) при условии, что антиген вызывает образование иммуноглобулинов. Доза антигена, вызывающая сенсибилизацию, т. е. повышенную чувствительность, называется сенсибилизирующей. Она обычно очень мала, так как большие дозы могут вызвать не сенсибилизацию, а развитие иммунной защиты. Доза антигена, введенная уже сенсибилизированному к нему животному и вызывающая проявление анафилаксии, называется разрешающей. Разрешающая доза должна быть значительно больше, чем сенсибилизирующая.

Состояние сенсибилизации после встречи с антигеном сохраняется месяцами, иногда годами; интенсивность сенсибилизации можно искусственно уменьшить введением малых разрешающих доз антигена, которые связывают и выводят из циркуляции в организме часть антител. Этот принцип был использован для десенсибилизации (гипосенсибилизации), т.е. предупреждения анафилактического шока при повторных введениях антигена. Впервые способ десенсибилизации предложил русский ученый А. Безредка (1907), поэтому он называется способом Безредки. Способ состоит в том, что человеку, ранее получавшему какой-либо антигенный препарат (вакцину, сыворотку, антибиотики, препараты крови и др.), при повторном введении (при наличии у него повышенной чувствительности к препарату) вначале вводят небольшую дозу (0,01; 0,1 мл), а затем, через 1--1'/2 ч, -- основную. Таким приемом пользуются во всех клиниках для избежания развития анафилактического шока; этот прием является обязательным.

Возможен пассивный перенос анафилаксии с антителами.

Сывороточной болезнью называют реакцию, возникающую при разовом парентеральном введении больших доз сывороточных и других белковых препаратов. Обычно реакция возникает спустя 10--15 сут. Механизм сывороточной болезни связан с образованием антител против введенного чужеродного белка (антигена) и повреждающим действием на клетки комплексов антиген -- антитело. Клинически сывороточная болезнь проявляется отеком кожи и слизистых оболочек, повышением температуры тела, при-пуханием суставов, сыпью и зудом кожи; наблюдаются изменения в крови (увеличение СОЭ, лейкоцитоз и др.). Сроки проявления и тяжесть сывороточной болезни зависят от содержания циркулирующих антител и дозы препарата. Это объясняется тем, что ко 2-й неделе после введения белков сыворотки вырабатываются антитела к белкам сыворотки и образуется комплекс антиген -- антитело. Профилактика сывороточной болезни осуществляется по способу Безредки.

69. Теории иммунитета

Теория иммунитета Мечникова - теория, согласно которой решающая роль в антибактериальном иммунитете принадлежит фагоцитозу.

Сначала И.И.Мечников как зоолог экспериментально изучал морских беспозвоночных фауны Черного моря в Одессе и обратил внимание на то, что определенные клетки (целомоциты) этих животных поглощают инородные субстанции (твердые частицы и бактерий), проникшие во внутреннюю среду. Затем он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. Эти процессы наблюдали и до И.И.Мечникова другие микроскописты. Но только И.И.Мечников осознал, что это явление не есть процесс питания данной единичной клетки, а есть защитный процесс в интересах целого организма. И.И.Мечников первым рассматривал воспаление как защитное, а не разрушительное явление. Против теории И.И.Мечникова в начале XX в. были большинство патологов, так как они наблюдали фагоцитоз в очагах воспаления, т.е. в больных местах, и считали лейкоциты (гной) болезнетворными, а не защитными клетками. Более того, некоторые полагали, что фагоциты -- разносчики бактерий по организму, ответственные за диссеминацию инфекций. Но идеи И.И.Мечникова устояли; ученый назвал действующие таким образом защитные клетки "пожирающими клетками". Его молодые французские коллеги предложили использовать греческие корни того же значения. И.И.Мечников принял этот вариант, и появился термин "фагоцит". Эти работы и теория Мечникова чрезвычайно понравились Л.Пастеру, и он пригласил Илью Ильича работать в свой институт в Париже.

Теория иммунитета Эрлиха -- одна из первых теорий антителообразования, согласно которой у клеток имеются антигенспецифические рецепторы, высвобождающиеся в качестве антител под действием антигена.

