Фотосинтез. Типы жизни, основанные на фотофосфорилировании
Обзор фотофизических процессов, лежащих в основе фотосинтеза. Строение фотосинтетического аппарата эубактерий. Образование восстановителя и использование углерода фотосинтезирующими эубактериями. Экзогенные доноры электронов в бескислородном фотосинтезе.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 10.03.2011 |
Размер файла | 83,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Пируватсинтаза
ацетил-КоА + CO2 + Фдвосст ® пировиноградная кислота + Фдок + КоА-SH
a-Кетобутиратсинтаза
пропионил-КоА + CO2+ Фдвосст ® a-кетобутират + Фдок + КоА-SH
a-Кетоглутаратсинтаза
сукцинил-КоА + CO2 + Фдвосст ® a-кетоглутарат + Фдок + KoA-SH
Пропионил-КоА-карбоксилаза
пропионил-КоА + CO2 + АТФ ® метилмалонил-КоА + АДФ + ФН
Ацетил-КоА-карбоксилаза
ацетил-КоА + CO2 + АТФ ® малонил-КоА + АДФ + ФН
Восстановительный цикл трикарбоновых кислот
У зеленых серобактерий обнаружен циклический механизм фиксации CO2, в основе которого лежат реакции восстановительного карбоксилирования органических кислот. Он получил. название восстановительного ЦТК, или цикла Арнона. В этом цикле углекислота фиксируется в четырех ферментативных реакциях, две из которых идут при участии фотохимически восстановленного ферредоксина, а одна -- таким же путем образованного НАД-H2. В результате одного оборота цикла из 4 молекул CO2, 10 [Н] с использованием энергии (3 молекулы АТФ) синтезируется молекула ЩУК -- конечный продукт цикла.
Описан и более "короткий" вариант цикла, в результате которого фиксируются 2 молекулы CO2 с использованием для их восстановления 8 [Н] и энергии в форме АТФ. Конечным продуктом в этом случае является ацетат в виде ацетил-КоА, использующийся для построения веществ клетки.
Прежде всего обращает на себя внимание, что все реакции, в которых происходит фиксация CO2 в цикле, функционируют как механизмы хемогетеротрофной фиксации CO2 или аналогичны им. Таким образом, собственно реакции фиксации CO2 принципиально не новы, они заимствованы из гетеротрофного метаболизма. Шагом вперед можно считать создание определенной последовательности ферментативных реакций, замыкающихся в цикл.
Фиксация CO2 по механизму, обнаруженному Д. Арноном (D. Arnon) с сотрудниками, не получила широкого распространения среди фотосинтезирующих эубактерий. По этому пути CO2 фиксируется у зеленых серобактерий.
Восстановительный пентозофосфатный цикл
Восстановительный пентозофосфатный цикл, или цикл Кальвина, являющийся основным путем фиксации CO2 у всех высших фотосинтезирующих организмов, функционирует уже в группе пурпурных бактерий. У цианобактерий и прохлорофит это также основной путь фиксации CO2. Последовательность ферментативных реакций, приводящих к фиксации углекислоты и образованию из нее молекулы гексозы, была расшифрована М. Кальвином (М. Calvin) с сотрудниками в 50-х гг. Что в этом цикле нового, существенно отличающего его от всех реакций фиксации CO2 как гетеротрофной природы, так и функционирующих в восстановительном ЦТК? Новая химическая природа акцептора. Акцепторами CO2 во всех до сих пор описанных реакциях были органические кислоты в обычной или активированной форме. В этом цикле впервые акцептором CO2 выступает вещество углеводной природы -- активированная молекула пентозы.
Ферментативные пути, ведущие к синтезу пентозофосфатов, уже формировались в окислительном пентозофосфатном пути. Для восстановительного пентозофосфатного цикла уникальными являются два фермента, не участвующие в других метаболических путях: фосфорибулокиназа и рибулозодифосфаткарбоксилаза. Первый из них связан с активированием молекулы акцептора путем вторичного фосфорилирования, а второй катализирует реакцию акцептирования рибулозо-1,5-дифосфатом молекулы CO2 и последующее гидролитическое расщепление образовавшейся гексозы на 2 молекулы 3-ФГК, одна из которых в карбоксильной группе содержит углерод из CO2.
Образовавшиеся молекулы 3-ФГК затем подвергаются серии последовательных ферментативных превращений, ведущих к образованию молекулы глюкозы. Эти превращения включают реакции, известные в гликолитическом пути, но идущие теперь в обратном направлении и реакции, сформировавшиеся у гетеротрофов на пути синтеза глюкозы из C2- и C3- соединений для обхода необратимых реакций гликолитического пути. Реакция восстановления 1,3-ФГК до 3-ФГА, катализируемая 3- ФГА-дегидрогеназой, у пурпурных и зеленых бактерий зависит от НАД-H2, а у цианобактерий и высших растений -- от НАДФxH2.
Такова биосинтетическая часть цикла, ведущая к фиксации CO2 и образованию из нее молекулы гексозы. Однако чтобы функционировал этот механизм, необходимо постоянное воспроизведение молекул -- акцепторов CO2. Остальные ферментативные реакции цикла служат для регенерации акцептора CO2 -- рибулозо-1, 5-дифосфата и катализируются ферментами, большинство из которых функционирует в окислительном пентозофосфатном пути.
Для синтеза 1 молекулы глюкозы из CO2 необходимо 6 оборотов цикла.
Таким образом, сформировавшийся для автотрофной ассимиляции CO2 механизм базируется на ферментативных реакциях, которые уже функционировали к тому времени у хемогетеротрофных прокариот. Для работы цикла необходимо было создать только две новые реакции, связанные с подготовкой акцептора и собственно акцептированием CO2.
Восстановительный пентозофосфатный цикл является основным механизмом автотрофной ассимиляции углекислоты. Последняя у большинства фотосинтезирующих эубактерий восстанавливается с помощью фотохимически образованной "ассимиляционной силы" -- АТФ и восстановителя. Однако и АТФ, и восстановитель (НАДФ-H2 или НАД-H2) образуются в разных метаболических путях. Поэтому нельзя рассматривать восстановительный пентозофосфатный цикл ассимиляции CO2 строго привязанным только к фотосинтезу. У большой группы хемоавтотрофных эубактерий этот путь фиксации CO2 сочетается с темновыми окислительными процессами получения энергии. Важно отметить только, что это основной путь ассимиляции CO2, если последняя служит единственным или главным источником углерода.
