Особенности биотехнологических процессов

Макробиообъекты животного происхождения. Примеры использования (донор, донатор). Понятие вектора в генетической инженерии. Основы химического синтеза фрагментов ДНК. Биотехнологический процесс как промежуточный этап производства лекарственных препаратов.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 02.08.2012
Размер файла 974,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Каллусы с высоким морфогенетическим потенциалом обычно матовые, компактные, структурированные, имеют зеленые хлорофиллсодержащие участки, которые представляют собой зоны морфогенеза. Впоследствии там формируются побеги или растения-регенеранты. В культуре также встречаются каллусы рыхлые, не имеющие глобулярного характера. Такие каллусы либо совсем не способны к органогенезу, либо формируют только корни. Появление корней свидетельствует о сдвиге гормонального баланса в сторону ауксинов, что препятствует образованию побегов. Эти каллусы могут остаться ризогенными, и регенерировать из них растения не удастся. Неморфогенные каллусы могут быть переведены в суспензионную культуру для получения вторичных метаболитов.

Переход специализированных неделящихся клеток к пролиферации связан с их дедифференциацией, другими словами - утратой специализации. В основе этого процесса, как и при дифференциации клеток в интактном растении, лежит дифференциальная активность генов. Структура и функции клеток определяются активностью генов, и если клетки различаются по своей структуре и функциям, то это обусловлено различиями в экспрессии их генов, то есть специализация обеспечивается "включением" разных генов в разных клетках. Обычно активна небольшая часть (5%) всего пула генов, свойственных данному виду. В этот состав активных генов входят, кроме видоспецифичных и обязательных для поддержания клеточного метаболизма, гены, активные только в данном органе, ткани, клетке, а также гены, активные лишь в определенном возрасте или начавшие работать только под влиянием изменившихся внешних условий.

Возникновение физиологических и структурных различий между клетками и тканями растений, связанное с их функциональной специализацией, называют процессом дифференциации. Понятие "дифференциация" отражает превращение эмбриональной, меристематической клетки в специализированную. Меристематические клетки, однотипные по структуре и функции, начинают развиваться различными путями, создавая ткани разных органов. Как это осуществляется - один из труднейших вопросов клеточной биологии. Между геномами в клетках, которые приобретают разную форму и функцию, по-видимому, нет качественных различий, и клетки эти начинают различаться только вследствие разной экспрессии генов. Вновь возникшая клетка обладает широкими потенциями и может развиваться по любому из многих путей в морфологическом и физиологическом смысле.

Детерминация (определение) пути развития каждой клетки является основой физиологии развития. Вступление на тот или иной путь развития определяется особым набором белков, т.е. каждая специализированная клетка вырабатывает только ей свойственные белки, что является следствием дифференциальной активности генов - экспрессии одной группы генов при одновременной репрессии других. Способность одной-единственной зрелой соматической клетки дать начало целому организму (тотипотентность) показывает, что в процессе нормальной клеточной дифференциации у растений не происходит утраты или необратимой инактивации каких-либо генов.

У растений почти всякая дифференциация обратима при условии, если дифференцированная клетка живая, в протопласте сохранилось ядро и не образовалась вторичная оболочка. Даже такие высокоспециализированные клетки, как микроспоры, с помощью ряда экспериментальных процедур можно заставить пролиферировать и дать начало целому растению. Итак, в определенных условиях многие из зрелых растительных клеток сохраняют способность делиться, а в некоторых случаях даже вступить на новый путь развития. Однако вопрос о том. как это происходит, какие события на молекулярном уровне сопровождают этот процесс, остается открытым.

В основе культивирования растительных клеток лежит свойство тотипотентности, благодаря которому соматические клетки растения способны полностью реализовать наследственную информацию, то есть обеспечить развитие всего растения. Следует отметить, что в отличие от животной, растительная клетка предъявляет менее жесткие требования к условиям культивирования.

