Концепции современного естествознания

Становление и развитие естествознания как науки. Структура естественнонаучного познания, его методы и динамика. Происхождение Вселенной, эволюция и строение галактик, звезд и планет. Генетика и самовоспроизводство жизни. Мозг, сознание, бессознательное.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 14.11.2012
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Эволюция Вселенной, начиная с точки сингулярности, шла по пути увеличения разнообразия мира, создания новых частиц, которые не существовали изолированно, а объединялись в новые целостности -- атомы, молекулы, клетки и т. д., упорядоченно функционирующие по своим законам. Аналогично увеличение разнообразия науки должно сопровождаться интеграцией и ростом упорядоченности, а это и называется становлением науки как целостной интегративно-разнообразной гармоничной системы.

На эволюцию науки в данном направлении дает основание надеяться известное диалектическое положение о том, что познание мира совершенствуется по мере его преобразования. Человек имеет ныне возможность конструировать самого себя как генетически, так и меняя окружающую среду. Тут возникают новые перспективы и новая ответственность.

В современной науке наблюдаются важные процессы, являющиеся реакцией на те задачи, которые встают в связи с интенсивным уплотнением системы функциональных связей между природой и обществом. Для современной науки становится характерной тенденция экологизации и т. п. Можно предположить, что наука вскоре станет более органичной частью культуры, и вся культура будет развиваться как одно целое и часть биосферы, становясь экологичной культурой.

В связи с этим большой интерес в XXI веке может представить изучение несиловых взаимодействий (в природе и человеческом обществе), дальнодействия, сознательного управления разнообразными процессами. Общее значение науки будет зависеть от того, что она даст для решения таких фундаментальных проблем человека, как переход от потребляющей цивилизации к устойчиво развивающейся; контроль за агрессивностью, который при отсутствии межвидовой борьбы не ведет к эволюции; создание новой структуры личности -- любовно-творческой взамен агрессивно-потребительской.

вселенная генетика естественнонаучный

Приложения

Таблица открытий

1900 г. -- немецкий физик Макс Планк ввел понятие кванта энергии и квантовую постоянную. Планк -- основатель квантовой механики.

1903 г. -- Иван Петрович Павлов на основе экспериментальных физиологических исследований разработал понятие условного рефлекса. Павлов доказал взаимообусловленность и единство психических и физиологических процессов в организме.

1905 г. -- Альберт Эйнштейн опубликовал свою специальную теорию относительности и на основе квантовой гипотезы Планка ввел понятие кванта света (впоследствии названного фотоном).

1908 г. -- Герман Минковский дал математическую формулировку теории относительности, введя понятие четырехмерного пространства-времени («четырехмерного мира»).

1909 г. -- открыта «поверхность Мохоровичича» -- граница раздела между земной корой и мантией Земли.

1911г. -- создание Чарльзом Вильсоном «камеры Вильсона», позволившей наблюдать различные виды излучений, следы которых в газовой среде в комбинации с электрическими и магнитными полями становятся видимыми. При анализе этих «треков» удалось определить заряд и энергию составляющих их частиц;

-- Эрнест Резерфорд пропустил б-частицы через тонкую металлическую фольгу и наблюдал их рассеяние. Только предположив существование атомных ядер, занимающих в атоме всего лишь 1/1000 часть его диаметра, Резерфорд смог объяснить рассеяние б-частиц в веществе. Открытие Резерфорда подтвердило гипотезу Дж. Томсона (1903 г.) о существовании положительно заряженного ядра атома. Резерфорд создал планетарную модель атома, в дальнейшем количественно разработанную Нильсом Бором.

1912г. -- Томас Морган предложил теорию локализации генов в хромосомах. Его генная теория основывалась на ряде законов, пополняющих законы Менделя (гены в хромосомах сцеплены друг с другом, число возможных комбинаций между генами внутри хромосом зависит от их удаленности друг от друга, гены одной и той же хромосомы образуют связанную группу, а число этих групп не превышает числа хромосомных пар).

1913г. -- Нильс Бор, используя квантовую гипотезу Планка, разработал количественную модель атома водорода, создав, таким образом, первую квантовую теорию атома.

1915г. -- Нобелевская премия в области физики присуждена английским физикам отцу и сыну Брэггам за исследование структуры кристаллов с помощью рентгеновских лучей. Они экспериментально доказали периодичность атомной структуры кристаллов и тем самым заложили основы современной кристаллографии;

-- немецкий геофизик Альфред Вегенер опубликовал книгу «Возникновение материков и океанов», в которой изложил свою тектоническую гипотезу дрейфа континентов и первоначального соединения Евразии, Африки и Америки.

1916 г. -- А. Эйнштейн опубликовал книгу «Основы общей теории относительности».

1918г. -- норвежский физик и геофизик Вильгельм Бьёркнес объяснил возникновение циклонов из полярных фронтов и разработал методику составления метеорологических карт. Основоположник современной метеорологии.

1919г. -- Э. Резерфорд осуществил первую искусственную ядерную реакцию, облучая азот б-частицами (ядрами гелия). Он получил изотоп кислорода.

20-е годы -- экспериментально подтверждено существование ионизированного слоя в атмосфере (ионосферы). Высота до 20 тыс. км. Кроме нейтральных частиц, ионосфера содержит заряженные электроны и ионы, возникающие под действием солнечного излучения.

1922 г. -- советский геофизик и математик Александр Александрович Фридман предложил модель нестационарной расширяющейся Вселенной, основанную на релятивистской космологии. Опирающаяся на эту модель теория «Большого Взрыва» объясняет происхождение Вселенной и форм ее материи внезапным скачком.

1923г. -- советский физиолог Алексей Алексеевич Ухтомский создал учение о доминанте, возникновение которой определяет характер рефлекторной реакции нервной системы.

1924 г. -- Луи де Бройль в докторской диссертации «Исследования по теории квантов» выступил с идеей о волновых свойствах материи («волны де Бройля»). Он считал, что каждую движущуюся частицу можно описать сопряженной с ней волной. По мнению де Бройля, корпускулярно-волновой дуализм присущ всем без исключения видам материи -- электронам, протонам и т. п. Так возникло представление о волнах материи;

южноафриканский анатом Раймонд Дарт обнаружил в Южной Африке ископаемые останки приматов, которые были отнесены к австралопитекам. Их возраст 1 млн. лет (в настоящее время возраст этих приматов определяется в 5 млн. лет).