Таким образом, обнаруженные у фотосинтезирующих эубактерий типы фотосинтеза различаются организацией фотосинтетического аппарата, природой экзогенных доноров электрона и выделяемыми окисленными продуктами. Общим для всех типов фотосинтеза является способность превращать энергию света в доступные клетке формы энергии, которая потребляется затем во всех энергозависимых процессах, в том числе и для биосинтезов. Использование ее для ассимиляции CO2 -- только один из вариантов обеспечения энергией конструктивного метаболизма у фототрофных эубактерий.
ГРУППЫ ФОТОСИНТЕЗИРУЮЩИХ ЭУБАКТЕРИИ
Известно 5 групп эубактерий, способных преобразовывать световую энергию в, химическую с помощью хлорофилла. Фотосинтез, осуществляемый ими, делится на 2 типа: не сопровождающийся выделением молекулярного кислорода (бескислородный фотосинтез) и сопровождающийся выделением O2 (кислородный фотосинтез). В соответствии с этим все фотосинтезирующие эубактерии в IX издании Определителя бактерий Берги предложено разделить на две таксономические группы в ранге классов: Anoxyphotobacteria и Oxyphotobacteria. Эубактерии, осуществляющие бескислородный фотосинтез, на основании таких признаков, как пигментный состав и тонкое строение фотосинтетического аппарата, делятся на 3 группы: пурпурные, зеленые бактерии и гелиобактерии. Эубактерии, фотосинтез которых сопровождается выделением O2, включают 2 группы организмов: цианобактерии и прохлорофиты. В основу деления положены те же признаки. Критерии, определяющие там, где это возможно, деление на таксоны более низкого ранга, даны при характеристике каждой из выделенных групп.
Пурпурные бактерии
Группа пурпурных бактерий, насчитывающая более 50 видов, представлена одноклеточными организмами разной морфологии. Длина их колеблется от 1 до 20 мкм, ширина -- от 0,3 до 6 мкм. Некоторые виды образуют выросты. Среди пурпурных бактерий есть неподвижные и подвижные формы.
Движение осуществляется с помощью одного или пучка жгутиков, расположенных обычно полярно. Большинство пурпурных бактерий размножаются бинарным делением, некоторые виды -- почкованием. Клетки неподвижных форм, размножающихся поперечным делением в разных плоскостях, имеют тенденцию формировать агрегаты правильной геометрической формы.
Все пурпурные бактерии окрашиваются отрицательно по Граму и, следовательно, имеют сложное строение клеточной стенки. Для клеток характерна хорошо развитая система внутрицитоплазматических фотосинтетических мембран, являющихся производными ЦПМ и сохранивших с ней отчетливо наблюдаемую связь. Мембраны имеют вид отдельных пузырьков, трубок или пластинок (ламелл), располагающихся по периферии клетки, и представляют вместе с ЦПМ единую систему. Подобно многим обитающим в толще воды эубактериям в клетках некоторых неподвижных пурпурных бактерий содержатся газовые вакуоли. В качестве запасных веществ обнаружены углевод типа гликогена и поли-b-оксимасляная кислота. Группа пурпурных бактерий довольно гетерогенна в отношении нуклеотидного состава ДНК. Молярное содержание ГЦ-оснований колеблется от 45 до 73%, хотя у большинства представителей оно находится в пределах 61 -- 73%.
Все пурпурные бактерии характеризуются сходным строением и функционированием фотосинтетического аппарата. Они могут расти на свету в анаэробных условиях, осуществляя фотосинтез бескислородного типа. Однако по целому ряду физиологических особенностей, в том числе и по использованию разных соединений в качестве донора электронов при фотосинтезе, между представителями пурпурных бактерий обнаружены значительные различия. Поэтому на основании ряда физиологических признаков группу подразделяют на пурпурные серные и несерные бактерии.
Для пурпурных серобактерий основной способ существования -- фотолитоавтотрофия. Все представители этой группы могут расти при освещении в анаэробных условиях на среде с CO2 в качестве единственного источника углерода, используя как донор электронов сульфид (H2S). Многие виды могут использовать для этой цели молекулярную серу (S0), сульфит (SO32 - ), тиосульфат (S2O32-), молекулярный водород. Сульфид окисляется последовательно до молекулярной серы или сульфата, при этом глобулы серы откладываются в периплазматическом пространстве и впячиваниях (инвагинатах) ЦПМ, которые также являются частью этого пространства. Исключение составляют виды рода Ectothiorhodospira, окисляющие сульфид и тиосульфат до молекулярной серы, но не накапливающие последнюю в пределах клетки. Представители этого рода выделяют серу в среду, а затем поглощают ее и окисляют до SO42 -. Ферменты, катализирующие окисление восстановленных соединений серы, локализованы в периплазматическом пространстве и на наружной поверхности ЦПМ.
Пурпурные серобактерии обнаруживают весьма ограниченную способность использовать органические соединения. В большинстве случаев последние служат дополнительными источниками углерода и редко -- донорами электронов. Все виды могут фотометаболизировать ацетат и пируват, только некоторые способны существовать полностью фотоорганогетеротрофно.
В течение длительного времени пурпурные серобактерии считали строгими анаэробами и облигатными фототрофами. Недавно было показано, что спектр отношения к молекулярному кислороду в этой группе достаточно широк. В большинстве пурпурные серобактерии высоко чувствительны к O2, однако и среди них есть виды, растущие в темноте в аэробных условиях на минеральной среде или с использованием органических соединений. Хемолитоавтотрофный рост при низком содержании O2 обнаружен у ряда пурпурных серобактерий, ассимилирующих CO2 в восстановительном пентозофосфатном цикле, а энергию получающих в процессе дыхания в результате окисления сульфида, тиосульфата, молекулярной серы или H2. Для некоторых представителей родов Ectothiorhodospira и Thiocapsa показан аэробный хемоорганогетеротрофный рост. Органические вещества в этом случае используются как источники углерода и энергии. Последняя запасается в процессе дыхания. Некоторые пурпурные серобактерии оказались также способными расти в темноте в анаэробных условиях (в атмосфере аргона или молекулярного водорода), сбраживая некоторые сахара или органические кислоты.
Пурпурные несерные бактерии имеют склонность к фотоорганогетеротрофному образу жизни, предпочитая в качестве доноров электронов и источников углерода в процессе фотосинтеза простые органические соединения: жирные кислоты, спирты, сахара, аминокислоты. Многие виды способны расти фотолитоавтотрофно, используя молекулярный водород в качестве донора электронов для восстановления CO2.
