Естествознание как наука

Естествознание как система наук о природе, предмет и методы исследования, гносеологические аспекты и научные основы. Возникновение научного знания, предпосылки и основные этапы данного процесса. Фундаментальные физические постоянные. Нобелевская премия.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 05.03.2012
Размер файла 66,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

28. Жизнь и разум во вселенной. Опасность Космоса

Большинство современных астрономов и философов считают, что жизнь - распространенное явление во Вселенной и существует множество миров, на которых обитают цивилизации. Уровень развития некоторых внеземных цивилизаций может быть неизмеримо выше уровня развития земной цивилизации. Именно с такими цивилизациями землянам особенно интересно установить контакт. На развитие мнения о множестве цивилизаций повлияло несколько аргументов. Во-первых, в метагалактике есть огромное число звезд, похожих на наше Солнце, а, следовательно, планетные системы могут существовать не только у Солнца. И более того исследования показали, что некоторые звезды определенных спектральных классов вращаются медленно вокруг своей оси, что может быть вызвано наличием вокруг этих звезд планетных систем. Во-вторых, при соответствующих условиях жизнь могла возникнуть на планетах других звезд по типу эволюционного развития жизни на Земле. Молекулярные соединения, необходимые для начальной стадии эволюции неживой природы, достаточно распространены во Вселенной и открыты даже в межзвездной среде. Продолжаются споры о реальности внеземных цивилизаций, но лишь дальнейшие наблюдения и эксперименты позволят выяснить, существуют ли где-нибудь обитаемые миры или мы одиноки, по крайней мере, в пределах нашей Галактики. Поиск разума сводится к радиоконтакту.

29. Строение атома

Резерфорд предложил следующую схему строения атома. В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствии этого остаются на определенных расстояниях от ядра. Как масса электрона ничтожна мала, то почти вся масса сосредоточена в его ядре.

30. Понятие кванта. Формула Планка

В 1900 г. немецкий физик М. Планк своими исследованиями продемонстрировал, что излучение энергии происходит дискретно, определенными порциями - квантами, энергия которых зависит от частоты световой волны. Теория М. Планка не нуждалась в концепции эфира и преодолевала противоречия и трудности электродинамики Дж. Максвелла (2.3). Эксперименты М. Планка привели к признанию двойственного характера света, который обладает одновременно корпускулярными и волновыми свойствами. Понятно, что такой вывод был несовместим с представлениями классической физики. Теория М. Планка положила начало новой квантовой физики, которая описывает процессы, протекающие в микромире.

При переходе электрона из одного состояния в другое, испускается фотон, частота которого определяется формулой v=E1-Ek/h

31. Принцип неопределенности. Поведение квантовых объектов

Вернер Гейзенберг математически выразил принцип неопределенности. Оказалось, что не только координату, но и импульс частицы невозможно точно определить. Согласно этому принципу, чем точнее определяется местонахождение данной частицы, тем меньше точности в определении ее скорости и наоборот.

32. Атомизм. Континуальность и Дискретность

Левкипп и Демокрит сформулировали понятие об атомах. Существенный вклад в атомистику был сделан А. Лавуазье, опубликовавшим в 1789 г. «Начальный учебник химии», в кот. он ряд элементов назвал «простыми», т.е. не разлагавшимися. И, наконец, в начале XIX в. атомистика стала теорией, важнейшей для познания химических явлений благодаря исследованиям Дальтона и Берцеллиуса. Именно Дальтон в 1824 г. дал название «атом» наимельчайшей частице «простого» вещ-ва. С этого момента химия встала на научную основу, хотя многое в ней не было осознано до тех пор, пока Д.И. Менделеев в 1869 г. не разработал свою знаменитую Периодическую таблицу элементов. В 1834 г. М. Фарадей провел серию исследований с целью выяснить природу того, что называли электричеством. Результаты исследований свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Томсоном в 1903 г. атом представлялся в виде положительно заряженной сферы. Неожиданный результат опытов Резерфорда по рассеянию альфа-частиц атомами показал, что внутри атома существует очень малое по размеру плотное положительно заряженное ядро. В связи с этим Резерфорд предложил принципиально новую модель атома, напоминающую по своему строению Солнечную систему и получившую название планетарной. Она имеет следующий вид. В центре находится положительно заряженное ядро, размеры которого составляют примерно 10-12 см, размеры же атома 10-8 см. Вокруг ядра движутся электроны подобно планетам вокруг солнца. Эта модель атома Резерфорда, дополненная постулатами Бора, явилась основой всей атомной физики и существует до настоящего времени. Атомная физика была развита методами квантовой механики. Согласно квантовой механике электрон распространен во всем пространстве, хотя действует как единое целое. Устойчивые движения электрона в атоме, соответствуют стоячим волнам, амплитуды которых в разных точках различны. Дискретность-прерывность. Континуальность-непрерывность.