В статье Пауля Эрлиха противомикробные вещества крови автор назвал термином "антитело", так как бактерий в то время называли термином "korper" -- микроскопические тельца. Но П.Эрлиха "посетило" глубокое теоретическое прозрение. Несмотря на то, что факты того времени свидетельствовали, что в крови неконтактировавшего с конкретным микробом животного или человека не определяются антитела против данного микроба, П.Эрлих каким-то образом осознал, что и до контакта с конкретным микробом в организме уже есть антитела в виде, который он назвал "боковыми цепями". Как мы теперь знаем, это именно так, и "боковые цепи" Эрлиха -- это подробно изученные в наше время рецепторы лимфоцитов для антигенов. Позже этот же образ мыслей П.Эрлих "применил" к фармакологии: в своей теории химиотерапии он предполагал предсуществование в организме рецепторов для лекарственных веществ. В 1908 г. П.Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета.

Также есть ещё некоторые теории.

Теория иммунитета Безредки - теория, объясняющая защиту организма от ряда инфекционных болезней возникновением специфической местной невосприимчивости клеток к возбудителям.

Инструктивные теории иммунитета -- общее название теорий антителообразования, согласно которым ведущая роль в иммунном ответе отводится антигену, прямо участвующему в качестве матрицы при формировании специфической конфигурации антидетерминанты либо выступающему в качестве фактора, направленно изменяющего биосинтез иммуноглобулинов плазматическими клетками.

70. Особенности противовирусного, противобактериального, противогрибкового, противоопухолевого, трансплантационного иммунитета

Противовирусный иммунитет. Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, инфицированные вирусом, уничтожаются цитотоксическими лимфоцитами, а также NK-клетками и фагоцитами, взаимодействующими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Противовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифического иммунитета -- сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клетках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрессию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена секреторными IgA, которые, взаимодействуя с вирусами, препятствуют их адгезии на эпителиоцитах.

Противобактериальный иммунитет направлен как против бактерий, так и против их токсинов (антитоксический иммунитет). Бактерии и их токсины нейтрализуются антибактериальными и антитоксическими антителами. Комплексы бактерия (антигены)-антитела активируют комплемент, компоненты которого присоединяются к Fc-фрагменту антитела, а затем образуют мембраноатакующий комплекс, разрушающий наружную мембрану клеточной стенки грамотрицательных бактерий. Пептидогликан клеточных стенок бактерий разрушается лизоцимом. Антитела и комплемент (СЗЬ) обволакивают бактерии и «приклеивают» их к Fc- и С3b-рецепторам фагоцитов, выполняя роль опсонинов вместе с другими белками, усиливающими фагоцитоз (С-реактивным белком, фибриногеном, маннан-связывающим лектином, сывороточным амилоидом).

Основным механизмом антибактериального иммунитета является фагоцитоз. Фагоциты направленно перемещаются к объекту фагоцитоза, реагируя на хемоаттрактанты: вещества микробов, активированные компоненты комплемента (С5а, С3а) и цитокины. Противобактериальная защита слизистых оболочек обусловлена секреторными IgA, которые, взаимодействуя с бактериями, препятствуют их адгезии на эпителиоцитах.

Противогрибковый иммунитет. Антитела (IgM, IgG) при микозах выявляются в низких титрах. Основой противогрибкового иммунитета является клеточный иммунитет. В тканях происходит фагоцитоз, развивается эпителиоидная гранулематозная реакция, иногда тромбоз кровеносных сосудов. Микозы, особенно оппортунистические, часто развиваются после длительной антибактериальной терапии и при иммунодефицитах. Они сопровождаются развитием гиперчувствительности замедленного типа. Возможно развитие аллергических заболеваний после реcпираторной сенсибилизации фрагментами условно-патогенных грибов родов Aspergillus, Penicillium, Mucor, Fusarium и др.

Противоопухолевый иммунитет основан на Th1-зависимом клеточном иммунном ответе, активирующем цитотоксические Т-лимфоциты, макрофаги и NK-клетки. Роль гуморального (антительного) иммунного ответа невелика, поскольку антитела, соединяясь с антигенными детерминантами на опухолевых клетках, экранируют их от цитопатогенного действиях иммунных лимфоцитов. Опухолевый антиген распознается антигенпрезентирующими клетками (дендритными клетками и макрофагами) и непосредственно или через Т-хелперы (Th1) представляется цитотоксическим Т-лимфоцитам, разрушающим опухолевую клетку-мишень.

Кроме специфического противоопухолевого иммунитета, иммунный надзор за нормальным составом тканей реализуется за счет неспецифических факторов. Неспецифические факторы, повреждающие опухолевые клетки: 1) NK-клетки, система мононуклеарных клеток, противоопухолевая активность которых усиливается под воздействием интерлейкина-2 (ИЛ-2) и б-, в-интерферонов; 2) ЛАК-клетки (мононуклеарные клетки и NK-клетки, активированные ИЛ-2); 3) цитокины (б - и в -интерфероны, ФНО- б и ИЛ-2).