1925 г. -- в Дейтоне (США) за преподавание теории Дарвина был осужден учитель Дж. Скопе («обезьяний процесс»).

1926 г. -- австрийский физик-теоретик Эрвин Шрёдингер разработал волновую механику, в основу которой положил частное дифференциальное уравнение -- «уравнение Шрёдингера». Он показал эквивалентность своей волновой механики и квантовой механики в матричной форме, разработанной Вернером Гейзенбергом (в 1925 г.) квантовой теории;

-- в Ленинграде издан труд Владимира Ивановича Вернадского «Биосфера», представляющий собой обобщение геологических, биологических, химических и географических данных о строении поверхности Земли

1927 г. -- Вернер Гейзенберг сформулировал «принцип неопределенности», согласно которому нельзя одновременно совершенно точно определить импульс и положение элементарной частицы (произведение неопределенностей координаты и импульса ограничено некоторой минимальной величиной, равной постоянной Планка).

1928 г. -- Поль Дирак теоретически предположил существование античастиц. В 1932 г. первая античастица -- позитрон -- была открыта в космических лучах.

1929 г.--публичные выступления представителей Венского кружка--учеников австрийскою философа и физика Морица Шлика -- Рудольфа Каряапа и других, понимавших философию как логический анализ языка науки. Они выдвинули программу построения единой науки, основанной на физике (физикализм);

-- американский астроном Эдвин Хаббл установил, что смещение линий в галактических спектрах в направлении к «красному» краю (так называемое «красное смещение»), являющееся одним из проявлений «эффекта Доплера», возрастает пропорционально расстоянию, на которое удалены объекты («закон Хаббла») и связано с разбеганием галактических образований;

-- английский фармаколог и физиолог Генри Дейл установил, что возникновение электрического импульса на конце нерва или синапса, соединяющего два нейрона, сопровождается выделением адреналина или ацетилхолина. Эти вещества стимулируют нервную клетку, передающую возбуждение дальше;

-- в Китае Тейяр де Шарден обнаружил синантропа -- представителя древнейших ископаемых людей, близких к открытому ранее на о. Ява питекантропу. Синантропы использовали огонь 300 тыс. лет назад.

Конец 20-х годов -- советский физик и физикохимик Николай Николаевич Семенов открыл новый вид химических реакций -- разветвленные цепные реакции, в ходе которых образуются активные частицы -- свободные радикалы, которые, взаимодействуя с исходным веществом, кроме продуктов реакции, вновь образуют радикалы.

30-е годы -- австрийский зоолог Конрад Лоренц заложил основы новой области биологии--этологии (изучение инстинктивного поведения животных).

30 -- 40-е годы -- формирование синтетической теории эволюции, сочетающей идеи дарвинизма с современной генетикой.

1931г. -- логик и математик Курт Гёдель доказал, что если теория непротиворечива и аксиомы формализованной математики суть теоремы этой теории, то такая теория не полна. Истинность (непротиворечивость) любой теории, содержащей формализованную математику, нельзя доказать с помощью конечных (финитных) процессов в рассуждениях. Таким образом, формализация имеет свои пределы;

-- канадский патолог Ганс Селье ввел понятие стресса.

1932 г. -- гипотеза В. Гейзенберга, Д. Д. Иваненко и И. Е. Тамма о строении атомного ядра из протонов и нейтронов. Число нуклонов равно массовому числу. Сумма масс нуклонов и электронов дает массу атома;

-- английский физик Дж. Чэдвик открыл нейтрон;

-- австрийский биолог-теоретик Людвиг Берталанфи разработал теорию биологических объектов как открытых систем, находящихся в состоянии динамического равновесия (так называемая «общая теория систем»);

-- Чарльз Шеррингтон ввел термин «синапс» и показал значение торможения в рефлекторной деятельности спинного мозга. Школа Шеррингтона заложила основы современной нейрофизиологии.

1933 г. -- немецкий физик Теодор Гейтинг открыл взаимную аннигиляцию частицы и античастицы.

1934 г -- французские физики Ирен и Фредерик Жолио-Кюри открыли искусственную радиоактивность, облучая алюминиевую фольгу б-частицами. Энрико Ферми установил, что при бомбардировке урана нейтронами возникают новые радиоактивные элементы.

1935 г. -- японский физик Хидэки Юкава теоретически обосновал наличие в ядрах нестабильных элементов тесно взаимодействующих частиц (мезонов) с очень коротким периодом существования;

-- началось промышленное производство синтетической ткани -- «целлюлозной шерсти»;

-- немецкому биологу Хансу Шпеману присуждена Нобелевская премия в области физиологии и медицины за открытие так называемых «организационных эффектов (центров) «эмбриона. Установив взаимозависимость развития одной части зародыша от другой, Шпеман сформулировал теорию «организаторов», воздействующих на развитие частей эмбриона.

1936 г. -- английский математик Алан Тьюринг и американский математик и логик Эмиль Пост независимо друг от друга разработали концепцию «абстрактной вычислительной машины». Тьюринг описал также гипотетический универсальный преобразователь дискретной информации, получивший название «машины Тьюринга».

-- в Англии сконструирована первая система радиолокационной аппаратуры

-- радаров.

1939 г. -- советский математик и экономист Леонид Витальевич Канторович выпустил в Ленинграде книгу «Математические методы организации и планирования производства», заложившую основы новой дисциплины--линейного программирования;

-- Ф. Жолио-Кюри и независимо от него Э. Ферми установили, что расщепление урана-235 сопровождается высвобождением новых (вторичных) нейтронов. Так была открыта цепная ядерная реакция. Чуть позже ими предложен проект первого ядерного реактора.

1941 г. -- Норберт Винер опубликовал свой первый труд о сходстве между работой математической машины и нервной системой живого организма.

1942 г., авг. -- утвержден проект «Манхэттен», связанный с разработкой атомной бомбы (руководитель -- Роберт Оппенгеймер);

--осуществлена первая управляемая цепная реакция в ядерном реакторе, созданном в Чикагском университете под руководством Э. Ферми.

1943 г. -- Отто Юльевич Шмидт выдвинул гипотезу метеоритного происхождения Солнечной системы. В1944 г. опубликовано его исследование «Метеоритная теория происхождения Земли и планет».