33. Элементарные частицы

Элементами структуры микромира выступают микрочастицы. На данный момент известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик. Масса элементарной частицы - это масса ее покоя, которая определяется по отношению к массе покоя электрона. Частицы с нулевой массой покоя движутся со скоростью света (фотон). По массе элементарные частицы делятся на тяжелые (барионы), промежуточные (мезоны) и легкие (лептоны). Заряд элементарной частицы всегда кратен заряду электрона (-1), который рассматривается в качестве единицы. Существуют, однако, элементарные частицы, которые не имеют заряда, например, фотон. Спин элементарной частицы - это собственный момент импульса частицы. В зависимости от спина, частицы делятся на две группы: с целым спином (О, 1, 2) - бозоны, с полуцелым спином (1/2 и др.) - фермионы. Время жизни элементарной частицы определяет ее стабильность или нестабильность. По времени жизни частицы делятся на стабильные, квазистабильные и нестабильные. Большинство элементарных частиц нестабильно. Нестабильные частицы живут несколько микросекунд, стабильные не распадаются длительное время. Нестабильные частицы распадаются в результате сильного и слабого взаимодействия. Стабильными частицами считаются фотон, нейтрино, нейтрон, протон и электрон. При этом нейтрон стабилен только в ядре, в свободном состоянии он также распадается. Квазистабильные частицы распадаются в результате электромагнитного и слабого взаимодействия, иначе их называют резонансными. Время жизни резонансов - порядка 10-22 с. Все многообразие элементарных частиц можно разделить на три группы: частицы, участвующие в сильном взаимодействии - адроны, частицы, не участвующие в сильном взаимодействии - пептоны, и частицы - переносчики взаимодействий. К адронам относятся нейтроны, протоны, барионы, мезоны. Адроны участвуют в электромагнитном, сильном и слабом взаимодействии. К пептонам относятся электроны, нейтрино, мюоны, тау-лептоны, а также электронные нейтрино, моюнные нейтрино, тау-нейтрино. Заряженные лептоны участвуют в электромагнитном и слабом взаимодействии, нейтральные - только в слабом. Частицы - переносчики взаимодействий непосредственно обеспечивают взаимодействия. К ним относятся фотоны - переносчики электромагнитного взаимодействия, глюоны - переносчики сильного взаимодействия, бозоны - переносчики слабого взаимодействия. Высказывается предположение о существовании гравитонов - частиц, обеспечивающих гравитационное взаимодействие.

34. Теория кварков. Планковская длина. Суперструны

Кварки - это гипотетические материальные объекты, их экспериментальное наблюдение пока невозможно, однако теоретические положения кварковой гипотезы оказались плодотворными, а теория в целом эвристичной. Кварки представляют собой истинно элементарные частицы и поэтому бесструктурны. Главная особенность кварков - дробный заряд. Кварки различаются спином, ароматом и цветом. Аромат кварка-это его особая физическая характеристика. Для того чтобы учесть все известные адроны, необходимо было предположить существование шести видов кварков, различающихся ароматом: u (up - верхний), d (down - нижний), s (strange - странный), c (charm - очарование), b (beauty - прелесть) и t (top - верхний). Существует устойчивое мнение, что кварков не должно быть больше. Считается, что каждый кварк имеет один из трех возможных цветов, которые выбраны произвольно: красный, зеленый, синий. Цвет кварка, как и аромат, - условное название для определенной физической характеристики. Каждому кварку соответствует антикварк с противоположным цветом (антикрасный, антизеленый и антисиний). Кварки соединяются тройками, образуя барионы (нейтрон, протон), или парами, образуя мезоны. Антикварки, соединясь тройками, соответственно, образуют антибарионы. Мезон состоит из кварка и антикварка. Суммарный цвет объединившихся кварков или антикварков, независимо от того, объединены три кварка (барионы), три антикварка (антибарионы) или кварк и антикварк (мезоны), должен быть белым или бесцветным. Белый цвет дает сумма красного, зеленого, синего или красного - антикрасного, синего - антисинего и т.п. Кварки объединяются между собой благодаря сильному взаимодействию. Переносчиками сильного взаимодействия выступают глюоны, которые как бы «склеивают» кварки между собой. Глюоны также имеют цвета, но в отличие от кварков их цвета смешанные, например красный - антисиний и т.п., т.е. глюон состоит из цвета и антицвета. Испускание или поглощение глюона меняет цвет кварка, но сохраняет аромат. Известно восемь типов глюонов.