Трансплантационным иммунитетом называют иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Знание механизмов трансплантационного иммунитета необходимо для решения одной из важнейших проблем современной медицины -- пересадки органов и тканей. Многолетний опыт показал, что успех операции по пересадке чужеродных органов и тканей в подавляющем большинстве случаев зависит от иммунологической совместимости тканей донора и реципиента.

Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их составе содержатся генетически чужеродные для организма антигены. Эти антигены, получившие название трансплантационных или антигенов гистосовместимости, наиболее полно представлены на ЦПМ клеток.

Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости -- такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во многом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента.

При контакте с чужеродными трансплантационными антигенами организм реагирует факторами клеточного и гуморального звеньев иммунитета. Основным фактором клеточного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сенсибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредованную цитотоксичность.

Специфические антитела, которые образуются на чужеродные антигены (гемагглютинины, гемолизины, лейкотоксины, цитотоксины), имеют важное значение в формировании трансплантационного иммунитета. Они запускают антителоопосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредованная цитотоксичность).

Возможен адоптивный перенос трансплантационного иммунитета с помощью активированных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму.

Механизм иммунного отторжения пересаженных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетентных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе происходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспаление, тромбоз кровеносных сосудов, нарушается питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.

В процессе реакции отторжения формируется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный ответ, который протекает очень бурно и быстро заканчивается отторжением трансплантата.

С клинической точки зрения выделяют острое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.

71. Понятие о клинической иммунологии. Иммунный статус человека и факторы, влияющие на него

Клиническая иммунология - это клиническая и лабораторная дисциплина, занимающаяся изучением вопросов диагностики и лечения больных с различными заболеваниями и патологическими состояниями, в основе которых лежат иммунологические механизмы, а также состояниями, в терапии и профилактике которых иммунопрепараты играют ведущую роль.

Иммунный статус -- это структурное и функциональное состояние иммунной системы индивидуума, определяемое комплексом клинических и лабораторных иммунологических показателей.

Таким образом, иммунный статус характеризует анатомо-функциональное состояние иммунной системы, т. е. ее способность к иммунному ответу на определенный антиген в данный момент времени.

На иммунный статус оказывают влияние следующие факторы:

* климато-географические; * социальные; * экологические (физические, химические и биологические); * «медицинские» (влияние лекарственных веществ, оперативные вмешательства, стресс и т. д.).

Среди климато-географических факторов на иммунный статус оказывают влияние температура, влажность, солнечная радиация, длина светового дня и др. Например, фагоцитарная реакция и кожные аллергические пробы менее выражены у жителей северных регионов, чем у южан. Вирус Эпштейна--Барр у людей белой расы вызывает инфекционное заболевание -- мононуклеоз, у лиц негроидной расы -- онкопатологию (лимфома Беркитта), а у лиц желтой расы -- совсем другую онкопатологию (назофарингеальная карцинома), причем только у мужчин. Жители Африки менее подвержены заболеванию дифтерией, чем европейское население.

К социальным факторам, оказывающим влияние на иммунный статус, относятся питание, жилищно-бытовые условия, профессиональные вредности и т. п. Важное значение имеет сбалансированное и рациональное питание, поскольку с пищей в организм поступают вещества, необходимые для синтеза иммуноглобулинов, для построения иммунекомпетентных клеток и их функционирования. Особенно важно, чтобы в рационе присутствовали незаменимые аминокислоть и витамины, особенно А и С.

Значительное влияние на иммунный статус организма оказывают жилищно-бытовые условия. Проживание в плохих жилищных условиях ведет к снижению общей физиологической реактивности, соответственно иммунореактивности, что нередко сопровождается повышением уровня инфекционной заболеваемости.

Большое влияние на иммунный статус оказывают профессиональные вредности, поскольку человек проводит на работе значительную часть своей жизни. К производственным факторам, которые могут оказывать неблагоприятное воздействие на организм и снижать иммунореактивность, относят ионизирующую радиацию, химические вещества, микробы и продукты их жизнедеятельности, температуру, шум, вибрацию и т. д. Источники радиации получили в настоящее время очень широкое распространение в различных отраслях промышленности (энергетика, горнохимическая, аэрокосмическая и др.).

