Обобщенная концепция генома. Облигатно-факультативный принцип структуры и функции
Особенности понятий "наследственность", "генотип" и "геном". Системные свойства клетки. Подразделение генома на две подсистемы, облигатный и факультативный компоненты. Мутации и вариации как формы наследственной изменчивости. Эпигенетическая изменчивость.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 05.09.2010 |
Размер файла | 113,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Гипотеза эпигена через 20-25 лет после того, как была высказана, получила достойное завершение: Чураев и его коллеги (Tchuraev, et. al., 2000), а затем две группы исследователей в 2000 году осуществили синтез эпигенов. Альтернативные режимы их функционирования соответствуют предсказаниями теории (Чураев, 1981; Judd, Laub, McAdams, 2000).
6.3 Транспозоны и эпигены
Особенно знаменательно, что транспозоны прокариот и эукариот могут иметь эпигеноподобную организацию. В транспозоне Тп3 у бактерий ген R имеет две функции: действует как репрессор транскрипции гена, ответственного за синтез транспозазы, от которой зависит подвижность данного МГЭ, и как репрессор собственной транскрипции (Хесин, 1984). В итоге в этой системе возможен колебательный режим, который ограничивает неограниченную транспозицию.
Транспозон Тп10 у бактерий тоже можно рассматривать как однокомпонентный эпиген. Регуляторная связь здесь воплощается на уровне взаимодействия РНК -- РНК. В транспозоне есть два противоположно ориентированных промотора, перекрывающихся на участке в 36 п. н. В результате ингибируется трансляция гена, кодирующего транспозазу (Хесин Р. Б., 1984).
Эпигенный принцип регулирования характерен и для таких мобильных элементов эукариот, как Р-транспозон у дрозофилы и Spm у кукурузы (Rio, 1990; Gierl, 1990; Fedoroff, Masson, Banks, 1989). Р-транспозон у дрозофилы среди мобильных элементов эукариот является своеобразным чемпионом по подвижности. Он обладает способностью встраиваться в самые разные участки хромосом и в настоящее время является универсальным вектором, на основе которого создаются искусственные генно-инженерные конструкты и проводятся опыты по трансгенозу (Rio, 1990). В природных популяциях естественная активация Р-элементов вызывает вспышки мутаций в локусах-мишенях (Голубовский, Беляева, 1985).
Эпигенная регуляция Р-транспозона была открыта при анализе его поведения в ситуации гибридного дисгенеза. В линиях Р-цитотипа в хромосомах есть один или несколько активных Р-элементов, а в цитоплазме -- репрессор их транспозиции. В линиях М-цитотипа, куда относится абсолютное большинство лабораторных линий, в хромосомах нет активных Р-копий, а в цитоплазме нет Р-репрессора. У гибридов от скрещивания самок М-цитотипа с самцами из Р-линий (но не наоборот!) наблюдается ряд отклонений, названных гибридный дисгенез: массовая транспозиция Р-элемента, сопровождаемая вспышкой мутаций, поломками хромосом и стерильностью.
Р-транспозон является авторегуляторным однокомпонентным эпигеном. Концы транспозона обрамлены короткими обратными повторами в 31 п. н., от которых зависит способность к перемещениям, активируемая собственной транспозазой. Транспозон включает одну единицу транскрипции и один ген, но в силу альтернативного сплайсинга этот ген кодирует два разных продукта. В генеративных клетках образуется ДНК-связывающий белок -- транспозаза с молекулярным весом 87 килодальтон. Транспозаза имеет сродство к собственной промоторной области. В соматических клетках сплайсинг дефектен, образуется "усеченный" белок-в 66 кДа. Он является репрессором, и поэтому там транспозон неподвижен.
Репрессия подвижности элемента происходит на уровне транскрипции, как показали опыты с внедрением в геном дрозофилы бактериального гена-репортера, несущего Р-промотор. Однако не исключено, что негативная авторегуляция возможна и на уровне сплайсинга или кооперативных белковых взаимодействий. Репрессор накапливается в овоцитах и способен передаваться в течение ряда поколений, с чем связывают материнскую наследственность при гибридном дисгенезе (Rio, 1990).