Некоторые типичные несерные пурпурные бактерии растут при освещении на минеральной среде, используя в качестве донора электронов H2S, тиосульфат или молекулярную серу. В большинстве случаев сульфид окисляется только до молекулярной серы, никогда не откладывающейся в клетке, но в отдельных случаях возможно последующее окисление S0 до сульфата.
В группе несерных бактерий обнаружено большое разнообразие метаболических путей, связанных с получением энергии. Многие представители этой группы способны расти в темноте в микроаэробных или аэробных условиях, получая энергию в процессе дыхания. У них активно функционирует замкнутый ЦТК, гликолитический путь и другие пути катаболизма органических соединений.
Представители рода Rhodobacter способны к хемоавтотрофии. Они растут на минеральной среде в темноте при пониженной концентрации O2, используя энергию, получаемую при окислении молекулярного водорода, для ассимиляции CO2.
У несерных пурпурных бактерий развиты контакты с молекулярным кислородом. У них имеются ферментные системы защиты от O2. Все несерные пурпурные бактерии способны расти хемотрофно в микроаэробных условиях, хотя не все из них могут переносить атмосферное содержание O2. При концентрации O2 от 0,5 до 5% фотосинтез и окислительный метаболизм могут функционировать одновременно. Молекулярный кислород у несерных пурпурных бактерий (как и у всех эубактерий, осуществляющих бескислородный фотосинтез) выступает как мощный фактор, регулирующий их метаболизм. Уже в достаточно низких концентрациях O2 ингибируют синтез бактериохлорофиллов, внутрицитоплазматических мембран и рибулозодифосфаткарбоксилазы. В то же время в присутствии O2 наблюдается увеличение активности ферментов ЦТК.
Среди представителей рода Rhodobacter обнаружена способность расти в анаэробных условиях за счет окисления органических соединений, сопряженного с транспортом электронов на нитраты (анаэробное дыхание). Наконец, в последние годы для ряда несерных пурпурных бактерий показана способность расти анаэробно в темноте, осуществляя сбраживание органических субстратов, таких как сахара, пируват.
Таким образом, в этой группе обнаружены разные биосинтетические способности, сочетающиеся с разнообразными способами получения энергии. Источниками углерода могут быть CO2 или органические соединения, а источниками энергии -- фотосинтез, аэробное и анаэробное дыхание, брожение.
Основные физиолого-биохимические различия между серными и несерными пурпурными бактериями представлены в табл. 7. До настоящего времени не найдено четкого признака или нескольких признаков, которые могли бы быть положены в основу деления пурпурных бактерий на рассмотренные физиологические группы. Как правило, признак, характерный для организмов одной группы, можно найти у представителей другой. Тем не менее можно выявить совокупность свойств, типичных либо для серных, либо для несерных пурпурных бактерий.
Недавно обнаружены эубактерий, выделенные в новый род Erythrobacter, образующие подобно многим пурпурным бактериям бактериохлорофилл a, но растущие только в аэробных условиях. Это грамотрицательные палочки, перемещающиеся с помощью жгутиков; размножаются бинарным делением. Молярное содержание ГЦ-оснований в ДНК -- 60 -- 64%. Система внутрицитоплазматических мембран везикулярного типа сходна с таковой несерных пурпурных бактерий. Помимо бактериохлорофилла a эритробактеры содержат в значительном количестве каротиноиды, определяющие их розовую или оранжевую окраску.
Таблица 7. Основные физиолого-биохимические различия между серными и несерными пурпурными бактериями
Признак |
Пурпурные бактерии |
||
несерные |
серные |
||
Доноры электронов при фотосинтезе |
|||
H2S |
* |
||
S0 |
|||
H2 |
|||
Источник углерода |
|||
CO2 |
|||
Органические соединения |
** |
||
Рост в темноте на органических средах за счет |
|||
аэробного дыхания |
* |
||
анаэробного дыхания |
|||
брожения |
|||
Способность к хемоавтотрофии |
|||
Отношение к O2 воздуха |
факультативные анаэробы |
в большинстве -- строгие анаэробы; отдельные виды -- факультативные анаэробы |
|
Способность к азотфиксации |
* Признак обнаружен у всех ( ), большинства ( ), некоторых ( ) представителей группы; ( ) признак отсутствует.
** Количество фотоассимилируемых органических соединений и степень их использования невелики.
В отличие от пурпурных бактерий выделенные до сих пор представители рода Erythrobacter -- облигатно аэробные хемоорганогетеротрофы: не могут расти анаэробно ни на свету, ни в темноте; не растут на свету в аэробных условиях за счет неорганических субстратов, но хорошо растут в тех же условиях в присутствии разнообразных органических соединений (сахаров, органических кислот, некоторых одноуглеродных соединений). Многие штаммы нуждаются в витаминах.
В то же время получены экспериментальные доказательства использования эритробактерами энергии света: установлено обратимое фотоокисление бактериохлорофилла a реакционного центра, показано светозависимое включение CO2 и повышение уровня АТФ в клетке; установлена способность мембранных препаратов к фотофосфорилированию. Однако фотосинтетический аппарат, имеющийся в клетках Erythrobacter, не может обеспечить их рост. Облигатная зависимость от молекулярного кислорода связана с тем, что для эритробактеров основным источником энергии служит O2-зависимое дыхание. Фотосинтетическая активность может иметь значение для поддержания жизнеспособности клеток в отсутствие в среде субстратов, обеспечивающих рост.
Бактерии рода Erythrobacter интересны тем, что необходимую для роста энергию получают в результате аэробного дыхания, но не утратили при этом бактериохлорофилла a и других компонентов фотосинтетического аппарата.
Зеленые бактерии
В течение длительного времени зеленые бактерии принимали за зеленые или сине-зеленые водоросли (цианобактерии). Начало их изучения как бактерий связано с именами C. Н. Виноградского и К. ван Ниля. Эта небольшая группа эубактерий, осуществляющих фотосинтез бескислородного типа, разделена на две подгруппы. Зеленые серобактерии -- строгие анаэробы и облигатные фототрофы, способные расти на среде с H2S или молекулярной серой в качестве единственного донора электронов; при окислении сульфида до молекулярной серы последняя всегда откладывается вне клетки.
В другую подгруппу выделены нитчатые, передвигающиеся скольжением формы, факультативные анаэробы, предпочитающие использовать органические соединения при фототрофном метаболизме.