Неблагоприятное влияние на иммунный статус оказывают соли тяжелых металлов, ароматические, алкилирующие соединения и другие химические вещества, в том числе моющие средства, дезинфектанты, пестициды, ядохимикаты, широко применяемые в практике. Таким профессиональным вредностям подвержены работники химических, нефтехимических, металлургических производств и др.

Неблагоприятное влияние на иммунный статус организма оказывают микробы и продукты их жизнедеятельности (чаще всего белки и их комплексы) у работников биотехнологических производств, связанных с производством антибиотиков, вакцин, ферментов, гормонов, кормового белка и др.

Такие факторы, как низкая или высокая температура, шум, вибрация, недостаточная освещенность, могут снижать иммунореактивность, оказывая опосредованное действие на иммунную систему через нервную и эндокринную системы, которые находятся в тесной взаимосвязи с иммунной системой.

Глобальное действие на иммунный статус человека оказывают экологические факторы, в первую очередь, загрязнение окружающей среды радиоактивными веществами (отработанным топливом из ядерных реакторов, утечка радионуклидов из реакторов при авариях), широкое применение пестицидов в сельском хозяйстве, выбросами химических предприятий и автотранспорта, биотехнологических производств.

На иммунный статус оказывают влияние различные диагностические и лечебные медицинские манипуляции, лекарственная терапия, стресс. Необоснованное и частое применение рентгенографии, радиоизотопного сканирования может влиять на иммунную систему. Иммунореактивность изменяется после травм и хирургических операций. Многие лекарственные препараты, в том числе антибиотики, способны оказывать побочное иммунодепрессивное действие, особенно при длительном приеме. Стресс приводит к нарушениям в работе Т-системы иммунитета, действуя, в первую очередь, через ЦНС.

72. Оценка иммунного статуса: основные показатели и методы их определения

Несмотря на вариабельность иммунологических показателей в норме, иммунный статус можно определить путем постановки комплекса лабораторных тестов, включающих оценку состояния факторов неспецифической резистентности, гуморального (В-система) и клеточного (Т-система) иммунитета.

Оценка иммунного статуса проводится в клинике при трансплантации органов и тканей, аутоиммунных заболеваниях, аллергиях, для выявления иммунологической недостаточности при различных инфекционных и соматических заболеваниях, для контроля эффективности лечения болезней, связанных с нарушениями иммунной системы. В зависимости от возможностей лаборатории оценка иммунного статуса чаше всего базируется на определении комплекса следующих показателей:

1) общего клинического обследования;

2) состояния факторов естественной резистентности;

3) гуморального иммунитета;

4) клеточного иммунитета;

5) дополнительных тестов.

При общем клиническом обследовании учитывают жалобы пациента, анамнез, клинические симптомы, результаты общего анализа крови (включая абсолютное число лимфоцитов), данные биохимического исследования.

Гуморальный иммунитет определяют по уровню иммуноглобулинов классов G, M, A, D, Е в сыворотке крови, количеству специфических антител, катаболизму иммуноглобулинов, гиперчувствительности немедленного типа, показателю В-лимфоцитов в периферической крови, бласттрансформации В-лимфоцитов под действием В-клеточных митогенов и другим тестам.

Состояние клеточного иммунитета оценивают по количеству Т-лимфоцитов, а также субпопуляций Т-лимфоцитов в периферической крови, бласттрансформации Т-лимфоцитов под действием Т-клеточных митогенов, определению гормонов тимуса, уровню секретируемых цитокинов, а также постановкой кожных проб с аллергенами, контактной сенсибилизацией динитрохлорбензолом. Для постановки кожных аллергических проб используются антигены, к которым в норме должна быть сенсибилизация, например проба Манту с туберкулином. Способность организма к индукции первичного иммунного ответа может дать контактная сенсибилизация динитрохлорбензолом.

В качестве дополнительных тестов для оценки иммунного статуса можно использовать такие тесты, как определение бактерицидное™ сыворотки крови, титрование СЗ-, С4-компонентов комплемента, определение содержания С-реактивного белка в сыворотке крови, определение ревматоидных факторов и других аутоантител.

Таким образом, оценка иммунного статуса проводится на основании постановки большого числа лабораторных тестов, позволяющих оценить состояние как гуморального и клеточного звеньев иммунной системы, так и факторов неспецифической резистентности. Все тесты разделены на две группы: тесты 1-го и 2-го уровня. Тесты 1-го уровня могут быть выполнены в любой клинической иммунологической лаборатории первичного звена здравоохранения, они используются для первичного выявления лиц с явно выраженной иммунопатологией. Для более точной диагностики используются тесты 2-го уровня.