Эпигенная организация МГЭ действует как авторегулятор, приводя к самоограничению количества "эгоистичных", способных к безудержному размножению потенциально мобильных фракций ДНК.
Транспозон Spm у кукурузы имеет сложную систему авторегуляции своей подвижности, которая зависит от уровня транскрипции гена транспозазы, входящего в состав этого элемента. Регуляторная зона Spm состоит из двух районов общей длиной около 500 п. н., расположенных один слева, а другой -- справа от старта транскрипции. Эти участки образованы повторами, которые способны метилироваться и блокировать транскрипцию. Чем больше повторов метилировано, тем ниже уровень траскрипции транспозона. Транспозаза, кодируемая Spm, способна связываться с этими участками и, таким образом, предотвращать их метилирование, выступая в роли позитивного авторегулятора. Когда образуется избыток транспозазы, она становится негативным авторегулятором за счет связывания с повтором, перекрывающим промотор (Fedoroff, et al., 1995).
6.4 Эпигенетические изменения структуры хромосом
Среди форм неканонической изменчивости Р.Б. Хесин выделил стойкое наследуемое в ряду клеточных поколений изменение локальной структуры хроматина, т. е. характера упаковки в нем ДНК, ее комплексов с белками и самих белков (Хесин, 1984). Это относится прежде всего к эукариотам, имеющим ядро, а в нем хромосомы, состоящие не из голой ДНК, а из сложным образом упакованных нуклепротеидных комплексов. Другое фундаментальное отличие эукариот от микроорганизмов -- процессы дифференцировки, основанные на устойчивом включении и выключении определенных генов в разных группах клеток. Переходы генов из активного в неактивное состояние невозможны без изменений в ядерных нуклеопротеидах, в характере укладки и спирализации комплексов ДНК -- белок.
Робин Холлидей (1989) предложил механизм осуществления эпигенетических изменений, основанный не только на взаимодействии ДНК -- белок, а на обратимой модификации ДНК. В начале 60-х годов было найдено, что ферменты рестрикции разрезают только немодифицированные последовательности оснований, а модификация цитозина -- метилцитозин уже защищает от рестрикции. Это навлекло на мысль, что 5-метилцитозин (обычный минорный компонент ДНК позвоночных, растений) мог бы служить сигналом к активации либо репрессии генов. У эукариотической ДНК сайтами метилирования обычно служат дуплетные последовательности ГЦ в одной цепи и комплементарные ЦТ в другой.
Р. Холлидей постулировал, что фермент под названием "метилаза поддержания" действует только на полуметилированные участки двойной спирали ДНК. Когда, готовясь к репликации, цепи двойной спирали ДНК расходятся, каждая сохраняет свои метальные группы, новосинтезированные цепи сразу метилируются особым ферментом "метилазой поддержания" в тех местах, где в исходной цепи есть метальные группы. Когда с помощью генной инженерии были получены неметилированные и метилированные варианты генов и введены в культивируемые клетки млекопитающих, наблюдалась экспрессия только первых. Это говорит о том, что характер метилирования не только регулирует активность, но и наследуется в ряду клеточных поколений. Модификация метилирование -- деметилирование обратима. Этот механизм эпигенетической регуляции был предложен для объяснения феномена импринтинга хромосом, обнаруженного у млекопитающих в 80-е годы. Имеется определенный "эпигенетический код", в отношении которого одна и та же хромосома, пришедшая от мужского либо женского пола, не идентична. Пол накладывает свой отпечаток, импринтирует характер генной активности генного набора (Холлидей, 1989; Сапиенца, 1990; Баранов, 1988). Под хромосомным импринтингом понимают различные структурно-молекулярные изменения, происходящие во время оогенеза и сперматогенеза и приводящие к различиям в экспрессии гомологичных генов в зависимости от того, передаются ли они с материнскими или отцовскими хромосомами. Таким образом, хромосомы в соматических и половых клетках имеют наследуемые различия в экспрессии ряда генов, определяемые полом. Этот отпечаток "стирается" лишь во время мейоза. Формирование отпечатка достигается затем в зародышевом пути обратимым метилированием ДНК.