35. Фундаментальные физические взаимодействия

Все известные современной науке силы сводятся к четырем типам взаимодействий, которые называются фундаментальными: гравитационное, электромагнитное, слабое и сильное. Теория гравитации И. Ньютона, основу которой составляет закон всемирного тяготения, стала одной из составляющих классической механики. Закон всемирного тяготения гласит: между двумя телами существует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Силы гравитации - это силы притяжения. Гравитационная сила действует на очень больших расстояниях, ее интенсивность с увеличением расстояния убывает, но не исчезает полностью. Считается, что переносчиком гравитационного взаимодействия является гипотетическая частица гравитон. Электромагнитное взаимодействие. Первой единой теорией электромагнитного поля выступила концепция Дж. Максвелла. Электромагнитные взаимодействия существуют только между заряженными частицами: электрическое поле - между двумя покоящимися заряженными частицами, магнитное - между двумя движущимися заряженными частицами. Электромагнитные силы могут быть как силами притяжения, так и силами отталкивания. Одноименно заряженные частицы отталкиваются, разноименно - притягиваются. Переносчиками этого типа взаимодействия являются фотоны. В результате слабых взаимодействий нейтроны, входящие в состав атомного ядра, распадаются на три типа частиц: положительно заряженные протоны, отрицательно заряженные электроны и нейтральные нейтрино. Переносчиками слабого взаимодействия являются бозоны. Сильное взаимодействие удерживает протоны в ядре атома, не позволяя им разлететься под действием электромагнитных сил отталкивания. Сильное взаимодействие ответственно за образование атомных ядер, в нем участвуют только тяжелые частицы: протоны и нейтроны. Ядерные взаимодействия не зависят от заряда частиц, переносчиками этого типа взаимодействий являются глюоны. Примером сильного взаимодействия выступают термоядерные реакции на Солнце и других звездах. Принцип сильного взаимодействия использован при создании водородного оружия.

36. Теория Объединения. Физическая симметрия. Супергравитация.

Принцип симметрии - утверждает, что если пространство однородно, перенос системы как целого в пространстве не изменяет свойств системы. Если все направления в пространстве равнозначны, то принцип симметрии разрешает поворот системы как целого в пространстве. Принцип симметрии соблюдается, если изменить начало отсчета времени. В соответствии с принципом, можно произвести переход в другую систему отсчета, движущейся относительно данной системы с постоянной скоростью.

Каждый закон сохранения связан с какой-либо симметрией в окружающем мире. Из однородности пространства следует закон сохранения импульса, из однородности времени - закон сохранения энергии, а из изотропности пространства - закон сохранения момента импульса. Закон сохранения и превращения энергии утверждает, что энергия не исчезает и не появляется вновь, а лишь переходит из одной формы в другую. Закон сохранения импульса постулирует неизменность импульса замкнутой системы с течением времени. Закон сохранения момента импульса утверждает, что момент импульса замкнутой системы остается неизменным с течением времени. Законы сохранения являются следствием симметрии, т.е. инвариантности, неизменности структуры материальных объектов относительно преобразований, или изменения физических условий их существования. Законы сохранения энергии и импульса связаны с однородностью времени и пространства, закон сохранения момента импульса - с симметрией пространства относительно вращений. Законы сохранения зарядов связаны с симметрией относительно специальных преобразований волновых функций, описывающих частицы.

38. Специальная теория относительности

На смену классической физике, построенной на принципах механики И. Ньютона, пришла новая фундаментальная теория - специальная теория относительности А. Эйнштейна, которая гласит: любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии прямолинейного и равномерного движения, т.е. все инерциальные системы отсчета равноправны между собой. Таким образом было преодолено представление об эталонной абсолютной системе отсчета, которую связывали с эфиром, все системы отсчета были признаны равнозначными, не имеющими никаких преимуществ друг перед другом, а принцип относительности приобрел всеобщий, универсальный характер. Следствием такого понимания принципа относительности стало введение в физику понятия инвариантности. Инвариантность понимается как неизменность физических величин или свойств объектов при переходе от одной системы отсчета к другой. Все законы природы неизменны при переходе от одной инерциальной системы к другой, т.е., находясь внутри инерциальной системы, невозможно обнаружить, движется она или покоится. А. Эйнштейн сформулировал также принцип инвариантности скорости света, который гласит: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света является предельной скоростью распространения материальных взаимодействий и равна 300 000 км/с.