1945 г. 16 авг. -- США произведен первый экспериментальный взрыв атомной бомбы. 6 авг. -- атомная бомба сброшена на Хиросиму, погибло 140 тыс. человек, 9 авг.

-- на Нагасаки, погибло 7 5 тыс. человек.

1946 г. -- Иван Иванович Шмальгаузен разработал теорию новой интегрированной формы естественного отбора -- стабилизирующего отбора.

1947 г. -- Виктор Амбарцумян открыл новый тип звездных систем--звездные ассоциации (динамически неустойчвые группы молодых звезд) и доказал, что процесс звездообразования во Вселенной продолжается.

1948 г -- Норберт Винер выпустил книгу «Кибернетика, или Управление и связь у животных и машин». Американский математик и инженер Клод Шеннон выпустил книгу «Математическая теория передачи информации»;

--американские физики Уолтер Браттейн, Джон Бардин и Уильям Шокли создали транзистор, а венгерский физик Деннис Габор сформулировал принцип голографии;

-- Нобелевская премия присуждена швейцарскому химику Паулю Мюллеру за синтез ДДТ.

1951г. -- осуществлен первый термоядерный взрыв по проекту американского физика Эдварда Теллера. Начало работ над осуществлением управляемой термоядерной реакции с использованием устройства камеры-ловушки для плазмы «Тока-мак» (руководитель -- И. Е. Тамм).

1953 г. -- американский химик и биолог Стэнли Миллер показал возможность искусственного синтеза аминокислот из аммиака, метана, водяных паров в условиях, сходных с теми, которые могли быть на земной поверхности вскоре после образования Земли. Синтез мог начаться под воздействием электрических разрядов и ультрафиолетовых лучей;

-- американский биохимик Джеймс Уотсон и английский физик Фрэнсис Крик открыли структуру ДНК.

1954 г. -- введена в действие первая атомная электростанция в Обнинске;

-- американский палеонтолог Патрик Харлей обнаружил в кремнеземе вблизи Верхнего Озера (Канада) зеленые водоросли, возраст которых, по его предположению, 2 млрд. лет, и 8 аминокислот органического происхождения.

1955 г. -- шведский физиолог Рагнар Гранит выпустил книгу «Рецепторы и сенсорное восприятие», в которой сообщил о своих экспериментах, доказавших, что импульс от отдельных клеток-рецепторов передается нервным волокном в мозг электрохимическим путем.

1956г. -- американский астроном Вернер Баум, наблюдая скопления галактик на рекордном удалении в 550 мегапарсеков (1 мегапарсек -- 106x3,26 свет, лет), подтвердил, что Вселенная расширяется, причем увеличение скорости расширения, согласно его данным, составляет 55 км/сек на 1 мегапарсек.

1957 г. -- в г. Дубне вступил в действие крупнейший в мире ускоритель заряженных частиц -- синхрофазотрон. С космодрома Байконур поднялся первый искусственный спутник Земли и спущено на воду первое в мире гражданское атомное судно -- ледокол «Ленин».

1958 г.--по инициативе американского ученого Лайнуса Полинга более 10 тыс. ученых мира подписали обращение с призывом о прекращении опытов с ядерным оружием;

-- американские физики Чарльз Таунс и Артур Шавлов теоретически обосновали конструкцию и принцип работы лазера (сокращенно с английского: усиление света при помощи вынужденного излучения) -- прибора для получения чрезвычайно интенсивных и узконаправленных пучков монохроматического светового излучения.

1960 г. -- неудачная попытка американского астронома Фрэнка Дрейка принять радиосигналы предполагаемых разумных цивилизаций от звезды «тау» экваториального созвездия Кита.

1961 г. -- первый полет человека в космос, продолжавшийся 1час 48 минут. 1963г. -- американский астроном Мартен Шмидт открыл квазары (источники радиоизлучения, близкие к звездному);

-- английские геологи Ф. Вайн и Д. Метьюз опубликовали статью, заложившую основы тектоники литосферных плит.

1964 г. -- английский антрополог и археолог Ричард Лики в ущелье Олдувай на севере Танзании обнаружил остатки стойбища и кости четырех обезьяноподобных людей, близких к австралопитеку и названных «человек умелый».

1965 г. -- открыто космическое реликтовое радиоизлучение. Предполагается, что это излучение является следствием взрыва первоначальной очень компактной и раскаленной Метагалактики и доказывает, таким образом, справедливость «горячей модели Вселенной».

1966 г; -- Нобелевская премия присуждена французским биологам Франсуа Жакобу, Андре Львову и Жаку Моно за открытие так называемых «структурных генов», отвечающих за синтез ферментов.

1967 г. -- американский физик Джеральд Фейнберг и независимо от него индийский физик Эннакал Сударшан выдвинули гипотезу о существовании тахионов -- частиц со скоростью большей скорости света;

-- Нобелевская премия присуждена немецкому физикохимику Манфреду Эй-гену и английским химикам Джорджу Портеру и Рональду Норришу за исследование сверхбыстрых химических и биохимических реакций со средней скоростью 10$-9 сек.;

-- южноафриканский хирург Кристиан Барнард в Кейптауне впервые осуществил операцию по пересадке сердца человеку;

-- английский астроном Энтони Хьюиш и работавшая под его руководством студентка Дж. Белл открыли в остатках сверхновых звезд пульсары (в данном случае речь шла о быстро вращающихся звездах).

1969 г. -- первый человек вступил на поверхность Луны.

1974 г -- на Первой международной конференции по этическим проблемам молекулярной биологии и генетической инженерии провозглашен временный мораторий на все опыты с рекомбинацией генетического материала.

1975 г. -- Нобелевская премия присуждена за сфероидальную модель атомного ядра.

1994 г. -- сообщение об открытии в США шестого, последнеготипа кварка.

ПРИМЕЧАНИЕ: по материалам книги Фолт Я., Нова Л. История естествознания в датах. -- M., 1987.

Высказывания выдающихся ученых

«Самым поразительным по новизне и по своим неслыханным практическим последствиям в области техники является со времени Каплера и Галилея естественнонаучное знание с его применением математической теории» (Ясперс К. Смысл и назначение истории.--М., 1994. --С. 100).

«Еще позавчера мы ничего не знали об электричестве, вчера мы ничего не знали об огромных резервах энергии, содержащихся в атомном ядре. О чем мы не знаем сегодня? Человек много веков жил рядом с электричеством, не подозревая о его значении. Быть может, мы окружены силами, о которых сегодня не имеем ни малейшего представления» (Луи де Бройль).