Пока не ясно, является ли метилирование ДНК универсальным механизмом. Это явление не обнаружено ни у нематод, ни у дрозофил, зато найдено у растений. Метилирование регулирует активность транспозонов кукурузы. Важно, что в целом явление эпигенетической хромосомной памяти универсально. Число фактов, показывающих его действие, увеличивается. И возможно, что из положения курьеза геномный импринтинг перейдет в ранг существенного механизма в работе генетического аппарата. Именно это случилось с нестабильностью генов и с мобильными элементами. Многое зависит от осмысленного целенаправленного поиска.
Ситуацию к началу 90-х годов прекрасно выражают слова Кармен Сапиенцы (1990): "Геномный импринтинг принято считать генетическим курьезом, затрагивающим лишь очень немногие признаки. Меня неоднократно спрашивали, почему я попросту трачу свое время (и, как подразумевалось, время вопрошающего) на столь незначительное явление. Всякий раз я отвечаю, что число признаков, подверженных влиянию геномного импринтинга, не известно, но, вероятно, очень велико. Обычно такой ответ вызывает удивленно скептический взгляд и коротенькую лекцию о законах Менделя, завершающуюся безапелляционным утверждением, что к большинству признаков геномный импринтинг не имеет никакого отношения. До какой-то степени эти критики правы. Если бы для большинства признаков существовала четкая зависимость их проявления от родителя, от которого унаследован соответствующий ген, генетики, несомненно, заметили бы это. Однако далеко не все признаки изучены одинаково подробно".
И далее К. Сапиенца разъясняет, в чем дело. При анализе менделевских закономерностей, в частности расщепления, обычно фиксируется ситуация: есть -- нет признак, а если признак количественный, то граница "есть -- нет" устанавливается по принятому порогу. "Но если выявить, какова экспрессия этих признаков, то обнаруживается, влияние геномного импринтинга" (выдел. мною -- М. Г.)
Именно таков был подход П. Г. Светлова в его замечательной серии работ по наследованию характера изменений в экспрессивности гена после воздействия в критические периоды развития (Светлов, 1965, 1966). Эффект импринтинга им был четко установлен в работе, само название которой характерно: "Зависимость фенотипа микрофтальмической мутации мышей от внешних воздействий на женские гаметы двух предшествующих поколений" (Светлов, 1966). К великому сожалению, работы П.Г. Светлова не были продолжены, хотя они отличаются удивительной методической простотой и ясностью. Объяснение, видимо в том, что в то время эти работы казались периферийным курьезом. Лишь 1984 в сводке Р. Б. Хесина исследования П. Г. Светлова должным образом оценены (с. 217).
Термин "геномный импринтинг" описывает явления, когда немутационное изменение хромосомы предетерминирует ее поведение в ходе развития в зависимости от пола ("parent of origin effect"). В "Генетическом словаре" (King, Stansfield, 1997) parental imprinting или родительский импринтинг определяется как любое явление, при котором степень экспрессии гена у данной особи зависит от родителя, передающего данный ген. Зависимые от родителя эпигенетические изменения или импринты обычно "стираются", перепрограммируются, проходя мейоз (см. подробнее в гл. 7). Иными словами, импринтинг явление онтогенетическое. Могут ли импринты, однако, не стираться и передаваться через мейоз?
Первые факты такого рода были получены Бринком при исследовании парамутаций у кукурузы и Б. МакКлинток при изучении наследуемого изменения экспрессии мутаций, опосредованных транспозоном SpM (McClintock, 1965). В середине 90-х годов были получены, наконец, первые четкие молекулярно-генетические данные о прохождении эпигенетических изменений (импринтов) через мейоз у таких организмов как дрозофила и дрожжи. Выяснилось молекулярно-генетическое сходство таких явлений как мозаичный эффект положения и обычная онтогенетическая регуляция гомеозисных генов.