39. Свойства физического пространства, причина времени

В современной науке физическим пространству и времени приписываются определенные характеристики. Общими и для пространства, и для времени являются свойства объективности и всеобщности. Пространство и время объективны, так как существуют независимо от сознания. Всеобщность означает, что эти формы присущи всем без исключения воплощениям материи на любом уровне ее существования.

У пространства и времени есть ряд специфических характеристик. Так, пространству приписываются протяженность, изотропность, однородность, трехмерность. Протяженность предполагает наличие у каждого материального объекта определенного местоположения. Изотропность означает равномерность всех возможных направлений. Однородность пространства характеризует отсутствие в нем каких-либо выделенных точек, т.е. при переносе в пространстве свойства системы не меняются. Физическому времени приписываются свойства длительности, необратимости, однородности и одномерности. Длительность интерпретируется как продолжительность существования любого материального объекта или процесса. Одномерность означает, что положение объекта во времени описывается единственной величиной. Однородность времени, как и в случае с пространством, свидетельствует об отсутствии каких-либо выделенных фрагментов, т.е. утверждает инвариантность физических законов относительно выбора точки отсчета времени. Необратимость времени, его однонаправленность от прошлого к будущему, связана с необратимостью протекания некоторых фундаментальных процессов и характером законов в квантовой механике. Существует также причинная концепция обоснования необратимости времени, согласно которой если бы время было обратимо, то причинная связь оказалась бы невозможной.

40. Общая теория относительности

Общая теория относительности позволяет рассматривать не только инерциальные системы отсчета, но любые системы координат, которые движутся по криволинейным траекториям и с любым ускорением.

Распространение результатов специальной теории на неинерциальные системы отсчета привело к установлению зависимости между метрическими свойствами пространства и времени и гравитационными взаимодействиями, т.е. в зависимости от гравитационных масс время замедляется или, напротив, ускоряется, а пространство искривляется. Общая теория относительности А. Эйнштейна объединила в рамках одной концепции понятия инерции, гравитации и метрики пространства-времени. Выводы общей и специальной теории относительности и неевклидовой геометрии полностью дискредитировали понятия абсолютного пространства и абсолютного времени. Оказалось, что признанные классическими субстанциональные представления не являются окончательными и единственно верными.

41. Всеобщий релятивизм

Понятие о взаимосвязи и размерности физических величин. Все явления в мире взаимосвязаны и подчиняются общим физическим законам. Чтобы сопоставлять физические величины друг с другом нужно каждую физическую величину представить через общие для всех исходные физические величины принимаемые за первичные. Однако эти первичные величины могут быть выбраны произвольно и тогда при расчетах возникнут дополнительные трудности. Чтобы их избежать нужно определить физические категории, которые являются неизменными при преобразованиях материи относительно которых будут оцениваться все остальные физические величины и параметры. Если речь идет о всеобщих закономерностях материи во Вселенной, то должны быть определены всеобщие физические инварианты, которые не изменяются ни при каких преобразованиях форм материи и ни при каких физических процессах. Общими физическими инвариантами могут быть только такие категории, которые являются всеобщими для всех без исключения физических явлений. Такими категориями являются движение и три его неразрывных составляющих - материя, пространство и время. Размерность физической величины - это выражение, показывающее связь данной физической величины с физическими величинами, положенными в основу системы единиц. Размерность записывается в виде произведения символов соответствующих основных величин, возведенных в определенные степени, которые называются показателями размерности. Величины, в которые все основные величины входят в степени 0, называются безразмерными. Во всех остальных случаях размерность конкретной физической величины.

42. Понятие системы

Биологические системы - это целостные открытые системы, постоянно обменивающиеся с окружающей средой веществом, энергией и информацией и способные к самоорганизации. Живые системы активно реагируют на изменения окружающей среды, приспосабливаясь к новым условиям. Биологические системы способны к самовоспроизводству, а следовательно, к сохранению и передаче генетической информации последующим поколениям. Отдельные качества живого могут быть присущи и неорганическим системам, однако ни одна неорганическая система не обладает всей совокупностью перечисленных выше свойств.

43. Типы систем

Часто выделяют три типа систем: дискретный (корпускулярный), жесткий и централизованный. Первые два типа являются крайними, или предельными. Системы, относящиеся к «дискретному» типу, состоят в основном из подобных элементов, не связанных между собой непосредственно, а объединенных только общим отношением к окружающей среде. Жесткий тип систем можно рассматривать как противоположный дискретному. Часто эти системы отличаются повышенной организованностью по сравнению с простой суммой их частей и тем, что обладают совершенно новыми свойствами. Разрушение одного отдельного органа губит всю систему. Централизованный тип систем содержит одно основное звено, которое организационно, но не обязательно геометрически, находится в центре системы и связывает все остальные звенья или даже управляет ими.