«Наука не открывается каждому без усилий. Подавляющее число людей не имеет о науке никакого понятия. Это -- прорыв в сознании нашего времени. Наука доступна лишь немногим. Будучи основной характерной чертой нашего времени, она в своей подлинной сущности тем не менее духовно бессильна, так как люди в своей массе, усваивая технические возможности или догматически воспринимая ходульные истины, остаются вне ее». (Ясперс К. Цит. соч. -- С. 111).

«Правильным методом философии был бы следующий: не говорить ничего, кроме того, что может быть сказано, -- следовательно, кроме предложений естествознания, т. е. того, что не имеет ничего общего с философией». (Л. Витгенштейн).

«Каждая наука определена методом и предметом. Каждая являет собой перспективу видения мира, ни одна не постигает мир как таковой, каждая охватывает сегмент действительности, но не действительность, -- быть может, одну сторону действительности, но не действительность в целом». (Ясперс К. Цит. соч. -- С. 102-103).

«Было бы неверно называть современную науку экспериментальной потому, что при вопрошании природы она использует экспериментальные устройства. Правильное противоположное утверждение, и вот почему: физика, уже как чистая теория, требует, чтобы природа проявила себя в предсказуемых силах; она ставит свои эксперименты с единственной целью задать природе вопрос: следует ли та, и если следует, то каким именно образом, схеме, предначертанной наукой». (М. Хайдеггер. Цит. по: Пригожин И., Стенгерс И. Порядок из хаоса. -- М., 1986. -- С. 76).

«Именно в этом и кроется разгадка тайны, которая лишает науку загадочного ореола и показывает, в чем состоит ее реальная сила. Если говорить о конкретных результатах, то наука не дает нам ничего нового, к чему бы мы не могли прийти, затратив достаточно много времени, без всяких методов... Подобно тому, как один человек, опирающийся только на плоды своего труда, никогда не сможет сколотить состояние, в то время как скопление результатов труда многих людей в руках одного человека есть основа богатства и власти, точно так же любое знание, заслуживающее того, чтобы так называться, не может быть наполнено разумом одного человека, ограниченного продолжительностью человеческой жизни и наделенного лишь конечными силами, если он не прибегнет к самой жесткой экономии мысли и тщательному собиранию экономно упорядоченного опыта тысяч сотрудников». (Э. Мах. Цит. по: Пригожин И., Стенгерс И. Цит. соч. --С. 100).

«Открытый современной наукой экспериментальный диалог с природой подразумевает активное вмешательство, а не пассивное наблюдение. Перед учеными ставится задача научиться управлять физической реальностью, вынуждать ее действовать в рамках «сценария» как можно ближе к теоретическому описанию. Исследуемое явление должно быть предварительно препарировано и изолировано, с тем чтобы оно могло служить приближением к некоторой идеальной ситуации, возможно физически недостижимой, но согласующейся с принятой концептуальной схемой». (Пригожин И., Стенгерс И. Цит. соч. -- С. 84-85).

«Природа, как на судебном заседании, подвергается с помощью экспериментирования перекрестному допросу именем априорных принципов. Ответы природы записываются с величайшей точностью, но их правильность оценивается в терминах той самой идеализации, которой физик руководствуется при постановке эксперимента». (Там же. -- с. 86).

«Из конкретной сложности и многообразия явлений природы необходимо выбрать одно единственное явление, в котором с наибольшей вероятностью ясно и однозначно должны быть воплощены следствия из рассматриваемой теории. Это явление затем надлежит абстрагировать от окружающей среды и «инсценировать» для того, чтобы теорию можно было подвергнуть воспроизводимой проверке, результаты и методы которой допускали бы передачу любому заинтересованному лицу». (Там же.--С. 86 -- 87).

«Мы считаем экспериментальный диалог неотъемлемым достижением человеческой культуры. Он дает гарантию того, что при исследовании человеком природы последняя выступает как нечто независимо существующее. Экспериментальный метод служит основой коммуникабельной и воспроизводимой природы научных результатов. Сколь бы отрывочно ни говорила природа в отведенных ей экспериментом рамках, высказавшись однажды, она не берет своих слов назад: природа никогда не лжет». (Там же. -- С. 88).

«Экспериментирование означает не только достоверное наблюдение подлинных фактов, не только поиск эмпирических зависимостей между явлениями, но и предполагает систематическое взаимодействие между теоретическими понятиями и наблюдением». (Там же. -- С. 44).

«Достоинство хорошей методы состоит в том, что она уравнивает способности; она вручает всем средство легкое и верное. Делать круг от руки трудно, надобно навык и прочее; циркуль стирает различие способностей и дает каждому возможность делать круг самый правильный». (Ф. Бэкон. Цит. по: Герцен А. И. Письма об изучении природы. -- С. 252).

«Движение науки нужно сравнивать не с перестройкой какого-нибудь города, где старые здания немилосердно разрушаются, чтобы дать место новым постройкам, но с непрерывной эволюцией зоологических видов, которые беспрестанно развиваются и в конце концов становятся неузнаваемыми для простого глаза, но в которых опытный глаз всегда откроет следы предшествующей работы прошлых веков». (Пуанкаре А. О науке. -- М., 1983).

«Классическая наука была порождена культурой, пронизанной идеей союза между человеком, находящимся на полпути между божественным порядком и естественным порядком, и богом, рациональным и понятным законодателем, суверенным архитектором, которого мы постигаем в нашем собственном образе. Она пережила момент культурного консонанса, позволявшего философам и теологам заниматься проблемами естествознания, а ученым расшифровывать замыслы творца и высказывать мнения о божественной мудрости и могуществе, проявленных при сотворении мира. При поддержке религии и философии ученые пришли к убеждению о самодостаточности своей деятельности, о том, что она исчерпывает все возможности рационального подхода к явлениям природы. Связь между естественнонаучным описанием и натурфилософией в этом смысле не нуждалась в обосновании. Можно считать, что естествознание и философия конвергируют и что естествознание открывает принципы аутентичной натурфилософии. Но, как ни странно, самодостаточности, которой успели вкусить ученые, суждено было пережить и уход средневекового бога, и прекращение срока действия гарантии, некогда предоставленной естествознанию теологией. То, что первоначально казалось весьма рискованным предприятием, превратилось в торжествующую науку XYIII века, открывшую законы движения небесных и земных тел, включенную Д'Аламбером и Эйлером в полную и непротиворечивую систему, в науку, историю которой Лагранж определил как логическое достижение, стремящееся к совершенству. В честь нее создавали академии такие абсолютные монархи, как Людовик XIY, Фридрих II и Екатерина Великая. Именно эта наука сделала Ньютона национальным героем. Иначе говоря, это была наука, познавшая успех, уверенная, что ей удалось доказать бессилие природы перед проницательностью человеческого разума. «Мне не понадобилась такая гипотеза», -- гласил ответ Лапласа на вопрос Наполеона, нашлось ли богу место в предложенной Лапласом системе мира». (Пригожий И., Стенгерс И. Цит. соч. -- С. 97- 98).