Вначале следует совсем кратко сказать о приоткрытой в 80-е годы молекулярной завесе над установленным в 30-е годы загадочным явлении мозаичного эффекта положения и его связи с конститутивным (облигатным) гетерохроматином. В 1966 было сделано различие между конститутивным или постоянно присутствующим в клетках гетерохроматином и факультативным, относящимся к определенным стадиям развития или типам клеток. Облигатный гетерохроматин составляют в основном прицентромерные блоки ДНК, образованные из тысячекратно повторенных фракций сателлитной ДНК. Облигатный гетерохроматин не транскрибируется, запаздывает в своей репликации (а в поли-тенных хромосомах слюнных желез двукрылых и вовсе недореплицируется) и выглядит в интерфазном ядре в виде максимально конденсированных, интенсивно окрашивающихся блоков.
Молекулярно-генетически было показано, что с облигатным гетерохроматином облигатно же связывается контролируемый геном Su(var)205 белок НР1, который и вызывает конденсацию (сиирализацию) повторенных блоков. Эффект положения возникает, когда какие-либо активные локусы вследствии перестройки оказываются по соседству с гетерохроматином. Эти локусы в ряде клеточных клонов вовлекаются в гетерохроматиновую спирализацию и инактивируются. Данный процесс статистический. Поэтому репрессия активности локусов в той или иной ткани носит мозаичный характер. Если белок-репрессор подавляет активность в какой-либо клетке, то это состояние способно поддерживаться в ряду клеточных поколений.
Основной структурный белок гетерохроматина НР1 состоит из 167 аминокислотой высококонсервативен, его аналоги обнаружили у мыши и человека. Другой структурный белок гетерохроматина кодируется геном Su(var)3-7, имеющим размер в 1169 н. п. и так называемый "домен цинковых пальцев" для присоединения к ДНК. Два белка действуют совместно, но не одни, а в составе мультипротеинового ансамбля. Об этом свидетельствует множество мутаций в разных локусах, которые либо супрессируют, либо активируют эффект положения разных генов. Причем, множество этих мутаций доминантно, они активны уже в гетерозиготах, (транс-эффект), что легко можно понять, ибо один белок-мутант способен повлиять на работу всего ансамбля, частью которого он является.
Молекулярно-генетические исследования по регуляции действия гомеозисных генов выявили принципиальное сходство этой регуляции с эффектом положения. Два основных сгустка или кластера генов Antp и Вx-С определяют становление сегментной организации тела у взрослых дрозофил. В каждом громадном по протяженности кластере (см. раздел 3.6) есть всего три структурных гена, занимающих лишь 5-7% его длины, но зато большое число так называемых Response Elements (Реактивные Элементы). Эти элементы имеют длину 400-500 п. н., присоединяют к себе особые ДНК-связывающие белки и становятся либо репрессорами либо активаторами транскрипции данного гомео-зисного гена. Система работает по типу коммутатора, включая данный ген в данном сегменте в данный период развития. Гены группы Poly-comb (Pc-G) кодируют ДНК-связывающие белки репрессоры транскрипции гомеозисных генов, а гены группы Trithorax (Trx-G) кодируют ДНК-связанные белки активаторы транскрипции. В геноме дрозофилы по нескольку десятков генов групп Pc-G и Trx-G, разбросанных по разным хромосомам. Гены каждой группы действуют в составе белковых ансамблей (мультипротеиновых комплексов), которые имеют сродство к соответствующим реактивным RE-элементам. Нередко места посадки активаторов и репрессоров соседствуют или перекрываются, так что возникает своего рода динамическая конкуренция за сайты посадки.
Оказалось, что подавляющее большинство найденных гомеозисных мутаций на самом деле относятся к мутациям либо происходящим в области посадки, либо затрагивающие гены ДНК-связывающих белков, которые относят к факторам транскрипции (негативных или позитивных регуляторов транскрипции). Если при мутациях репрессия не срабатывает, то "неуместная" (не в том месте или эктопическая) активация гена приводит к появлению структуры, характерной совсем для другого сегмента. Так, комбинацией двух гомеозисных мутаций Эдвард Льюис получил знаменитых дрозофил с четырьмя крыльями.
Столь же замечательная трансформация получена в лаборатории Вальтера Геринга в Швейцарии: появление дополнительных глаз на месте ног, крыльев, или антенн. Основной каскадно запускающий развитие глаз ген eyeless с помощью транспозона вставлялся в разные участки генома и становился активным там, где в норме он должен был быть репрессированным (см. детали Haider, et al., 1995, Корочкин, 1999).