44. Науки о сложных системах

СЛОЖНЫЕ СИСТЕМЫ состоят из большого числа переменных и большого количества связей между ними. Чем оно больше, тем труднее исследование объекта, выведение закономерностей его функционирования. Трудность изучения таких систем объясняется еще и тем обстоятельством, что чем сложнее система, тем больше у нее так называемых ЭМЕРДЖЕНТНЫХ СВОЙСТВ, т.е. свойств, которых нет у ее частей и которые являются следствием эффекта целостности системы. Подобные сложные системы изучает, например, метеорология - наука о климатических процессах. Именно потому, что метеорология изучает сложные системы, процессы образования погоды гораздо менее известны, чем гравитационные процессы, что, на первый взгляд, кажется парадоксом. Действительно, чем можно точно определить, в какой точке будет находиться Земля или какое-либо другое небесное тело через миллионы лет, а предсказать погоду на завтра удается не всегда? Потому, что климатические процессы представляют гораздо более сложные системы, состоящие из огромного количества переменных и взаимодействий между ними.

45. Эволюция систем

Эволюция должна удовлетворять трем требованиям: 1) необратимость, выражающаяся в нарушении симметрии между прошлым и будущим; 2) необходимость введения понятия «событие»; 3) некоторые события должны обладать способностью изменять ход эволюции. Условия формирования новых структур: 1) открытость системы; 2) ее нахождение вдали от равновесия; 3) наличие флуктуации. Чем сложнее система, тем более многочисленны типы флуктуации, угрожающих ее устойчивости. Но в сложных системах существуют связи между различными частями. От исхода конкуренции между устойчивостью, обеспечивающейся связью, и неустойчивостью из-за флуктуации, зависит порог устойчивости системы.

Превзойдя этот порог, система попадает в критическое состояние, называемое точкой бифуркации. В ней система становится неустойчивой относительно флуктуации и может перейти к новой области устойчивости, т.е. к образованию нового вещества. Система как бы колеблется перед выбором одного из нескольких путей эволюции. Небольшая флуктуация может послужить в этой точке накалом эволюции в совершенно новом направлении, который резко изменит все ее поведение. Это и есть событие. В точке бифуркации случайность подталкивает то, что остаются от системы, на новый путь развития, а после того, как один из многих возможных вариантов выбран, вновь вступает в силу детерминизм - и так до следующей точки бифуркации. В судьбе случайность и необходимость взаимно дополняют друг друга. Главенствующую роль в окружающем мире играют не порядок, стабильность и равновесие, а неустойчивость и неравновесность, т.е. все системы постоянно флуктуируют. В особой точке бифуркации флуктуация достигает такой силы, что организация системы не выдерживает и разрушается, и принципиально невозможно предсказать: станет ли состояние системы хаотическим или она перейдет на новый более дифференцированный и высокий уровень упорядоченности, который называется диссипативной структурой. Новые структуры называются диссипативными, потому что для их поддержания требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят. Диссипативные структуры существуют лишь постольку поскольку система диссипирует (рассеивает) энергию и, следовательно, производит энтропию. Из энергии возникает порядок с увеличением общей энтропии. Таким образом, энтропия - не просто безостановочное соскальзывание системы к состоянию, лишенному какой бы то ни было организации (как думали сторонники «тепловой смерти» Вселенной), а при определенных условиях становится прародительницей порядка.

46. Самоорганизация. Антиэнтропийные процессы

Характерной особенностью развивающихся систем является их способность к самоорганизации, которая проявляется в самосогласованном функционировании системы за счет внутренних связей с внешней средой. В процессе самоорганизации системы выделяют две основные фазы: адаптацию, или эволюционное развитие и отбор. Самоорганизующиеся системы обладают механизмом непрерывной приспособляемости (адаптации) к меняющимся внутренним и внешним условиям, непрерывного совершенствования поведения с учетом прошлого опыта. В развивающихся системах структура и функция тесно взаимосвязаны. Система преобразует свою структуру для того, чтобы выполнить заданные функции в условиях меняющейся внешней среды.