«Таким образом, вхождение времени в физику явилось заключительным этапом все более широкого «восстановления прав» истории в естественных и социальных науках. Интересно отметить, что на каждом этапе этого процесса наиболее важной отличительной особенностью «историзации» было открытие какой-нибудь временной неоднородности. Начиная с эпохи Возрождения западное общество вступило в контакт со многими цивилизациями, находившимися на различных этапах развития; в XIX в. биология и геология открыли и классифицировали ископаемые формы жизни и научились распознавать в ландшафтах сохранившиеся до нашего времени памятники прошлого; наконец, физика XX в. также открыла своего рода «ископаемое» -- реликтовое излучение, поведавшее нам о «первых минутах» Вселенной. Ныне мы твердо знаем, что живем в мире, где сосуществуют в неразрывной связи различные времена и ископаемые различных эпох». (Там же. -- С. 272).

«Какое место занимает картина мира физиков-теоретиков среди всех возможных таких картин? Благодаря использованию языка математики, эта картина удовлетворяет высоким требованиям в отношении строгости и точности выражения взаимозависимостей. Но зато физик вынужден сильно ограничивать свой предмет, довольствуясь изображением наиболее простых, доступных нашему опыту явлений, тогда как все сложные явления не могут быть воссозданы человеческим умом с той точностью и последовательностью, которые необходимы физику-теоретику. Высшая аккуратность, ясность и уверенность--за счет полноты. Но какую прелесть может иметь охват такого небольшого среза природы, если наиболее тонкое и сложное малодушно оставляется в стороне? Заслуживает ли результат столь скромного занятия гордого названия «картины мира»? Я думаю -- да, ибо общие положения, лежащие в основе мысленных построений теоретической физики, претендуют быть действительными для всех происходящих в природе событий. Путем чисто логической дедукции из них можно было бы вывести картину, т. е. теорию всех явлений природы, включая жизнь, если этот процесс дедукции не выходил бы далеко за пределы творческой возможности человеческого мышления. Следовательно, отказ от полноты физической картины мира не является принципиальным». (Эйнштейн А. Цит. по: Пригожий И., Стенгерс И. Порядок из хаоса.--С. 98 -- 99).

«Уместно спросить: каково значение ньютоновского синтеза в наши дни, после создания теории поля, теории относительности и квантовой механики? Это -- сложная проблема, и мы к ней еще вернемся. Теперь нам хорошо известно, что природа отнюдь не «комфортабельна и самосогласованна», как полагали прежде. На микроскопическом уровне законы классической механики уступили место законам квантовой механики. Аналогичным образом на уровне Вселенной на смену ньютоновской физике пришла релятивистская физика. Тем не менее классическая физика и поныне остается своего рода естественной точкой отсчета. Кроме того, в том смысле, в каком мы определили ее, т. е. как описание детерминированных, обратимых, статичных траекторий, ньютоновская динамика и поныне образует центральное ядро всей физики». (Там же. -- С. 115 --116).

«Из определения координаты и импульса в квантовой механике следует, что не существует состояний, в которых эти две физические величины (т. е. координата q и импульс р) имели бы вполне определенное значение. Эту ситуацию, неизвестную в классической механике, выражают знаменитые соотношения неопределенности Гейзенберга. Мы можем измерять координату и импульс, но неопределенности в их значениях lq и 1р связаны между собой неравенством Гейзенберга lqlp>h. Если неопределенность lq в положении частицы сделать сколь угодно малой, то неопределенность 1р в ее импульсе обратится в бесконечность, и наоборот... Соотношение неопределенности Гейзенберга с необходимостью приводит к пересмотру понятия причинности. Мы можем определить координату с абсолютной точностью, но в тот момент, когда это происходит, импульс принимает совершенно произвольное значение, положительное или отрицательное. Это означает, что объект, положение которого нам удалось измерить абсолютно точно, тотчас же перемещается сколь угодно далеко. Локализация утрачивает смысл: понятия, составляющие самую основу классической механики, при переходе к квантовой механике претерпевают глубокие изменения». (Там же.--С. 287,188).

«Нам приходится решать, какое измерение мы собираемся произвести над системой и какой вопрос наши эксперименты зададут ей. Следовательно, существует неустранимая множественность представлений системы, каждое из которых связано с определенным набором операторов. В свою очередь это влечет за собой отход квантовой механики от классического понятия объективности, поскольку с классической точки зрения существует единственное объективное описание. Оно является полным описанием системы «такой, как она есть», не зависящим от выбора способа наблюдения. Бор всегда подчеркивал новизну, нетрадиционность позитивного выбора, производимого при квантовомеханическом измерении. Физику необходимо выбрать свой язык, свой макроскопический измерительный прибор. Эту идею Бор сформулировал в виде так называемого принципа дополнительности, который можно рассматривать как обобщение соотношений неопределенности Гейзенберга. Мы можем измерить либо координаты, либо импульсы, но не координаты и импульсы одновременно. Физическое содержание системы не исчерпывается каким-либо одним теоретическим языком, посредством которого можно было бы выразить переменные, способные принимать вполне определенные значения. Различные языки и точки зрения на систему могут оказаться дополнительными. Все они связаны с одной и той же реальностью, но не сводятся к одному-единственному описанию. Неустранимая множественность точек зрения на одну и ту же реальность означает невозможность существования божественной точки зрения, с которой открывается «вид» на всю реальность. Однако принцип дополнительности учит нас не только отказу от несбыточных надежд. Бор неоднократно говорил, что от размышлений над смыслом квантовой механики голова у него идет кругом, и с ним нельзя не согласиться: у каждого из нас голова пойдет кругом, стоит лишь оторваться от привычной рутины здравого смысла. Реальный урок, который мы можем извлечь из принципа дополнительности (урок, важный и для других областей знания), состоит в констатации богатства и разнообразия реальности, превосходящей изобразительные возможности любого отдельно взятого языка, любой отдельно взятой логической структуры. Каждый язык способен выразить лишь какую-то часть реальности. Например, ни одно направление в исполнительском искусстве и музыкальной композиции от Баха до Шёнберга не исчерпывает всей музыки». (Там же. -- С. 289 -- 290).