Процесс гомеозисной и, как становится очевидно, любой другой генной регуляции включает два основных события.
1. Установление (Establishment), когда при конкурирующем взаимодействии ансамблей белков активаторов и репрессоров в данном локусе устанавливается определенный уровень активности.
2. Поддержание (Maintenance) этого уровня, коль скоро он установился, в клонах дочерних клеток.
Возможны разные варианты этих двух структурно-динамических ген-регулирующих событий, определяющих активность гена. Например, транскрипция гена устанавливается на высоком уровне, но поддержание нестабильно. Это ведет к мозаичности проявления. Или уровень транскрипции может быть слабый, но зато он стабильно поддерживается.
Феноменологическое сходство явлений мозаичного эффекта положения, зависимого от гетерохроматина и обычной онтогенез-регулируемой негативной регуляции генной активности, получило подтверждение на молекулярном уровне. В обоих случаях обнаружены определенные белки, вызывающие компактизацию либо больших областей либо локальных доменов хромосом (Hennig, 1999). Более того, оказалось, что репрессорные белки группы Polycomb и основной структурный белок гетерохроматина дрозофилы НР1 имеют сходный участок в 50 н. п., названный хромодомен. Этот же домен обнаружен и в белках, вызывающих глушение (или сайленсинг -- silencing) генов у дрожжей (Klar, 1998).
Термин silencing впервые появился в общегенетическом контексте в 1975 году (Sager, Kitchin, 1975).Он закрепился в дрожжевой генетике в начале 90-х годов, когда были установлены специальные локусы, вызывающие селективное глушение генов, которые определяют тип спаривания дрожжей. Далее селективное глушение генов было обнаружено в опытах по трансгенозу у растений. Наконец, термин оказался удобным и для обозначения селективной репрессии (глушения) гомеозисных генов в ходе онтогенеза у дрозофилы. Теперь становится очевидно, что сайленсинг у дрожжей и растений -- это часть более общей классической проблемы эффекта положения и гетерохроматизации (Hennig, 1999).
Поскольку этот термин еще не вошел даже в новейший генетический словарь (King, Stansfield, 1997, с. 669) то приведем его определение, сделанное редакторами тома работ по эпигенетической регуляции (Epigenetic mechanisms of gene regulation, 1996): Gene silencing или сайленсинг -- это "инактивация экспрессии гена, которая вызвана не мутацией, а скорее эпигенетической модификацией, например, метилированием или изменением хромосомной структуры. Инактивированное состояние в большинстве случаев наследуется, но оно обратимо при некоторых воздействиях, например, при обработке ингибиторами метилирования ДНК".
Особо принципиальное значение имеют впервые полученные на дрозофиле данные по наследованию через мейоз наследуемых эпигенетических вариаций или эпимутаций. Для этого использовались искусственные генно-инженерные конструкты с геном-репортером white (степень окраски глаз дает "видимый репортаж", сведения о степени активности генов, включенных в данный конструкт). Такие конструкты обрамляют по краям повторами из Р-транспозона, в результате чего они получают удивительную способность при простой инъекции ДНК-конструкта на ранних стадиях развития встраиваться в разные локусы.
Репрессорный PRE-элемент Fab-7 из гомеозисного комплекса ВХ-С одновременно поставили в соседство с выделенным из дрожжей активатором транскрипции GAL4. Иными словами ген white находился в динамической системе, где один ДНК-связывающий белок его активирует, а другой подавляет. Дрозофильный репрессор Fab-7 обычно действует сильнее дрожжевого промотора, и поэтому окраска глаз у большинства трансгенов была слабо-желтая вместо красной в норме. При действии теплового шока на ранние стадии развития у части потомства глаза становились красными, ген white активировался. И это состояние в 25-30% случаев устойчиво передавалось потомству уже без всякого воздействия! При этом наследование наблюдалось лишь по материнской линии, что и следовало ожидать. Именно такого рода события предсказывались в случае эпимутаций и явлений динамической наследственности (Светлов, 1965; Чураев, 1975; Голубовский, Чураев, 1997; Голубовский, 1997).