Изменяя условия (добавляя в состав питательной среды те или иные гормоны), можно вызвать дифференциацию недетерминированных клеток. Культура растительной ткани позволяет получить многочисленные популяции в сравнительно короткое время и в ограниченном пространстве. Клетки в условиях in vitro лишаются очень многих важных взаимодействий, которые определяют их судьбу и дифференциацию в целом организме. В определенных пределах дифференциация культивируемых клеток поддается контролю со стороны экспериментатора.

Основным типом культивируемой растительной клетки является каллус. Каллусная ткань - один из видов клеточной дифференцировки, возникает путем неорганизованной пролиферации дедифференцированных клеток органов растения. У растений в природе каллусная ткань возникает в исключительных обстоятельствах (например, при травмах) и функционирует непродолжительное время. Эта ткань защищает место поранения, может накапливать питательные вещества для анатомической регенерации или регенерации утраченного органа.

Образование каллуса не всегда связано с травматическим воздействием. Каллус может возникнуть и в результате пролиферации внутренних тканей экспланта без связи с поверхностью среза из-за нарушения гормонального баланса. Растущий каллус разрывает слои ткани и развивается на поверхности. Для получения культивируемых каллусных клеток фрагменты тканей различных органов высших растений - корней, листьев, стеблей, пыльников, зародышей (эксплан-ты) помещают на искусственную среду, содержащую ауксины, в пробирки, колбы, чашки Петри (in vitro).

В качестве ауксинов используют 2,4-дихлорфеноксиуксусную кислоту (2,4-Д), a-нафтилуксусную кислоту (НУК), индолил-масляную кислоту (ИМК), индолилуксусную кислоту (ИУК) в концентрации 0,5 - 10 мг / л, в зависимости от вида экспланта.

Процессу образования каллуса предшествует дедифференцировка тканей экспланта. При дедифференцировке ткани теряют структуру, характерную для их специфических функций в растении, и возвращаются к состоянию делящихся клеток. Если эксплант, используемый для получения каллуса, является фрагментом органа, то имеет в своем составе эпидермальные клетки, клетки камбия, сосудистой системы, сердцевинной и первичной коровой паренхимы. Преимущественно пролиферируют клетки камбия, коры, сердцевинной паренхимы.

Различное тканевое происхождение каллусных клеток является одной из причин гетерогенности каллусной ткани, так как некоторые функциональные особенности исходных клеток передаются в ряду клеточных поколений как стойкие модификации. В качестве примера можно привести процессы, происходящие при дедифференцировке апикальной меристемы стебля. После помещения на питательную среду меристемы стебля томатов отмечено прекращение митоза, клетки увеличиваются в размерах, теряют характерную для меристематической ткани форму, изменяется структура ядра и цитоплазмы. В готовящейся к делению клетке возрастает синтез всех форм РНК, исчезают тканеспецифичные белки-антигены и появляются белки, специфичные для делящихся клеток и для каллусной ткани. Эти наблюдения свидетельствуют об изменениях в активности генов и белкового аппарата клетки при дедифференцировке.

Активаторами матричной активности ДНК хроматина или активности РНК-полимеразы являются фитогормоны. Рецепторные для фитогормонов белки, локализованные в мембранах, по-видимому, оказывают влияние в присутствии фитогормонов на структуру и функцию мембран. Возможно, это обуславливает действие фитогормонов на генную активность.

Одним из важнейших гормонов, применяемых при культивировании in vitro является ауксин, который активирует деление и растяжение клеток. Проникая в клетки, ИУК связывается со специфическими рецепторами, оказывая влияние на функциональную активность мембран, полирибосом и работу ядерного аппарата. Установлено, что в плазмалемме ауксин индуцирует работу Н+-помпы, в результате чего матрикс клеточных стенок размягчается, что является необходимым условием для роста и растяжения клеток. Включенная Н+-помпа усиливает поглотительную активность тканей, обогащенных ауксином. Предполагается, что поступление ауксина в клетку способствует усиле-нию секреции кислых гидролаз и полисахаридов, необходимых для дальнейшего роста клеточных стенок. Под влиянием ауксина уменьшается продолжительность различных периодов митотического цикла. Так, предполагается, что уменьшается продолжительность периода удвоения числа клеток, продолжительность S - периода, G1 - периода. Все это приводит к значительному ускорению темпов размножения клеток.