«Мы так привыкли к законам классической динамики, которые преподносятся нам едва ли не с младших классов средней школы, что зачастую плохо сознаем всю смелость лежащих в их основе допущений. Мир, в котором все траектории обратимы, -- поистине странный мир. Не менее поразительно и другое допущение, а именно допущение полной независимости начальных условий от законов движения». (Там же. -- С. 108).

«Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической физике мы можем представлять себе обратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в динамике всегда соответствует идеализации, но по крайней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изучением которых она занимается (химические превращения, характеризуемые скоростями реакций), необратимы. По этой причине химию невозможно свести к лежащей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эквивалентные роли». (Там же. -- С. 190).

«По свидетельству Минеля Серра, древние атомисты уделяли турбулентному течению столь большое внимание, что турбулентность с полным основанием можно считать основным источником вдохновения физики Лукреция. Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение -- «клинамен». Возникающий вихрь дает начало миру, всем вещам в природе. «Клинамен», спонтанное непредсказуемое отклонение, нередко подвергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: «клинамен» представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современные специалисты по гидродинамике проверяют устойчивость течения жидкости, вводя возмущение, выражающее влияние молекулярного хаоса, который накладывается на среднее течение. Не так уж далеко мы ушли от «клинамена» Лукреция!» (Там же. -- С. 195).

«В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с одной стороны, они являются вместилищем многочисленных химических превращений, с другой -- демонстрируют великолепную пространственно-временную организацию с весьма неравномерным распределением биохимического материала». (Там же. -- С. 211).

« Специфичность жизни, отличие живых систем от неорганического мира хорошо видны с точки зрения химии. В живых системах протекает множество отдельных химических реакций, например, в человеческом организме в одну секунду совершается примерно 15 миллиардов актов реакций, многие из которых давно и хорошо изучены. Для живого специфичен определенный порядок этих реакций, их последовательность и объединение в целостную систему». (Мир вокруг нас. -- М., 1983. -- С. 101).

«Вся совокупность современных биохимических данных показывает, что отдельные, индивидуальные реакции, протекающие в живых телах, сравнительно просты и однообразны. Это хорошо известные и легко воспроизводимые в пробирке и колбе химика реакции окисления, восстановления, гидролиза, фосфоролиза, альдольного уплотнения, переаминирования и т. д. Ни в одной из них нет ничего специфически жизненного. Специфическим для живых тел прежде всего является то, что в них эти отдельные реакции определенным образом организованы во времени, сочетаются в единую целостную систему, наподобие того, как отдельные звуки сочетаются в какое-либо музыкальное произведение, например, симфонию. Стоит только нарушить последовательность звуков -- получится дисгармония, хаос. Аналогичным образом и для организации живых тел важно то, что совершающиеся в них реакции протекают не случайно, не хаотически, а в строго определенном гармоничном порядке, который лежит в основе как восходящей, так и нисходящей ветви обмена веществ. Такие жизненные явления, как, например, брожение, дыхание, фотосинтез, синтез белков и т. д., -- это длинные цепи реакций окисления, восстановления, альдольного уплотнения и т. д., сменяющих друг друга в совершенно точной последовательности, в строго определенном закономерном порядке. Но что особенно важно, что принципиально отличает живые организмы от всех систем неорганического мира -- это присущая жизни общая направленность указанного выше порядка. Многие десятки и сотни тысяч химических реакций, совершающихся в живом теле, не только гармонично сочетаются в едином порядке, но и весь этот порядок закономерно обусловливает самосохранение и самовоспроизведение всей жизненной системы в целом в данных условиях внешней среды, в поражающем соответствии с этими условиями». (Опарин А. И., Фесенков В. Г. Жизнь во Вселенной. -- М., 1956. -- С. 40).

«На бесчисленном множестве небесных тел нет жизни, многие из этих тел никогда и не будут ею обладать в течение всего своего развития, так как оно здесь идет совершенно иными путями, чем это имеет место на нашей планете. Но из этого совершенно не следует, что только Земля является единственным обиталищем жизни. В нашей метагалактической системе имеются сотни миллионов галактик, и каждая отдельная галактика может состоять из миллиардов и сотен миллиардов звезд. Даже в нашей галактике, включающей примерно 150 миллиардов звезд, могут быть сотни тысяч планет, на которых возможно возникновение и развитие жизни. Во всей бесконечной Вселенной должно существовать также и бесконечное множество обитаемых планет». (Там же. -- С. 223).

«Органический синтез осуществлялся в период, предшествовавший образованию Солнечной системы и во время ее образования; он имел место уже на том этапе, когда Земля еще окончательно не сформировалась. По-видимому, такой синтез происходил в атмосферах углеродных звезд, в солнечной туманности, в планетозималях и протопланетах» (Оро Дж. Этапы и механизмы предбиологического органического синтеза // Происхождение предбиологических систем. -- М., 1966. -- С. 167).

«Я полагаю, что обмен у первых организмов был направлен -- а у первых синтетических организмов будет направлен -- на синтез нуклеиновых кислот, способных служить матрицей в синтезе белка, а также на синтез одного или более белков, катализирующих образование нуклеиновых кислот и белков» (Холдейн Дж. Там же. -- С. 19).

«Из множества возникавших при неспецифической полимеризации вариантов благодаря действию естественного отбора сохранились только те, участие которых в метаболизме данной системы способствовало ее более длительному существованию, росту и размножению. Так происходило постепенное совершенствование как всей живой системы в целом, так и ее отдельных механизмов» (Опарин А. И. Там же. -- С. 345).