Адаптация системы к меняющимся условиям происходит благодаря появлению элементов, обладающих необходимыми для функционирования системы свойствами, причем благодаря не просто появлению таких элементов (имеется в виду не только появление новых элементов, но и возникновение у «старых» элементов новых признаков), а избыточности таких элементов-признаков. Увеличение числа сходных элементов лежит в основе прогрессивного развития систем, так как является предпосылкой для дальнейшего отбора элементов, дифференциации и интеграции структур. Вместе с тем увеличение числа сходных элементов - простейшее средство для увеличения надежности воспроизведения, для интенсификации функций и расширения связей с внешней средой. Периоду адаптации (устойчивости системы) соответствует постоянное накопление приспособительных признаков широкого значения, нарастание универсализма системы. В результате флуктуаций в системе возникают регулирующие сигналы, которые изменяют, приспосабливают структуру системы так, чтобы система продолжала функционировать необходимым образом.

Период адаптации - это период эволюционных преобразований, которые связаны лишь с количественными изменениями в системе. Структурная устойчивость при этом не нарушается. Понятие структурной устойчивости играет важную роль в теории самоорганизации.

Отбор - это средство осуществления обратной связи от внешней среды к системе, т.е. отбор информирует систему о ее положении во внешней среде. Отбор выступает как механизм, ответственный, в конечном счете, за усложнение и усовершенствование самого хранилища накопленной информации и за согласование его работы со сложными изменчивыми условиями окружения. Таким образом, процесс преобразования внешнего во внутреннее осуществляется в ходе стабилизирующего отбора, т.е. зависимое от внешних факторов развитие становится автономным.

47. Определение жизни

Жизнь - это активное, идущее с затратами поддержание (за счет постоянного обмена веществ с окруж. Средой) и матричное воспроизведение специфической и упорядоченной структуры. В живом все подчинено закону оптимума. Живые сист. обладают высокой степенью сложности, динамической упорядоченности и иерархичности своей структуры, неоднородностью в пространстве; энергия из окруж. среды используется не только для поддержания, но и для усиления своей упорядоченности. Главное свойство - поддерж. своей целостности и воспроизведение себе подобных, согласно вложенной в нее программе, риплицирующейся матричным способом.

49. Структурные уровни организации живого

Все объекты живой и неживой природы по строению представляют собой системы, для которых характерно иерархическое соподчинение входящих в них элементов, т.е. структурных уровней организации. Самые элементарные из них относятся к области познания физики, - это электроны, протоны, другие элементарные частицы. Затем идут атомные уровни, молекулярные уровни, изучением которых занимается как физика, так и химия. За молекулярным уровнем следует субмолекулярный, - уровень исследования работы макромолекул, как единого целого; и так далее, вплоть до уровня организмов и сообществ из них. Каждый нижележащий уровень располагается как бы в оболочке вышележащего уровня и сохраняет его особенности. Изучение каждого уровня организации живой материи должно иметь биологический смысл, т.е. должно быть направлено на изучение феномена жизни, а не просто структуры ее физико-химической организации.

52. Живая клетка. Единство и разнообразие

Клетка - это элементарная биологическая единица, структурно-функциональная основа всего живого. Клетки осуществляют самостоятельный обмен веществ, способны к делению (воспроизводству) и саморегуляции, т.е. обладают всеми свойствами живого. Образование новых клеток из неклеточного материала невозможно, размножение клеток происходит только благодаря делению. Органическое развитие следует рассматривать как универсальный процесс клеткообразования. В структуре клетки выделяют мембрану, отграничивающую содержимое клетки от внешней среды; цитоплазму, представляющую собой соляной раствор с растворимыми и взвешенными ферментами и молекулами РНК; ядро, содержащее хромосомы, состоящие из молекул ДНК и присоединенных к ним белков. Различают два способа деления клеток: митоз и мейоз. Митоз - деление клеточного ядра на два дочерних с наборами хромосом, идентичными набору хромосом родительской клетки. Митоз характерен для всех клеток, кроме половых. Мейоз - деление клеточного ядра на четыре дочерних ядра, в каждом из которых содержится вдвое меньше хромосом, чем в родительской клетке. Такой способ деления характерен только для половых клеток.

Клеточная теория строения живых организмов стала убедительным аргументом в пользу идеи единства происхождения жизни на Земле и оказала существенное влияние на формирование современной научной картины мира.

53. Возникновение жизни. Теория Опарина. Опыт Миллера

Согласно гипотезе советского ученого А.И. Опарина о происхождении жизни на Земле, в воде было растворено огромное количество химических веществ, которые, вступая между собой в различные реакции на протяжении миллиардов лет, привели к образованию органического вещества.

Американский ученый С. Миллер смоделировал первичную атмосферу Земли и синтезировал жирные кислоты, уксусную и муравьиную кислоты, мочевину и аминокислоты путем пропускания электрических зародов через смесь инертных газов. Таким образом было продемонстрировано, как под действием абиогеннных (химическая эволюция) факторов возможен синтез сложных органических соединений.