Общим моментом в действии ауксинов на деление клеток является также предварительное усиление синтеза и накопление РНК. Стимулирующее действие ауксинов на синтез РНК может быть связано с восстановлением клеток после голодания перед их вхождением в митотический цикл, но может быть также приурочено к прохождению клетками этапов митотического цикла. Особенно отчетливо необходимость синтеза РНК проявляется при прохождении клетками G1 - периода. Под влиянием ауксина усиливается синтез р-РНК, но имеет место и появление новых информационных РНК, причем на очень ранних этапах действия.

Осуществление клетками подготовки к делению на всех этапах митотического цикла зависит от синтеза белков. Ауксин вызывает как общую стимуляцию их синтеза, так и появление новых белков. Это позволяет предположить существование в хроматине структурных генов, транскрипция которых специфически индуцируется ауксином. Реализация действия ауксина на хроматин и последующее деление осуществляется вследствие его проникновения в цитоплазму, образования комплекса с цитоплазматическим ауксиновым рецептором и воздействием этого комплекса на транскрипционную активность хроматина. Кроме этого ауксин усиливает окислительную и фосфорилирующую активность митохондрий, в результате чего улучшается энергетическое и субстратное обеспечение процессов синтеза РНК и белков, репликация ДНК, а также осуществление самого митоза. Этот эффект обнаруживается очень рано и, как и синтез РНК, зависит от проникновения ауксина в клетку.

Для возбуждения процессов подготовки к делению достаточно начального кратковременного действия ауксина. Поэтому процессы, происходящие в клетках под влиянием ауксина, можно разделить на первичные, непосредственно индуцированные ауксином, и вторичные, являющиеся следствием первичного индуцирующего действия. Исходя из этого, можно предположить, что в митотическом цикле растительных клеток имеются кратковременные переходы, когда необходимо присутствие ауксина в клетках, и более продолжительные периоды, когда присутствие ауксинов в клетке не является необходимым.

Ауксины

Ауксины - это вещества индольной природы. Основным фитогормоном типа ауксина является р-индолилуксусная кислота (ИУК). Открытие ауксинов связано с исследованиями Ч. Дарвина (I860). Дарвин установил, что, если осветить проросток злака с одной стороны, он изгибается к свету. Однако, если на верхушку проростка надеть непроницаемый для света колпачок и после этого поставить в условия одностороннего освещения, изгиба не происходит. Таким образом, органом, воспринимающим одностороннее освещение, является верхушка растения, тогда как сам изгиб происходит в нижней части проростка. Из этого Ч. Дарвин заключил, что в верхушке проростка под влиянием одностороннего освещения вырабатывается вещество, которое передвигается вниз и вызывает изгиб. Идеи Ч. Дарвина получили развитие лишь через 50 лет в работах датского исследователя П. Бойсен-Йенсена, который показал, что если срезанную верхушку вновь наложить на колеоптиль через слой желатины, то при одностороннем освещении наблюдается изгиб к свету. Было показано также, что удаление верхушки проростка (декапитация) резко замедляет рост нижележащих клеток, находящихся в фазе растяжения. При обратном накладывании верхушки проростка через слой желатины или агар - агара рост нижележащих клеток возобновляется. Далее исследования Вента показали, что, если срезанную верхушку поместить на блок из агар-агара, а затем наложить этот блок на декапитированный колеоптиль, рост возобновляется. Если агаровый блок, на котором в течение некоторого времени была помещена верхушка колеоптиля, наложить на обезглавленный колеоптиль асимметрично, то происходит изгиб, причем более интенсивно растет та сторона, на которую наложен блок. Все эти опыты привели к выводу, что в верхушке проростков вырабатывается особое вещество, которое, передвигаясь к нижележащим клеткам, регулирует их рост в фазе растяжения. Поскольку это вещество вырабатывается в одной части растения, а вызывает физиологический эффект в другой, оно было отнесено к гормонам роста растения - фитогормонам.