«Если бы в период первоначального синтеза таких молекул существовал свободный кислород, то они почти наверное в конце концов разрушились бы в результате окисления. Только в среде, лишенной свободного кислорода, эти предшественники живых систем могли накапливаться в концентрациях, способных обеспечить их частое взаимодействие друг с другом... что было необходимо для возникновения первых метаболических систем» (Хочачка П., Сомеро Дж. Стратегия биохимической адаптации.-- М., 1977. -- С. 30).

«Земная оболочка биосферы, обнимающая весь земной шар, имеет резко обособленные размеры; в значительной мере она обусловливается существованием в ней живого вещества -- им заселена. Между ее косной безжизненной частью, ее косными природными телами и живыми веществами, ее населяющими, идет непрерывный материальный и энергетический обмен, материально выражающийся в движении атомов, вызванном живым веществом. Этот обмен в ходе времени выражается закономерно меняющимся, непрерывно стремящимся к устойчивости равновесием. Оно пронизывает всю биосферу, и этот биогенный ток атомов в значительной степени ее создает. Так неотделимо и неразрывно биосфера на всем протяжении геологического времени связана с живым заселяющим ее веществом. В этом биогенном токе атомов и связанной с ним энергии проявляется резко планетное, космическое значение живого вещества. Ибо биосфера является той единственной земной оболочкой, в которую непрерывно проникают космическая энергия, космические излучения и прежде всего лучеиспускание Солнца, поддерживающее динамическое равновесие, организованность: биосфера живое вещество». (Вернадский В. И. Размышления натуралиста. Научная мысль как планетарное явление. Книга II.- M., 1977.-C.15).

«Так как рождается гораздо больше особей каждого вида, чем может выжить, и так как между ними поэтому часто возникает борьба за существование, то из этого следует, что любое существо, если оно хотя бы незначительно изменится в направлении, выгодном для него в сложных и нередко меняющихся условиях его жизни, будет иметь больше шансов выжить и, таким образом, будет сохраняться естественным отбором. В силу действия закона наследственности всякая сохраненная отбором разновидность будет размножаться в своей новой, видоизмененной форме» (Дарвин Ч. Происхождение видов).

«Смотрю ли я с оптимизмом на будущее науки? Оптимисты, пессимисты -- трудно сказать, кто мы, потому что наука принесла людям и много хорошего, и вместе с тем -- атомные бомбы, ракеты и другие виды оружия, которые представляют угрозу человечеству. В современной международной обстановке эти научные достижения представляют большую опасность. Катастрофы не должно быть, ибо она принесет гибель всему нашему миру. Чтобы этого не случилось, нужно взаимопонимание. Между коллегами, народами, государствами. Между наукой и обществом. Ученый обязан оценивать вред и пользу, которые его наука способна принести человечеству». (Альвен X. Оптимисты, пессимисты -- трудно сказать, кто мы // Краткий миг торжества: О том, как делаются научные открытия. -- М., 1989. -- С. 330).

Вопросы к семинарам

Часть А

I. Прокомментируйте следующие высказывания:

1. «Наиболее интересными являются те факты, которые могут служить свою службу многократно, которые могут повторяться». (Пуанкаре А. О науке. -- М., 1983. -- С. 289).

2. «Таким образом, интерес представляет лишь исключение». (Там же. -- С. 291).

3. «Мы (ученые.--А. Г.) должны предпочитать те факты, которые нам представляются простыми, всем тем, в которых наш грубый глаз различает несходные составные части». (Там же. -- С. 290).

4. «Однако мы должны сосредоточить свое внимание, главным образом, не столько на сходствах и различиях, сколько на тех аналогиях, которые часто скрываются в кажущихся различиях». (Там же. -- С. 292).

5. «Механизм математического творчества, например, не отличается существенно от механизма какого бы то ни было иного творчества». (Там же. -- С. 285).

6. «Метод -- это, собственно, и есть выбор фактов; и прежде всего, следовательно, нужно озаботиться изобретением метода». (Там же. -- С. 291).

7. «Метод--это циркуль». (Ф. Бэкон).

II. Ответьте на следующие вопросы:

1. Чем отличается наука от других отраслей культуры?

2. В каком смысле можно говорить о совместимости и несовместимости науки и религии? Что такое верующий ученый?

3. Доказали ли космические полеты, что Бога нет, и каким образом?

4. Как вы относитесь к предложению П. Фейерабенда об отделении науки от государства?

5. Наука: благо или зло?

6. Гуманный и гуманитарный: в чем сходство и различие? Правильно ли говорят: «гуманитарная помощь»?

7. Почему в Китае было развито иглоукалывание и определение диагноза по пульсу, а не хирургия, как на Западе?

8. Почему Эйнштейн играл на скрипке и говорил, что Достоевский дал ему больше, чем Гаусс?

9. Что такое НТР и научная революция?

10. Продолжается ли сейчас НТР?

11. HTP -- это всемирное или региональное явление?

12. Что значит: «мир познаваем»?

13. Может ли познание дойти до каких-либо неделимых частиц и не будет ли это концом познания?

14. Может ли существовать первоматерия?

15. Мир существовал бесконечно и будет существовать бесконечно -- это научное утверждение, философское или какое-нибудь еще?

16. Можно ли отделить теоретический уровень исследования от эмпирического и если нет, то почему?

17. Как вы понимаете утверждение, что книга Природы написана языком математики?

18. Являются ли числа ключом к Природе?

19. Как вообще понимать выражение «книга Природы»?

20. Какова роль в науке: гипотезы, метода, теории, эксперимента, математики, моделирования, индукции, дедукции, интуиции, дискуссии, вероятностных методов и т. д.?

21. Чем правовой закон отличается от научного?

22. Все ли богословы выступают против эволюции?

23. Каково соотношение между материей и гармонией мира?

Часть Б.

I. Прокомментируйте следующие высказывания:

1. «Вот мой результат, но я пока не знаю, как его получить». (Гаусс К.).

2. «Природа весьма согласна и подобна в себе самой» (Ньютон И.).

3. «Почему однородное состояние теряет устойчивость? Почему потеря устойчивости приводит к спонтанной диффузии? Почему вообще существуют вещи? Являются ли они хрупкими и бренными следствиями несправедливости, нарушения статического равновесия между противоборствующими силами природы? Может быть, силы природы создают вещи и обусловливают их автономное существование -- вечно соперничающие силы любви и ненависти, стоящие за рождением, ростом, увяданием и рассыпанием в прах? Является ли изменение не более чем иллюзией или, наоборот проявлением неутихающей борьбы между противоположностями, образующими изменяющуюся вещь? Сводится ли качественное изменение к движению в вакууме атомов, отличающихся только по форме, или же атомы сами состоят из множества качественно различных «зародышей», каждый из которых отличен от другого?». (Пригожин И., Стенгерс И. Порядок из хаоса. -- М., 1986. -- С. 81).