55. Учение Вернадского

Центральной идеей В.И. Вернадского стало представление о живом веществе - совокупности всех живых организмов на планете. По его мнению, живое вещество составляет незначительную по объему и весу часть биосферы, однако оно является ее определяющим компонентом. Живые организмы - та геохимическая сила, которая играет ведущую роль в формировании облика нашей планеты.

Учение В.И. Вернадского о ноосфер не сложилось в законченную теорию, более того, русский ученый даже само понятие ноосферы употреблял в разных смыслах. В его понимании ноосфера это:

ь новое геологическое явление, суть которого заключается в возможности человека преобразовывать Землю своим трудом и мыслью;

ь область проявления научной мысли: «эволюционный процесс получает особое геологическое значение благодаря тому, что он создал новую геологическую силу - научную мысль социального человечества»;

ь главный фактор преобразования и дальнейшей эволюции биосферы: «человек своей деятельностью создает новую живую природу».

Последнее определение приобрело новый смысл и особую актуальность спустя десятилетия - после возникновения молекулярной биологии, развития генной инженерии, опытов с клонированием и т.п.

56. Эволюционизм

На основе обобщения эволюционных знаний, полученных и различных областях естествознания, в аспекте изучения интегративных явлений в науке стали говорить об идее «глобального эволюционизма». Глобальный эволюционизм выступает как концепция, подход, целью которого является создание естественнонаучной модели универсальной эволюции, выявление общих законов природного процесса, связывающего в единое целое космогенез, геогенез, биогенез. В существующей иерархии процессов прогрессивного развития эпоха антропосоциогенеза занимает исключительное положение. Характер эволюции на этой стадии претерпевает качественный скачок - принципиально новые детерминанты определяют дальнейшую эволюцию. Этот этап выявляет глубокие связи между феноменом Человека и глобальными физическими свойствами окружающего его Космоса. Поскольку как концепция глобального эволюционизма, так и проблематика антропного принципа в космологии получают различные интерпретации и оценки, представляет интерес осуществить сугубо философский анализ их положения. В этой статье проводится анализ теоретико-познавательных предпосылок рассматриваемых концепций, дан логико-методологический анализ статуса понятия глобальный эволюционизм и антропологического принципа. Необходимо остановиться на выяснении смысла употребления термина «универсальная» по отношению к понятию «эволюция». Понятие универсальности используют в двух смысловых значениях: относительном и абсолютном. Относительно универсальные понятия применимы ко всем объектам, известным в данную историческую эпоху, абсолютно универсальные применимы как ко всем известным объектам, так и к любым объектам за пределами данного исторически ограниченного опыта. На какой же тип универсальности претендует понятие «глобальный эволюционизм». Известно, что такие относительно универсальные понятия, как качество, количество, пространство, время, движение, взаимодействие и т.п. являются результатом обобщения истинных теорий, относящихся как к природе, так и к обществу. Понятие «глобальный эволюционизм» имеет аналогичное происхождение, являясь обобщением эволюционных знаний разных областей естествознания: космологии, геологии, биологии. Таким образом, можно утверждать, что понятие «эволюция», аналогично изложенному выше, является относительно универсальным. Все такие относительно универсальные понятия содержат абсолютно универсальную компоненту. Термин «глобальный» в контекст понятия «эволюция» и указывает на наличие такой компоненты. «Глобальный эволюционизм» объясняет такое известное понятие, как, например, «эволюция» и предсказывает новое понятие, например, «самоорганизация».