Исследования, проведенные советским академиком Н.Г. Холодным, показали, что рост различных видов растений, а также различных органов одного и того же растения регулируется одним и тем же гормоном - ауксином. Оказалось, что фитогормоны типа ауксина - р-индолилуксусная кислота (ИУК) и некоторые близкие к ней соединения - широко распространены в растениях. Наиболее, богаты ауксинами растущие части растительного организма: верхушки стебля, молодые растущие части листьев, почки, завязи, развивающиеся семена, а также пыльца. Образование ауксинов в большинстве случаев идет в меристематических тканях. Ауксины передвигаются из верхушки побега вниз к его основанию, а далее от основания корня к его окончанию. Таким образом, передвижение ауксинов полярно. Полярное передвижение ауксинов идет по проводящим пучкам со скоростью, значительно превышающей скорость обычной диффузии (5-10 мм/ч). По-видимому, это активный процесс, требующий затраты энергии. Недостаток кислорода, торможение процесса дыхания с помощью различных ингибиторов приостанавливают передвижение ауксинов. Во взрослом дифференцированном растении при высокой концентрации гормона может наблюдаться и неполярное передвижение ауксинов вверх по растению с током воды по ксилеме. Ауксин, образующийся в кончике корня, может, по-видимому, передвигаться на короткие расстояния вверх, в зону растяжения.

Основным источником для образования (3-индолилуксусной кис- лоты (ИУК) является аминокислота триптофан. В свою очередь триптофан образуется из шикимовой кислоты. Содержание ИУК зависит не только от скорости образования, но и от быстроты разрушения. Основным ферментом разрушения ИУК является ИУК-оксидаза (ОИУК). Можно полагать, что в некоторых случаях отсутствие влияния ИУК, внесенной извне, связано с быстрым ее окислением ИУК-оксидазой. Наряду с ферментативным окислением ИУК большое значение имеет ее разрушение на свету (фотоокисление). Особенно сильное разрушающее действие на ИУК имеют ультрафиолетовые лучи с длиной волны около 280 нм. Внешние условия оказывают значительное влияние на образование ИУК. Показано, что образование ИУК зависит от снабжения растения азотом, обеспечения растения водой. Освещение уменьшает содержание ауксинов, а затемнение увеличивает. Большое влияние на содержание ауксинов оказывает эпифитная микрофлора. Под влиянием микроорганизмов содержание ауксинов у высшего растения заметно возрастает. По-видимому, именно через изменение содержания фитогормонов осуществляется первоначальное влияние условий внешней среды на процессы обмена веществ и рост. Содержание ауксинов меняется и в процессе онтогенеза растительного организма. Обычно в листьях максимум содержания ауксинов наступает в фазу бутонизации или цветения. Распускающиеся почки, прорастающие семена содержат большое количество ауксина. В период, когда процессы роста прекращаются (период покоя), содержание ауксинов падает (В.И. Кефели). Как правило, между содержанием ауксинов и скоростью роста клеток имеется прямая зависимость. Она хорошо проявляется и при внесении ауксинов извне. В целом регуляция образования и разрушения ИУК - это один из способов регуляции ее содержания, а следовательно, и процессов роста.