II. Изобразите схематично на доске:

1. Современную картину мира.

2. Ход научного исследования.

3. Науки, которые входят в первую десятку естественных наук.

III. Ответьте на следующие вопросы:

1. В чем отличие химии от алхимии, астрономии от астрологии?

2. Наука: получение атомной энергии и опасность Чернобыля. Рисковать или нет?

3. Как можно доказать, что все произошло из ничего?

4. Дайте определение звезд и других небесных тел?

5. Какова масса различных звезд?

6. Зачем нужны галактики и т. д.?

7. В чем различие понятий: Вселенная, бытие, универсум?

8. Чем отличается гравитационный коллапс от антиколлапсионного взрыва?

9. Чем отличаются космология, космогония, астрономия, астрофизика, космонавтика?

10. Что значит стационарность и нестационарность Вселенной?

11. В чем разница между бесконечностью и безграничностью?

12. Какое значение имело открытие планеты Нептун, предсказанное на основе закона всемирного тяготения?

13. Как изменила научную картину мира теория относительности, квантовая механика, синергетика?

14. Как происходит эволюция в неживых телах?

15. Как появляются вещи (с точки зрения квантовой механики, синергетики)?

17. Какова роль вероятностных методов в классической термодинамике, квантовой механике, синергетике? Какова роль случайности?

18. Какова роль времени в теории относительности и синергетике?

19. Что нужно, чтобы появилось и могло существовать живое вещество?

20. Если отрезать хвосты у мышей, то появятся ли и в каком поколении бесхвостые мыши?

21. Почему проблема происхождения жизни -- одна из самых трудных и интересных в науке?

22. Каково донаучное, научное и теологическое понимание целесообразности?

23. Почему именно русский ученый создал учение о биосфере?

Темы для докладов на семинарах и контрольных работ

1. Что такое наука? Ее основные черты и отличия от других отраслей культуры.

2. Что такое естествознание и его отличия от других циклов наук?

3. Сущность и основные особенности научно-технической революции.

4. Классификация естественных наук.

5. Структура естественнонаучного познания.

6. Общенаучные и конкретно-научные методы исследования.

7. Специфика научных революций.

8. Научные революции в XX веке.

9. Теория познания и современное естествознание.

10. Основные методологические концепции развития современного естествознания.

11. Современная научная картина мира.

12. Этические проблемы естествознания.

13. Перспективы естественнонаучного познания.

14. Концепции сциентизма и антисциентизма.

15. Место и роль науки в общественной жизни современного человека.

16. Связь современного естественнонаучного познания с техникой.

17. Экологическое значение естествознания.

18. Роль математики в современном естествознании.

19. Модель Большого Взрыва и расширяющейся Вселенной.

20. Происхождение и развитие галактик и звезд.

21. Происхождение Солнечной системы.

22. Современные проблемы астрофизики.

23. Проблемы происхождения и развития Земли.

24. Основные положения глобальной тектоники.

25. Главные выводы специальной и общей теории относительности.

26. Современные проблемы квантовой механики.

27. Роль вероятностных методов в классической физике и квантовой механике.

28. Значение синергетики для современного естественнонаучного познания.

29. Общенаучное значение понятия энтропии.

30. Проблемы соотношения вещества и поля, материи и энергии.

31. Роль симметрии и асимметрии в научном познании.

32. Проблемы соотношения сохранения и эволюции.

33. Современные представления о пространстве и времени.

34. Характеристика основных физических взаимодействий.

35. Основные проблемы современной химии.

36. Проблема детерминизма и индетерминизма в современном естествознании.

37. Проблема сущности живого и его отличия от неживой материи.

38. Естественнонаучные модели происхождения жизни.

39. Основные проблемы генетики и роль воспроизводства в развитии живого.

40. Современные проблемы цитологии и роль клетки в развитии живого.

41. Основные проблемы синтетической теории эволюции.

42. Роль мутаций и окружающей среды в эволюции живого.

43. Основные проблемы экологии и роль среды для жизни.

44. Закономерности развития экологических систем.


Подобные документы

  • Принципы неопределенности, дополнительности, тождественности в квантовой механике. Модели эволюции Вселенной. Свойства и классификация элементарных частиц. Эволюция звезд. Происхождение, строение Солнечной системы. Развитие представлений о природе света.

    шпаргалка [674,3 K], добавлен 15.01.2009

  • Определение понятия энтропии и принципы ее возрастания. Различия между двумя типами термодинамических процессов - обратимыми и необратимыми. Единство и многообразие органического мира. Строение и эволюция звезд и Земли. Происхождение и эволюция галактик.

    контрольная работа [230,8 K], добавлен 17.11.2011

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Предмет изучения и задачи естествознания. Иерархическая последовательность наук по степени возрастания их сложности (лестница Кекуле). Методы естественнонаучного познания. Мифы, религии и искусство как формы отражения окружающей действительности.

    презентация [268,4 K], добавлен 20.06.2013

  • Формирование основных положений космологической теории - науки о строении и эволюции Вселенной. Характеристика теорий происхождения Вселенной. Теория Большого взрыва и эволюция Вселенной. Строение Вселенной и её модели. Сущность концепции креационизма.

    презентация [1,1 M], добавлен 12.11.2012

  • Естествознание как отрасль науки. Структура, эмпирический и теоретический уровни и цель естественнонаучного познания. Философия науки и динамика научного познания в концепциях К. Поппера, Т. Куна и И. Лакатоса. Этапы развития научной рациональности.

    реферат [32,7 K], добавлен 07.01.2010

  • Социальные функции естественных наук. Естественнонаучная, гуманитарная культуры. Роль естествознания в научно-техническом прогрессе, классификация его методов, их роль в познании. Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.

    курс лекций [279,5 K], добавлен 15.11.2014

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Эволюция познавательной деятельности от античных времен до современности. Специфические черты науки; ее первоначальное деление на естественнонаучные и гуманитарные знания, их дальнейшее объединение в дисциплину "концепции современного естествознания".

    курсовая работа [38,8 K], добавлен 08.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.