гносеологический научный естествознание нобелевский

60. Будущее науки

Любые идеи о будущем, даже если они хорошо обоснованы и весьма правдоподобны, обречены остаться на уровне прогнозов. Главный фактор- информационно-технологический бум. Мы подходим к созданию «сетевого общества», в котором люди будут связаны между собой так, как никогда ранее». Новое сетевое общество может походить как на большой иерархически организованный муравейник, так и на общество свободных людей. Для нынешнего этапа развития культуры характерно возрастание интереса к мистическим учениям и магическим практикам, очередная, уже не первая по счету, волна ремифологизации захлестнула современный мир. В.С. Степин предлагает различать классическую, неклассическую и постнекпассическую формы рациональности и соответствующие им типы науки. Классическая рациональность связана с такими способами постижения действительности, при которых субъект полностью исключается из системы познания. Классическая рациональность имеет установку на объективированное познание действительности, при котором влияние человека на познавательный процесс не учитывается. Классическая рационалистическая парадигма рассматривает науку как абсолютное знание, существующее вне какого-либо социокультурного контекста. Неклассическая рациональность характеризуется осознанием неустранимого влияния познавательных средств на объект и процесс исследования. Неклассическая рационалистическая парадигма учитывает влияние человека на познавательный процесс, однако по-прежнему не осознается социокультурная, мировоззренческая обусловленность научного познания. Постнеклассическая рациональность связана с пониманием неразрывной связи между ценностно-смысловыми структурами сознания познающего субъекта и характером его познавательной активности. Человек влияет на результаты познания в силу наличия у него специфических ценностных установок, которые формируются с опорой на вненаучный контекст. Таким образом, в рамках постнеклассической парадигмы осознается связь познавательной деятельности, в том числе и научной, с социо-культурным контекстом, в котором эта деятельность осуществляется. Требование учета и истолкования ценностей становится предпосылкой получения объективных знаний о мире. Для пост-неклассической науки характерно развитие междисциплинарных комплексных исследований, направленных на решение не столько внутринаучных, сколько внешних для науки экономических, социальных, политических и культурных задач. Современная постнеклассическая наука рассматривает мир как единое изменяющееся целое, законы которого одинаковы на всех уровнях. Естествознание из ценностно-нейтрального знания, каким оно представляло себя на протяжении нескольких веков, превращается в аксиологически ориентированное, предполагающее введение этических, эстетических и т.п. норм в научное исследование. Сейчас наука находится на постнеклассической стадии развития и совершенно определенно можно сказать, что на смену постнеклассической науке со временем придут иные формы. Научное знание носит исторический характер, оно изменяется вместе с развитием культуры. Поэтому следует говорить не об исчезновении или умирании науки, а о ее трансформации. Возможно, мы стоим на пороге новой научной революции, следствием которой станет радикальное изменение наших представлений о мире, новый прорыв человеческого духа.

Размещено на Allbest.ru


Подобные документы

  • Естествознание как комплекс наук о природе. Псевдонаука - социально-психологическое явление. Научные методы познания природы. Становление современной физической картины мира. Представления о материи, движении, взаимодействии, пространстве и времени.

    доклад [243,5 K], добавлен 05.06.2019

  • Дифференциация и интеграция наук как неотъемлемых сторон процесса познания мира. Естествознание и социальная жизнь общества. Проблема объединения и взаимосвязи естественнонаучного, технического и гуманитарного знания при постижении окружающей среды.

    контрольная работа [174,4 K], добавлен 16.06.2011

  • Определение естествознания как отрасли научного познания, его отличие от других наук, разделы естествознания. Наука как одна из форм общественного сознания. Описание и объяснение различных процессов и явлений действительности как основные цели науки.

    реферат [19,6 K], добавлен 16.04.2011

  • Ознакомление с содержанием, целью (поиск путей практического использования природных ресурсов), предметом и объектом исследования (различные виды материи), историей развития и современными концепциями естествознания как совокупности наук о природе.

    доклад [12,4 K], добавлен 10.06.2010

  • Место естествознания в современной научной картине мира. Вклад средневековой науки в развитие научного знания. Пример смены парадигм в археологии – борьба концепций эволюционизма и миграционизма. Развитие науки в Средние века, вклад Леонардо да Винчи.

    реферат [31,6 K], добавлен 09.12.2010

  • Значение естествознания в формировании профессиональных знаний. Фундаментальные и прикладные проблемы естествознания. Развитие естествознания и антинаучные тенденции. Рациональная и реальная картина мира. Естественно-научные и религиозные знания.

    реферат [68,7 K], добавлен 13.12.2009

  • Естествознание в современном понимании. Его структура, основанная на воспроизводимой эмпирической проверке гипотез и создании теорий или эмпирических обобщений, описывающих природные явления. Науки: фундаментальные и прикладные, их назначение и функции.

    презентация [933,0 K], добавлен 20.12.2015

  • Естествознание как система научных знаний о природе, обществе и мышлении взятых в их взаимной связи. Формы движения материи в природе. Предмет, цели, закономерности и особенности развития, эмпирическая, теоретическая и прикладная стороны естествознания.

    реферат [25,4 K], добавлен 15.11.2010

  • Естествознание как особая форма знания, предмет методы ее изучения, история становления и развития в человеческой культуре. Принцип относительности, соотношение пространства и времени. Принципы возрастания энергии. Место химии в современной цивилизации.

    методичка [35,6 K], добавлен 16.01.2010

  • Гуманитарный, технический, математический типы знания и естествознание в современной системе знания. Роль и значение математики и физики в познании мира. Отношение к природе в естественных и гуманитарных науках. Проблема противостояния науки и религии.

    реферат [21,2 K], добавлен 26.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.