Почти все зеленые серобактерии -- грамотрицательные одноклеточные неподвижные формы. Клетки палочковидные, яйцеобразные или слегка изогнутые. При выращивании в чистой культуре часто образуют цепочки, клубки или сетчатые структуры. Размножаются бинарным делением. В качестве запасного вещества накапливают гликогеноподобный полисахарид. Группа достаточно однородна по нуклеотидному составу ДНК: молярное содержание ГЦ-оснований колеблется от 48 до 58%.
Зеленые нитчатые бактерии состоят из множества палочковидных клеток, размеры которых зависят от вида (0,5 -- 5,5x2 -- 6 мкм). Длина трихомов достигает 100 -- 300 мкм. У некоторых видов трихомы окружены слизистым чехлом. Все описанные представители этой подгруппы имеют типичную грамотрицательную клеточную стенку, но не ригидную, а гибкую, обеспечивающую скользящее движение. Клетки внутри трихома размножаются поперечным бинарным делением. Кроме того, как и все нитчатые формы, зеленые скользящие бактерии размножаются путем отделения небольшой части трихома. Первая зеленая нитчатая бактерия Chloroflexus aurantiacus была выделена из термального серного источника. Позднее были выделены мезофильные варианты этого вида.
Все зеленые серобактерии -- облигатные фотолитоавтотрофы и строгие анаэробы (гораздо более строгие, чем пурпурные серобактерии). В присутствии O2 они не растут. Основной источник углерода -- углекислота. Как доноры электронов могут использовать только неорганические соединения: H2S, S0, Na2S2O3, H2. Окисление сульфида, происходящее в периплазматическом пространстве, на первом этапе приводит к образованию молекулярной серы, откладывающейся вне клетки. После исчерпания H2S из среды S0 поглощается клетками и в периплазматическом пространстве происходит ее последующее окисление до сульфата. Изучение локализации процесса образования молекулярной серы у разных групп фототрофных и хемотрофных H2S-окисляющих эубактерий привело к заключению о его однотипности. Во всех случаях сера образуется в клеточном периплазматическом пространстве, но у одних организмов она потом выделяется в среду, у других остается в пределах клетки.
Способность использования зелеными серобактериями органических соединений ограничена несколькими сахарами, аминокислотами и органическими кислотами. Добавление этих соединений в среду приводит к некоторому стимулированию роста культуры и сводится к тому, что они в ограниченной степени используются как дополнительные источники углерода. Ни в одном случае органические соединения не могли служить донорами электронов или основным источником углерода. Их использование возможно только при наличии в среде H2S и CO2. Включение органических соединений в метаболизм зеленых серобактерий происходит по путям, сходным для большинства эубактерий. Определенная роль отводится обнаруженному в этой группе организмов "разорванному" ЦТК, функционирующему в системе конструктивного метаболизма. Для большинства зеленых серобактерий показана способность к фиксации N2.
Физиолого-биохимическая характеристика зеленых нитчатых бактерий основана главным образом на данных, полученных для разных штаммов Chloroflexus aurantiacus, обнаруживших значительное метаболическое разнообразие. C. aurantiacus может быть охарактеризован как факультативный анаэроб и фототроф. На свету он растет в аэробных и анаэробных условиях в присутствии разнообразных органических соединений: сахаров, спиртов, органических кислот и аминокислот. Некоторые штаммы этого вида способны к анаэробному фотоавтотрофному росту, используя H2 или H2S в качестве донора электронов. Окисление H2S приводит к образованию молекулярной серы и отложению ее в среде в виде аморфной массы. Молекулярная сера в очень незначительной степени затем окисляется до сульфата. Хемогетеротрофный рост также возможен в аэробных и для отдельных штаммов в анаэробных условиях.
В разных условиях роста в клетках C. aurantiacus обнаружены ферменты гликолитического пути, ЦТК и глиоксилатного шунта. В то же время у C. aurantiacus не найдено ни восстановительного ЦТК, ни восстановительного пентозофосфатного цикла и механизм, по которому осуществляется автотрофная фиксация CO2, пока не ясен. Показана активность разных реакций карбоксилирования, ведущих к синтезу ЩУК.
Хотя Chloroflexus растет в присутствии молекулярного кислорода, последний репрессирует синтез бактериохлорофиллов и образование хлоросом. В природных условиях популяции этих бактерий часто имеют оранжевый цвет из-за высокого содержания каротиноидов и низкого содержания бактериохлорофиллов в клетке. Поэтому первоначально Chloroflexus принимали за гетеротрофный организм. Только в фотолитоавтотрофных условиях при высоком содержании сульфида в среде и низких интенсивностях света лабораторные культуры или природные популяции Chloroflexus имеют зеленый цвет, обусловленный высоким содержанием бактериохлорофилла c.
Таблица 8. Основные физиолого-биохимические различия между зелеными нитчатыми и серными бактериями
Признак |
Зеленые бактерии |
||
серные |
нитчатые* |
||
Организация |
одноклеточная |
многоклеточная |
|
Подвижность |
неподвижные, за исключением представителей рода Chloroherpeton |
подвижные (скольжение) |
|
Газовые вакуоли |
** |
||
Запасное вещество |
гликогеноподобный полисахарид |
поли-b-оксимасляная кислота |
|
Молярное содержание ГЦ-оснований в ДНК, % |
48-58 |
53-55 |
|
Отношение к температуре |
мезофилы |
мезофилы и термофилы |
|
Доноры электронов при фотосинтезе |
H2S, S0, Na2S2O3, H2 |
H2S, H2, органические соединения |
|
Механизм ассимиляции CO2 при фотосинтезе |
восстановительный ЦТК |
не известен |
|
Источники углерода |
CO2, органические соединения |
органические соединения, CO2 |
|
Рост в темноте на органических средах за счет: |
|||
аэробного дыхания |
|||
анаэробного дыхания |
|||
брожения |
? |
||
Цикл трикарбоновых кислот |
"разорван" |
"замкнут" |
|
Способность к хемоавтотрофии |
|||
Отношение к O2 |
облигатные анаэробы |
факультативные анаэробы |
|
Способность к азотфиксации |
? |
* Физиолого-биохимические свойства изучены в основном у разных штаммов Chloroflexus aurantiacus.
Гелиобактерии
Недавно обнаружены строго анаэробные фототрофные бактерии, содержащие единственный бактериохлорофилл g, отсутствующий в других группах фотосинтезирующих эубактерий с бескислородным типом фотосинтеза. Описаны два вида, различающиеся морфологически: Heliobacterium chlorum -- одиночные длинные палочки (1x7-10 мкм), способные передвигаться скольжением, и Heliobacillus mobilis -- короткие палочковидные формы с перитрихиально расположенными жгутиками. Клеточная стенка грамотрицательного типа, но по нуклеотидной последовательности 16S рРНК и составу пептидогликана обе описанные гелиобактерии близки к грамположительным эубактериям Bacillus subtilis.