Цитокинины

Открытие цитокининов связано с обширными исследованиями по выращиванию каллуса, образовавшегося из изолированной ткани сердцевины стебля табака на питательной среде (Ф. Скуг и К. Миллер). Было показано, что клетки каллуса в стерильной культуре через определенный промежуток времени прекращают деление. Однако при добавлении к питательной среде производных ДНК, получающихся после ее автоклавирования, деление клеток возобновляется. В 1955 г. было выделено активное начало, вызывающее деление клеток, - 6-фурфуриламинопурин, названное кинетином.6-фурфуриламинопурин в растениях не встречается. Однако в растениях были найдены близкие химические соединения, регулирующие процесс деления клеток, - цитокинины. Один из цитокининов, выделенный из кукурузы, был назван зеатином. Все известные цитокинины - это производные пуриновых азотистых оснований, а именно аденина, в котором аминогруппа в шестом положении замещена различными радикалами. Соединения цитокининового типа обнаруживаются в растениях не только в свободном состоянии, но и в составе некоторых т-РНК. Цитокинины образуются главным образом в корнях (О.Н. Кулаева) и передвигаются в надземные органы по ксилеме. Цитокинины во многом определяют физиологическое влияние корневой системы на обмен веществ надземных органов (К. Мотес). Вместе с тем имеются данные об образовании цитокининов в семенах и развивающихся плодах. Нанесенные на лист синтетические цитокинины передвигаются плохо.

О путях биосинтеза и распада цитокининов известно мало. По - видимому, пуриновое кольцо синтезируется и разрушается обычным путем. Изопентаниловый остаток может образовываться из мевалоновой кислоты. Высказывается предположение, что цитокинины могут также образовываться при расщеплении т-РНК. В литературе мало данных по влиянию условий среды на образование цитокининов. Имеются сведения, что улучшение питания растений азотом усиливает образование цитокининов. Вместе с тем для проявления действия цитокининов необходимо достаточное снабжение растения питательными веществами, особенно азотом.

Размещено на Allbest.ru


Подобные документы

  • История, цели и основы генетической инженерии; биоэтические аспекты. Группы генетических заболеваний, их диагностика и лечение. Применение генетической инженерии в медицинской практике: генные вакцины, генотерапия, производство лекарственных препаратов.

    реферат [55,0 K], добавлен 26.10.2011

  • Раскрытие содержания генетической инженерии как системы использования методов молекулярной генетики и молекулярной биологии для конструирования наследственных свойств организмов. Синтез ДНК и полимеразная цепная реакция. Ферменты генетической инженерии.

    презентация [2,6 M], добавлен 05.02.2014

  • Биообъекты растительного происхождения, используемые в культуре ткани для получения лекарственных веществ. Ферменты, используемые в генетической инженерии, механизм их действия. Сущность метода иммобилизации ферментов путем включения в структуру геля.

    контрольная работа [617,9 K], добавлен 14.02.2013

  • Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат [32,4 K], добавлен 23.07.2008

  • Характеристика передовых инновационных биомедицинских технологий. Биотехнология и лекарственные средства. Существенные особенности биотехнологических лекарственных средств. Биотехнология с точки зрения экономики. Специфические черты рынка продукции.

    реферат [24,0 K], добавлен 23.01.2010

  • Строение молекулы ДНК. Ферменты генетической инженерии. Характеристика основных методов конструирования гибридных молекул ДНК. Введение молекул ДНК в клетку. Методы отбора гибридных клонов. Расшифровка нуклеотидной последовательности фрагментов ДНК.

    реферат [2,7 M], добавлен 07.09.2015

  • Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

    реферат [26,3 K], добавлен 11.11.2010

  • Изучение биотехнологии - науки об использовании живых организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в продукты. Клонирование и биотехнология в животноводстве, перспективы генетической инженерии.

    реферат [39,2 K], добавлен 04.03.2010

  • Классификация и номенклатура ферментных препаратов, характеристика их активности. Микробиологический и биохимический контроль производства. Регуляция синтеза и технологические схемы производства микробных протеиназ. Экстрагирование ферментных препаратов.

    курсовая работа [1,1 M], добавлен 19.12.2010

  • Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.

    презентация [2,2 M], добавлен 21.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.