Сходные явления обнаружил в серии своих исследований американский генетик Амар Клар при изучении регуляции и переключения генов типа спаривания у дрожжей. В прицентромерной области дрожжевой хромосомы был найден кластер генов-репрессоров транскрипции (сайленсеры). Причем, любые гены, попадающие в соседство с ними, становились неактивными. В составе белков таких генов-глушителей были обнаружены хромодомены, найденные до того у белков, входящих в состав облигатного гетерохроматина дрозофилы и вызывающих эффект положения. Очевиден вывод, что глушение (сайленсинг) генов у разных организмов возникает путем образования гетерохроматин-подобных локальных доменов, где глушится активность любого гена.
Выводы, к которым пришел А. Клар из своих работ по генам сайленсинга у дрожжей и генов типа Polycomb у дрозофилы весьма напоминают аналогичные выводы Сапиенцы из его работ 80-х годов по импринтингу (см. выше): "Эпигенетическое наследование через зародышевый путь -- не такая уж редкость... На мой взгляд, используя выбранную модельную систему, мы обнаружили лишь верхушку айсберга. Такие мейотически наследуемые эпигенетические состояния вероятно превалируют и важны для развития, видообразования и для поддержания целостности генома... Мы можем ожидать, что коль скоро наследование через мейоз эпигенетических состояний станет частью нашего мышления (a part of our mindset), то выплывут на поверхность и другие необъяснимые и необычные случаи из генетики" (Klar A., 1998). Иными словами, важна "установка" (mindset), и случаи эпигенетического наследования станут регулярно обнаруживаться. Это, в частности, продемонстрировано при целевом квалифицированном генетическом анализе у растений (Малецкий, Колодяжная, 1999).
7. Сопоставление трех форм изменчивости: мутационной, вариационной и эпигенетической
В табл. 4 сопоставлены особенности трех форм наследственной изменчивости эукариот: мутационной, вариационной и эпигенетической. Первые две связаны с изменением структурных компонентов генотипа, однако, между ними есть различия в способах хранения и передачи наследственной информации. Для вариационной изменчивости важным в смысле кодирования может быть определенная доля той или иной фракции ФК по отношению к ОК. Так оказалось, что доля МГЭ в геноме дрозофил есть величина относительно постоянная: состав МГЭ может сильно варьировать от линии к линии, но важно, чтобы общая доля МГЭ оставалась неизменной (Ананьев, 1984). За этим стоит принцип "единство целого при свободе частей" (Любищев, 1982). Он проявляется не только на морфологическом, но и на молекулярном уровне.
Выделение трех типов организации генетической памяти и трех типов изменчивости (мутационная, вариационная и эпигенетическая) интересно сопоставить с некоторыми общими принципами эволюционирующих систем и биологической памяти. Сформулирован принцип, что любая эволюционирующая система, которая находится во взаимодействии со средой, вычленяет из себя подсистемы с постоянной и оперативной памятью. Таковы пары ДНК -- белок, ядро -- цитоплазма, половые клетки -- сома, женский пол -- мужской. Здесь первый компонент выполняет эволюционную задачу сохранения, а второй -- изменения. Обеспечивая информативный контакт со средой, элементы оперативной памяти должны обладать большей дисперсией свойств по сравнению с элементами постоянной памяти (Геодакян, 1972).
Подразделение структуры генома эукариот на две подсистемы ОК и ФК прекрасно соответствует данному принципу. Ему следует даже внутреннее строение генов эукариот: экзоны выступают как бы в роли облигатного компонента, а игароны -- факультативного. Факультативность пронизывает не только все стороны организации, но и вообще весь ход матричных и генетических процессов, о чем будет идти речь далее. Белки тоже организованы по принципу подразделения на константные и факультативные части, что в наиболее яркой форме проявляется в организации иммуноглобулинов, обеспечивающих адекватный иммунный ответ ко всем непредвиденным и незапрограммированным антигенам (Хесин, 1984).