В клетках помимо необычного бактериохлорофилла g обнаружено небольшое количество каротиноидов. Пигменты локализованы в ЦПМ, развитой системы внутрицитоплазматических мембран и хлоросом нет. Способ существования -- облигатная фототрофия. Рост возможен только на свету в анаэробных условиях. Источниками углерода могут служить некоторые органические кислоты: уксусная, молочная, пировиноградная, масляная. Показана также возможность функционирования путей автотрофной фиксации CO2 (модифицированный и неполный восстановительный ЦТК). Описанные гелиобактерии проявляют очень высокую чувствительность к молекулярному кислороду. Дыхательный метаболизм отсутствует. Обнаруженные виды -- активные азотфиксаторы.
Большой интерес к гелиобактериям связан с предположением, что они являются наиболее древними из существующих в настоящее время фотосинтезирующих эубактерий. Кроме того, на основании сходства между бактериохлорофиллом g и хлорофиллом с высказывается предположение о том, что гелиобактерии -- предки пластид, содержащих хлорофилл c, имеющихся в группах бурых, диатомовых, золотистых и других водорослей.
Цианобактерии
К цианобактериям относится большая группа организмов, сочетающих прокариотное строение клетки со способностью осуществлять фотосинтез, сопровождающийся выделением O2, что свойственно разным группам водорослей и высших растений. Объединение черт, присущих организмам, относящимся к разным царствам или даже надцарствам живой природы, сделало цианобактерии объектом борьбы за принадлежность к низшим растениям (водорослям) или бактериям (прокариотам).
Вопрос о положении цианобактерии (сине-зеленых водорослей) в системе живого мира имеет долгую и противоречивую историю. В течение длительного времени они рассматривались как одна из групп низших растений, поэтому и систематика осуществлялась в соответствии с правилами Международного кодекса ботанической номенклатуры. И только в 60-х гг. XX в., когда было установлено четкое различие между прокариотным и эукариотным типами клеточной организации и на основании этого К. ван Нилем и Р. Стейниером сформулировано определение бактерий как организмов, имеющих прокариотное строение клетки, встал вопрос о пересмотре положения сине-зеленых водорослей в системе живых организмов.
Изучение цитологии клеток сине-зеленых водорослей с помощью современных методов привело к неоспоримому выводу о том, что эти организмы также являются типичными прокариотами. Как следствие этого Р. Стейниером было предложено отказаться от названия "сине-зеленые водоросли" и называть данные организмы "цианобактериями" -- термином, отражающим их истинную биологическую природу. Воссоединение цианобактерий с остальными прокариотами поставило исследователей перед необходимостью пересмотра существующей классификации этих организмов и подчинения ее правилам Международного кодекса номенклатуры бактерий.
В течение длительного времени альгологами было описано около 170 родов и больше 1000 видов сине-зеленых водорослей. В настоящее время ведется работа по созданию новой систематики цианобактерий, основанной на изучении чистых культур. Уже получено больше 300 чистых штаммов цианобактерий. Для классификации использованы постоянные морфологические признаки, закономерности развития культуры, особенности клеточной ультраструктуры, величина и нуклеотидная характеристика генома, особенности углеродного и азотного метаболизма и ряд других.
Цианобактерий -- морфологически разнообразная группа грамотрицательных эубактерий, включающая одноклеточные, колониальные и многоклеточные формы. У последних единицей структуры служит нить (трихом, или филамент). Нити бывают простые или ветвящиеся. Простые нити состоят из одного ряда клеток (однорядные трихомы), имеющих одинаковые размеры, форму и строение, или клеток, различающихся по этим параметрам. Ветвящиеся трихомы возникают в результате разных причин, в связи с чем различают ложное и истинное ветвление. К истинному ветвлению приводит способность клеток трихома делиться в разных плоскостях, в результате чего возникают многорядные трихомы или однорядные нити с однорядными же боковыми ветвями. Ложное ветвление трихомов не связано с особенностями деления клеток внутри нити, а есть результат прикрепления или соединения разных нитей под углом друг к другу.
В процессе жизненного цикла некоторые цианобактерий формируют дифференцированные единичные клетки или короткие нити, служащие для размножения (баеоциты, гормогонии), выживания в неблагоприятных условиях (споры, или акинеты) или азотфиксации в аэробных условиях (гетероцисты). Более подробная характеристика дифференцированных форм цианобактерий дана ниже при описании их систематики и процесса азотфиксации. Краткая характеристика акинет представлена в гл. 5. Для разных представителей этой группы характерна способность к скользящему движению. Оно свойственно как нитчатым формам (трихомы и/или гормогонии), так и одноклеточным (баеоциты).
Известны разные способы размножения цианобактерий. Деление клеток происходит путем равновеликого бинарного деления, сопровождающегося образованием поперечной перегородки или перетяжки; неравновеликого бинарного деления (почкования); множественного деления. Бинарное деление может происходить только в одной плоскости, что у одноклеточных форм приводит к образованию цепочки клеток, а у нитчатых -- к удлинению однорядного трихома. Деление в нескольких плоскостях ведет у одноклеточных цианобактерий к формированию скоплений правильной или неправильной формы, а у нитчатых -- к возникновению многорядного трихома (если к такому делению способны почти все вегетативные клетки нити) или однорядного трихома с боковыми однорядными ветвями (если способность к делению в разных плоскостях обнаруживают только отдельные клетки нити). Размножение нитчатых форм осуществляется также с помощью обрывков трихома, состоящих из одной или нескольких клеток, у некоторых -- также гормогониями, отличающимися по ряду признаков от трихомов, и в результате прорастания акинет в благоприятных условиях.
Начатая работа по классификации цианобактерий в соответствии с правилами Международного кодекса номенклатуры бактерий привела к выделению 5 основных таксономических групп в ранге порядков, различающихся морфологическими признаками. Для характеристики выделенных родов привлечены также данные, полученные при изучении клеточной ультраструктуры, генетического материала, физиолого-биохимических свойств.
К порядку Chroococcales отнесены одноклеточные цианобактерий, существующие в виде одиночных клеток или формирующие колонии. Для большинства представителей этой группы характерно образование чехлов, окружающих каждую клетку и, кроме того, удерживающих вместе группы клеток, т. е. участвующих в формировании колоний. Цианобактерий, клетки которых не образуют чехлов, легко распадаются до одиночных клеток. Размножение осуществляется бинарным делением в одной или нескольких плоскостях, а также почкованием.