73. Расстройства иммунной системы: первичные и вторичные иммунодефициты

Иммунодефициты -- это нарушения нормального иммунного статуса, обусловленные дефектом одного или нескольких механизмов иммунного ответа.

Различают первичные, или врожденные (генетические), и вторичные, или приобретенные, иммунодефициты.

Первичные, или врожденные, иммунодефициты

В качестве первичных иммунодефицитов выделяют такие состояния, при которых нарушение иммунных гуморальных и клеточных механизмов связано с генетическим блоком, т. е. генетически обусловлено неспособностью организма реализовывать то или иное звено иммунологической реактивности. Расстройства иммунной системы могут затрагивать как основные специфические звенья в функционировании иммунной системы, так и факторы, определяющие неспецифическую резистентность. Возможны комбинированные и селективные варианты иммунных расстройств. В зависимости от уровня и характера нарушений различают гуморальные, клеточные и комбинированные иммунодефициты.

Врожденные иммунодефицитные синдромы и заболевания представляют собой довольно редкое явление. Причинами врожденных иммунодефицитов могут быть удвоение хромосом, точечные мутации, дефект ферментов обмена нуклеиновых кислот, генетически обусловленные нарушения мембран, повреждения генома в эмбриональном периоде и др. Как правило, первичные иммунодефицита проявляются на ранних этапах постнатального периода и наследуются по аутосомно-рецессивному типу. Проявляться первичные иммунодефициты могут в виде недостаточности фагоцитоза, системы комплемента, гуморального иммунитета (В-системы), клеточного иммунитета (Т-системы) или же в виде комбинированной иммунологической недостаточности.

Вторичные, или приобретенные, иммунодефициты

Вторичные иммунодефициты в отличие от первичных развиваются у лиц с нормально функционировавшей от рождения иммунной системой. Они формируются под воздействием окружающей среды на уровне фенотипа и обусловлены нарушением функции иммунной системы в результате различных заболеваний или неблагоприятных воздействий на организм. При вторичных иммунодефицитах могут поражаться Т- и В-системы иммунитета, факторы неспецифической резистентности, возможны также их сочетания. Вторичные иммунодефицита встречаются значительно чаще, чем первичные. Вторичные иммунодефицита, как правило, преходящи и поддаются иммунокоррекции, т. е. восстановлению нормальной деятельности иммунной системы.

Вторичные иммунодефицита могут быть: после перенесенных инфекций (особенно вирусных) и инвазий (протозойные и гельминтозы); при ожоговой болезни; при уремии; при опухолях; при нарушении обмена веществ и истощении; при дисбиозах; при тяжелых травмах, обширных хирургических операциях, особенно выполняемых под общим наркозом; при облучении, действии химических веществ; при старении, а также медикаментозные, связанные с приемом лекарств.

По времени возникновения выделяют антенатальные (например, ненаследственные формы синдрома ДиДжорджи), перинатальные (например, нейтропения новорожденного, вызванная изосенсибилизацией матери к антигенам нейтрофилов плода) и постнатальные вторичные иммунодефицита.

По клиническому течению выделяют компенсированную, субкомпенсированную и декомпенсированную формы вторичных иммуноде-фицитов. Компенсированная форма сопровождается повышенной восприимчивостью организма к инфекционным агентам, вызывающим оппортунистические инфекции. Субкомпенсированная форма характеризуется склонностью к хронизации инфекционных процессов. Декомпенсированная форма проявляется в виде генерализованных инфекций, вызванных условно-патогенными микробами (УПМ) и злокачественными новообразованиями.

Известно разделение вторичных иммунодефицитов на:

Физиологические, новорожденные, пубертатного периода, беременности и лактации, старения, биоритмичности, экологические, сезонные, эндогенные интоксикации, радиационные, СВЧ, патологические, постинфекционные, стрессовые, регуляторно-метаболические, медикаментозные, онкологические.

Иммунодефициты, как первичные, так и особенно вторичные, широко распространены среди людей. Они являются причиной проявления многих болезней и патологических состояний, поэтому требуют профилактики и лечения с помощью иммунотропных препаратов.

74. Реакция агглютинации. Компоненты, механизм, способы постановки. Применение

Реакция агглютинации -- простая по постановке реакция, при которой происходит связывание антителами корпускулярных антигенов (бактерий, эритроцитов или других клеток, нерастворимых частиц с адсорбированными на них антигенами, а также макромолекулярных агрегатов). Она протекает при наличии электролитов, например при добавлении изотонического раствора натрия хлорида.