Таблица 9. Основные таксономические группы цианобактерий
Одноклеточные формы: одиночные клетки или колонии |
Многоклеточные формы: нитчатые |
||||
Пор. Chroococcales |
Пор. Pleurocapsales |
Пор. Oscillatoriales |
Пор. Nostocales |
Пор. Stigoneomatales |
|
Размножение бинарным делением в одной или более плоскостях или почкованием |
Размножение множественным делением или чередованием бинарного и множественного деления |
Трихомы неветвящиеся, состоят из одного ряда только вегетативных клеток. Рост трихома -- делением клеток в одной плоскости |
В неветвящихся однорядных трихомах помимо вегетативных образуются дифференцированные клетки: гетероцисты и иногда акинеты. Рост трихома -- делением клеток в одной плоскости |
Те же признаки, что и у представителей пор. Nostocales. Отличительный признак: способность вегетативных клеток трихома к делению более чем в одной плоскости, приводящему к появлению многорядных трихомов или трихомов с истинным ветвлением |
В порядок Pleurocapsales выделены одноклеточные цианобактерий, способные к размножению путем множественного деления. Они существуют в виде одиночных клеток или скоплений, удерживаемых вместе с помощью внешнего (по отношению к наружной мембране) фибриллярного слоя клеточной стенки. Скопления могут состоять всего из нескольких клеток разной формы, иметь кубическую или неправильную форму. Входящие в эту группу цианобактерий различаются способностью размножаться только множественным делением или чередованием процессов бинарного и множественного деления. Освобождающиеся в результате множественного деления баеоциты могут быть подвижными или неподвижными. У подвижных баеоцитов при освобождении из материнской клетки отсутствует дополнительный фибриллярный слой клеточной стенки. Подвижность их теряется, когда этот слой синтезируется. У неподвижных форм к моменту выхода из материнской клетки дополнительный слой клеточной стенки уже сформирован.
В отличие от рассмотренных выше цианобактерий в последующие порядки включены многоклеточные формы, имеющие нитчатое строение. Особенностью цианобактерий, отнесенных в порядок Oscillatoriales, является недифференцированность трихома (последний состоит только из вегетативных клеток) и его рост путем деления клеток в одной плоскости. Цианобактерии этой таксономической группы различаются строением трихомов и отдельных клеток, особенностями соединения клеток в трихоме, наличием или отсутствием чехла, способностью к движению и некоторыми другими морфологическими признаками. Для большинства представителей этой группы характерны прямые трихомы, клетки в которых дисковидные или цилиндрические плотно прилегают друг к другу или разделены глубокой перетяжкой. Трихомы могут быть окружены общим чехлом разной толщины. Скользящее движение свойственно цианобактериям, не образующим чехла или со слабым развитием последнего. К этой же группе относятся цианобактерии, имеющие подвижные спиралевидные трихомы, состоящие из клеток разной формы, не окруженные чехлом.
Дальнейший шаг по пути морфологического усложнения сделан цианобактериями, включенными в порядок Nostocales. Они представлены однорядными неветвящимися нитями, рост которых происходит путем деления клеток в одной плоскости (под прямым углом к длинной оси трихома). При культивировании на среде без связанного азота некоторые вегетативные клетки дифференцируются в гетероцисты -- центры азотфиксации в аэробных условиях. Ряд представителей группы образует акинеты -- единственный тип покоящихся форм у цианобактерий. Размножение происходит короткими обрывками трихомов, морфологически не отличающимися от зрелых длинных нитей, и в результате прорастания акинет, если последние образуются. У некоторых цианобактерий в дополнение к описанным выше способам размножения для этой цели служат гормогоний. Последние представляют собой короткие нити, отличающиеся рядом морфологических признаков от родительского трихома: они состоят из небольшого числа мелких активно движущихся вегетативных клеток, иногда иной формы, чем клетки родительского трихома; могут содержать газовые вакуоли; никогда не окружены чехлом. Основное отличие гормогониев от зрелых и молодых трихомов -- отсутствие гетероцист, даже если культура находится в среде, не содержащей связанного азота. Для выделения отдельных родов использованы такие признаки, как расположение гетероцист и акинет в нити, форма вегетативных клеток. В частности, трихом цианобактерий рода Calothrix образован клетками разной ширины, т. е. имеет асимметричное строение.
В порядок Stigonematales объединены цианобактерий, отличающиеся от представителей предыдущего порядка способностью вегетативных клеток трихома к делению более чем в одной плоскости. К этой группе отнесено несколько родов, различающихся циклами развития, расположением гетероцист в трихомах и некоторыми другими признаками.
Электронно-микроскопическое изучение вегетативных клеток цианобактерий обнаружило принципиальное сходство их строения с клетками грамотрицательных эубактерий. Более чем у 200 чистых культур определен состав оснований хромосомной ДНК. По этому признаку цианобактерии обнаруживают гетерогенность (молярное содержание ГЦ-оснований в ДНК от 35 до 71%), сравнимую только с остальными прокариотами (25-75%).
В качестве одной из примечательных особенностей генетического материала цианобактерии отмечают значительные различия величины цианобактериальной хромосомы. Размеры геномов, изученные более чем у 100 штаммов из разных групп, располагаются в диапазоне 1,6 -- 8,6-109 Да, при этом просматривается определенная корреляция между степенью морфологической сложности и величиной генома, достигающего максимальных значений у цианобактерии со сложной организацией трихомов и циклами развития. В группе цианобактерии сформирован самый крупный геном, обнаруженный до сих пор у прокариот. В то же время некоторые цианобактерии в отношении морфологической сложности также достигли вершины в мире прокариот и не имеют равных среди других грамотрицательных эубактерий.
Клетки цианобактерии, за исключением принадлежащих к роду Gloeobacter, характеризуются развитой системой внутрицитоплазматических мембран (тилакоидов), в которых локализованы компоненты фотосинтетического аппарата. Единственная энергопреобразующая мембрана Gloeobacter -- цитоплазматическая, где локализованы процессы фотосинтеза и дыхания.
Большой интерес представляет группа цианобактерии из-за сосредоточения в ней разнообразных физиологических возможностей. В недрах этой группы, вероятно, сформировался и в целом оформился фотосинтез, основанный на функционировании двух фотосистем, характеризующийся использованием H2O в качестве экзогенного донора электронов и сопровождающийся выделением О2.
У цианобактерии обнаружена способность к бескислородному фотосинтезу, связанная с отключением II фотосистемы при сохранении активности I фотосистемы. В этих условиях у них возникает потребность в иных, чем H2O, экзогенных донорах электронов. В качестве последних цианобактерии могут использовать некоторые восстановленные соединения серы (H2S, Na2S2O3), H2, ряд органических соединений (сахара, кислоты). Так как поток электронов между двумя фотосистемами прерывается, синтез АТФ сопряжен только с циклическим электронным транспортом, связанным с I фотосистемой. Способность к бескислородному фотосинтезу обнаружена у многих цианобактерии из разных групп, но активность фиксации CO2 за счет этого процесса низка, составляя, как правило, несколько процентов от скорости ассимиляции CO2 в условиях функционирования обеих фотосистем. Только некоторые цианобактерии могут расти за счет бескислородного фотосинтеза, например Oscillatoria limnetica, выделенная из озера с высоким содержанием сероводорода. Способность цианобактерии переключаться при изменении условий с одного типа фотосинтеза на другой служит иллюстрацией гибкости их светового метаболизма, имеющей важное экологическое значение.
Хотя подавляющее большинство цианобактерии являются облигатными фототрофами, в природе они часто находятся длительное время в условиях темноты. В темноте у цианобактерии обнаружен активный эндогенный метаболизм, энергетическим субстратом которого служит запасенный на свету гликоген, катаболизируемый по окислительному пентозофосфатному циклу, обеспечивающему полное окисление молекулы глюкозы. На двух этапах этого пути с НАДФ-H2 водород поступает в дыхательную цепь, конечным акцептором электронов в которой служит O2.
O. limnetica, осуществляющая активный фотосинтез бескислородного типа, оказалась также способной в темноте в анаэробных условиях при наличии в среде серы осуществлять перенос электронов на молекулярную серу, восстанавливая ее до сульфида. Таким образом, анаэробное дыхание также может поставлять цианобактериям в темноте энергию. Однако насколько широко распространена такая способность среди цианобактерии, неизвестно. Не исключено, что она свойственна культурам, осуществляющим бескислородный фотосинтез.
Другой возможный путь получения цианобактериями в темноте энергии -- гликолиз. У некоторых видов найдены все ферменты, необходимые для сбраживания глюкозы до молочной кислоты, однако образование последней, а также активности гликолитических ферментов низки. Кроме того, содержание АТФ в клетке в анаэробных условиях резко падает, так что, вероятно, жизнедеятельность цианобактерии только за счет субстратного фосфорилирования поддерживаться не может.
У всех изученных цианобактерии ЦТК из-за отсутствия a-кетоглутаратдегидрогеназы "не замкнут". В таком виде он не функционирует в качестве пути, ведущего к получению энергии, а выполняет только биосинтетические функции. Способность в той или иной степени использовать органические соединения для биосинтетических целей присуща всем цианобактериям, но только некоторые сахара могут обеспечивать синтез всех клеточных компонентов, являясь единственным или дополнительным к CO2 источником углерода.
Цианобактерии могут ассимилировать некоторые органические кислоты, в первую очередь ацетат и пируват, но всегда только в качестве дополнительного источника углерода. Метаболизирование их связано с функционированием "разорванного" ЦТК и приводит к включению в весьма ограниченное число клеточных компонентов. В соответствии с особенностями конструктивного метаболизма у цианобактерии отмечают способность к фотогетеротрофии или облигатную привязанность к фотоавтотрофии. В природных условиях часто цианобактерии осуществляют конструктивный метаболизм смешанного (миксотрофного) типа.
Некоторые цианобактерии способны к хемогетеротрофному росту. Набор органических веществ, поддерживающих хемогетеротрофный рост, ограничен несколькими сахарами. Это связывают с функционированием у цианобактерий в качестве основного катаболического пути окислительного пентозофосфатного цикла, исходным субстратом которого служит глюкоза. Поэтому только последняя или сахара, ферментативно легко превращаемые в глюкозу, могут метаболизироваться по этому пути.
Одна из загадок метаболизма цианобактерий -- неспособность большинства из них расти в темноте с использованием органических соединений. Невозможность роста за счет субстратов, метаболизируемых в ЦТК, связана с "разорванностью" этого цикла. Но основной путь катаболизма глюкозы -- окислительный пентозофосфатный цикл -- функционирует у всех изученных цианобактерий. В качестве причин называют неактивность систем транспорта экзогенных сахаров в клетку, а также низкую скорость синтеза АТФ, сопряженного с дыхательным электронным транспортом, вследствие чего количество вырабатываемой в темноте энергии достаточно только для поддержания клеточной жизнедеятельности, но не роста культуры.
Цианобактерии, в группе которых, вероятно, сформировался кислородный фотосинтез, впервые столкнулись с выделением O2 внутри клетки. Помимо создания разнообразных систем защиты от токсических форм кислорода, проявляющихся в устойчивости к высоким концентрациям O2, цианобактерии адаптировались к аэробному способу существования путем использования молекулярного кислорода для получения энергии.
В то же время для ряда цианобактерий показана способность расти на свету в строго анаэробных условиях. Это относится к видам, осуществляющим фотосинтез бескислородного типа, которых в соответствии с принятой классификацией следует отнести к факультативным анаэробам. (Фотосинтез любого типа по своей природе -- анаэробный процесс. Это хорошо видно в случае фотосинтеза бескислородного типа и менее очевидно для кислородного фотосинтеза). Для некоторых цианобактерий показана принципиальная возможность протекания темновых анаэробных процессов (анаэробное дыхание, молочнокислое брожение), однако низкая активность ставит под сомнение их роль в энергетическом метаболизме цианобактерий. Конструктивный метаболизм цианобактерий представляет собой шаг вперед по пути дальнейшей независимости от органических соединений внешней среды по сравнению с пурпурными и зелеными серобактериями. Для построения всех веществ клетки цианобактериям нужен минимум простых неорганических соединений: углекислота, самые простые формы азота (аммонийные, нитратные соли или молекулярный азот), минеральные соли (источники фосфора, серы, магния, железа, микроэлементов), вода. Цианобактерии не требуют никаких питательных компонентов в восстановленной форме. Только некоторые морские виды обнаруживают потребность в витамине B12.