Применяются различные варианты реакции агглютинации: развернутая, ориентировочная, непрямая и др. Реакция агглютинации проявляется образованием хлопьев или осадка (клетки, «склеенные» антителами, име ющими два или более антигенсвязывающих центра -- рис. 13.1). РА используют для:

1) определения антител в сыворотке крови больных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реакция Видаля) и других инфекционных болезнях;

2) определения возбудителя, выделенного от больного;

3) определения групп крови с использованием моноклональных антител против алло-антигенов эритроцитов.

Для определения у больного антител ставят развернутую реакцию агглютинации: к разведениям сыворотки крови больного добавляют диагностикум (взвесь убитых микробов,) и через несколько часов инкубации при 37 ?С отмечают наибольшее разведение сыворотки (титр сыворотки), при котором произошла агглютинация, т. е. образовался осадок.

Характер и скорость агглютинации зависят от вида антигена и антител. Примером являются особенности взаимодействия диагностикумов (О- и H-антигенов) со специфическими антителами. Реакция агглютинации с О-диагностикумом (бактерии, убитые нагреванием, сохранившие термостабильный О-антиген) происходит в виде мелкозернистой агглютинации. Реакция агглютинации с Н-диагностикумом (бактерии, убитые формалином, сохранившие термолабильный жгутиковый Н-антиген) -- крупнохлопчатая и протекает быстрее.


Подобные документы

  • История развития микробиологии как науки о строении, биологии, экологии микробов. Науки, входящие в комплекс микробиологии, классификация бактерий как живых организмов. Принцип вакцинации, методы, повышающие резистентность человека к микроорганизмам.

    презентация [10,9 M], добавлен 18.04.2019

  • Наука, изучающая микроорганизмы, их систематику, морфологию, физиологию, наследственность и изменчивость. Методы и цели микробиологии, этапы становления. Ученые, внесшие существенный вклад в развитии микробиологии, ее практическое значение и достижения.

    презентация [3,1 M], добавлен 14.12.2017

  • Предмет, задачи и этапы развития микробиологии, ее значение для врача. Систематика и номенклатура микроорганизма. Механизмы резистентности бактерий к антибиотикам. Генетика бактерий, учение об инфекции и иммунитете. Общая характеристика антигенов.

    курс лекций [201,9 K], добавлен 01.09.2013

  • Задачи медицинской микробиологии, вирусологии, иммунологии и бактериологии. История развития микробиологии на мировом уровне. Изобретение микроскопа А. Левенгуком. Зарождение отечественной бактериологии и иммунологии. Работы отечественных микробиологов.

    реферат [68,2 K], добавлен 16.04.2017

  • Микроорганизмы как важный фактор естественного отбора в человеческой популяции. Их влияние на круговорот веществ в природе, нормальное существование и патологии растений, животных, человека. Основные этапы развития микробиологии, вирусологии, иммунологии.

    реферат [20,4 K], добавлен 21.01.2010

  • Этапы развития микробиологии как науки. Анатоксины: определение и практическое применение. Морфологические и культуральные свойства стрептококков. Работы Пастера, их значение в развитии и становлении микробиологии. Эволюция микробного паразитизма.

    шпаргалка [813,1 K], добавлен 13.01.2012

  • Иммунология в древности. Основные имена в микробиологии и иммунологии. Период изучения субпопуляций лимфоцитов и гормонов тимуса. Иммунология как фундаментальная наука. Выделение общей иммунологии, иммунотолерантности, иммунохимии, иммуноморфологии.

    реферат [19,4 K], добавлен 11.07.2014

  • Возникновение микробиологии как науки. Изобретение микроскопа Левенгуком. Изучение природы брожения. Заслуги Р. Коха в изучении микроорганизмов как возбудителей заразных болезней. Исследование инфекции и иммунитета. Развитие ветеринарной микробиологии.

    презентация [967,8 K], добавлен 27.05.2015

  • История развития микробиологии. Эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический этапы развития микробиологии. Диссертация Луи Пастера. Работы в области химии, брожения. Изучение инфекционных заболеваний.

    презентация [1,5 M], добавлен 21.12.2016

  • История развития микробиологии, задачи и связь с другими науками. Роль микробов в народном хозяйстве и патологии животных. Изучение плесеней и дрожжей. Микрофлора животных, почвы и кормов. Понятие и значение антибиотиков, стерилизации и пастеризации.

    шпаргалка [249,1 K], добавлен 04.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.