Азотфиксирующая активность выявлена более чем у 250 штаммов, принадлежащих к разным группам фототрофных эубактерий. Примерно половину из них составляют цианобактерии. Способность последних к фиксации N2, определяемая по наличию нитрогеназной активности, зависит от условий, и в первую очередь от содержания в среде связанного азота и молекулярного кислорода. Основное место действия обоих факторов -- нитрогеназа. В первом случае источники связанного азота репрессируют синтез и ингибируют активность фермента, во втором -- O2 быстро инактивирует его.
Отрицательное действие O2 на азотфиксацию связано с восстановительной природой процесса. Возникшая первоначально у анаэробных прокариот, получающих энергию за счет брожения, способность к азотфиксации проявилась и в группах эубактерий с бескислородным фотосинтезом. Благоприятные условия для нее обеспечивались анаэробным типом метаболизма этих групп. И только цианобактерий столкнулись с проблемой функционирования в клетке двух процессов, один из которых имеет восстановительную природу, а другой сопровождается выделением такого сильного окислителя, как O2. Возникла необходимость защиты или изолирования процесса азотфиксации от молекулярного кислорода.
Таблица 10. Способы получения энергии в группе цианобактерий
Способ получения энергии |
Донор электронов |
Акцептор электронов |
Распространенность и физиологический эффект |
|
Фотосинтез кислородного типа |
H2O |
НАДФ+, ферредоксин |
обеспечивает рост всех цианобактерий |
|
Фотосинтез бескислородного типа |
H2S, Na2S2O3, H2, органические соединения |
НАДФ+ ферредоксин |
обеспечивает рост некоторых изученных видов; у большинства -- снабжает энергией, необходимой для поддержания жизнедеятельности |
|
Дыхание |
НАД(Ф)-H2 |
O2 |
обеспечивает рост факультативно фототрофных цианобактерий и поддержание жизнедеятельности облигатно фототрофных видов |
|
H2* |
O2 |
может быть связано с получением энергии |
||
Анаэробное дыхание |
НАД(Ф)-H2 |
S0 |
поддерживает жизнедеятельность некоторых цианобактерий, способных к бескислородному фотосинтезу |
|
Брожение |
эндогенные или экзогенные сахара |
пируват |
обнаружено у некоторых факультативно анаэробных цианобактерий; активность недостаточна для поддержания жизнедеятельности** |
* Разные представители цианобактерий оказались способными использовать в темноте молекулярный водород при наличии в качестве акцептора электронов O2. Имеются данные в пользу того, что потребление На связано с функционированием дыхательной цепи и может вести к получению энергии.
** Есть только одно сообщение о способности цианобактерий рода Nostoc расти в темноте в анаэробных условиях, осуществляя сбраживание некоторых сахаров.
Вегетативные клетки многих изученных культур обнаруживают нитрогеназную активность в анаэробных и микроаэробных условиях. Только для единичных культур, например представителей рода Gloeothece, показана способность вегетативных клеток к азотфиксации в аэробных условиях, при этом до 95% фиксированного азота приходится на темновой период, т. е. процессы фотосинтеза и азотфиксации разделены во времени. В целом же проблема фиксации N2 в аэробных условиях значительной частью цианобактерий решена путем формирования дифференцированных клеток определенного типа -- гетероцист, в которых чувствительный к O2 аппарат фиксации молекулярного азота отделен от фотосинтетического аппарата с помощью определенных ультраструктурных и биохимических перестроек. Таким образом, способность подавляющего большинства цианобактерий к азотфиксации в аэробных условиях связана с гетероцистами.
При отсутствии в среде связанного азота некоторые вегетативные клетки (обычно 5-10%) нитчатых цианобактерий, принадлежащих к порядкам Nostocales и Stigonematales, превращаются в гетероцисты, образование которых происходит в течение 24 ч параллельно с развитием нитрогеназной активности и может быть разделено на два этапа. Прогетероцисты, формирующиеся на первом этапе, характеризуются неспособностью обеспечить защиту нитрогеназы от инактивирующего действия O2, а также тем, что процесс дифференцировки на этой стадии обратим. На втором этапе процесс дифференцировки становится необратимым. Сформированные гетероцисты не способны к делению и не могут превращаться в вегетативные клетки.
Подобные документы
Значение фотосинтеза и причины его дневных изменений. Факторы, влияющие на образование хлорофилла. Механизм фотосинтеза и световые его реакции. Поглощение двуокиси углерода фотосинтезирующими тканями. Общий фотосинтез и характер его сезонных изменений.
реферат [866,4 K], добавлен 05.06.2010Световые и темновые реакции. Фотосинтез как один из мощных процессов преобразования солнечной энергии. Локализация фотосинтетического аппарата в клетке зеленого растения. Фотосистема в тилакоидной мембране. Нециклический и циклический поток электронов.
презентация [3,3 M], добавлен 01.03.2016Фотосинтез - основа энергетики биосферы: понятие и роль. Структурная организация фотосинтетического аппарата. Пигменты хлоропластов. Световая и темновая фаза фотосинтеза. Фотодыхание и его значение. Зависимость процесса фотосинтеза от внешней среды.
реферат [4,2 M], добавлен 07.01.2011Определение, общее уравнение, основные этапы становления учения о фотосинтезе. Историческое значение работ К.А. Тимирязева. Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма. Космическая роль фотосинтеза.
реферат [10,9 M], добавлен 07.01.2011Изучение условий, необходимых для осуществления фотосинтеза. Описания распространения в растительном мире хлорофиллов и билипротенов. Анализ структурной организации и локализации светособирающих пигментов в разных группах фотосинтезирующих эубактерий.
презентация [1,2 M], добавлен 04.05.2012Фотосинтез как процесс синтеза органических веществ за счет энергии света. Специальные структуры и комплексы химических веществ растений, которые позволяют улавливать энергию солнечного света. Масштабы фотосинтеза. Роль хлоропластов в фотосинтезе.
презентация [627,3 K], добавлен 18.04.2012История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.
презентация [1,4 M], добавлен 23.10.2010Искусственный фотосинтез как новый источник энергии. Искусственный фотосинтез в суперкомпьютере. Улучшение фотосинтеза нанотехнологиями. Обеспечение сверхурожая с помощью ускорения процесса фотосинтеза. Внедрение углеродных нанотрубок в хлоропласты.
презентация [2,5 M], добавлен 11.11.2014Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.
презентация [890,0 K], добавлен 04.04.2012Фотосинтез как основной источник биологической энергии. Фотосинтез и первичная биологическая продуктивность. Образование биомассы организмами. Физиологическая роль азота, круговорот азота в атмосфере. Поглощение минеральных веществ корнями растений.
контрольная работа [613,1 K], добавлен 24.11.2010