В организации деления генов на экзоны и интроны, а белков на блоки или домены можно видеть проявление принципа блочности или иерархичности, что характерно для целесообразного поведения. В ответ на вызов среды происходит не случайный перебор элементов (точковых мутаций), а комбинация "осмысленных" блоков. В структуре генома такая комбинация осуществляется за счет мобильных элементов и обменов в местах гомологичных повторов. Наблюдается удивительная параллель между эволюцией генетических и физиологических систем.
Эволюционно-физиологическая концепция А. М. Уголева представляет организацию сложных физиологических функций "как некоторую систему различных комбинаций элементарных функций, реализуемых универсальными функциональными блоками, число которых ограничено... В ходе эволюции хотя и имели место изменения функциональных блоков, ее основной, наиболее быстрый, важный и эффективный путь состоял в рекомбинации этих блоков и поисках их новых оптимальных комбинаций" (Уголев, 1994).
Важнейший принцип биологической памяти -- существование альтернативных программ поведения и ассоциативность, когда каждая программа связана или ассоциирована с некоторыми условиями запуска (Верховский, 1984). Так организована память мозга и эти же принципы действуют и в организации и функционировании генома. Сформулировано интересное представление о "фенотипическом окне генома" (термин А. С. Серебровского), как системе взаимодействия генов или генетических программ, которые открываются в ответ на определенные сигналы среды (Лабас, Хлебович, 1976). Возникновение и запоминание альтернативных программ может быть основано на эпигенной организации ключевых генетических локусов, на их способности к смене состояния в ответ на сигнал со стороны внешней или внутренней среды (Пташне М., 1988).
Thaler (1994) кратко суммировал возможные молекулярно-генетические механизмы, способные привести к неслучайной или определенной наследственной изменчивости. Генные системы, которые контролируют метаболизм самой ДНК (ее репарацию, транскрипцию, репликацию и т. д.), весьма чувствительны к физиологическому состоянию клетки или организма, особенно к действию агентов, ограничивающих размножение или деление клеток. Среда, изменяя физиологическое состояние организма или клетки, способна влиять на работу генов метаболизма ДНК и, опосредованно, на скорость и спектр наследственных изменений.
В эволюции могут создаваться ассоциативные генетические прямые и обратные связи, когда в ответ на определенное стрессовое средовое воздействие организм или клетка с повышенной частотой генерирует адаптивные изменения. Типичным примером является запуск многих генов SOS-репарации бактерий в ответ на однонитевые повреждения ДНК и переход фага из лизогенное в литическое состояние при запуске этих же генов. Другие подобные примеры: индукция мейоза у дрожжей при голодании, или эпигенетические "предраковые" изменения клеток, предрасполагающие их к повышенному мутагенезу при действии канцерогенных факторов-цитостатиков (Cuthill, 1994). Такого рода ситуации Thaler (1994) условно определил как "genetic intelligence" или "генетический интеллект".
Проблема поведения и его регуляции может быть с успехом рассмотрена уже на клеточном уровне (В. Я. Александров, 1970). При более далеких аналогиях можно видеть в организации клеточной наследственной памяти зачатки целесообразного поведения, которые обозначаются применительно к поведению человека как эрудиция и ум. Клеточная "эрудиция" -- хранение большого набора программ, клеточный "ум" -- способность в соответствующих условиях включать соответствующую программу" (Верховский, 1984).
Существенно важно, что вариационные и эпигенетические изменения могут быть вызваны относительно слабыми, не мутагенными факторами. Сюда относятся, например, онтогенетическая адаптация и внутриклеточная регуляция. В то же время здесь возможны массовые определенные наследственные изменения, которые могут наследоваться неменделевским способом.
Таблица 4. Разные типы организации наследственной памяти
Критерий оценки изменчивости |
Мутационная |
Вариационная |
Эпигенетическая |
|
Организация памяти: |
||||
кодирование |
Четырехбуквенный код, число и топография генетических единиц |
Соотношение ФК:ОК, число и топография фракций ФК |
Регуляторные взаимодействия макромолекул |
|
хранение |
Структура ДНК |
Структура ДНК |
Циклические связи генов |
|
передача |
Конвариантная редупликация |
Конвариантная редупликация |
Распределение регуляторных молекул между дочерними клетками |
|
Основные факторы, приводящие к появлению изменения |
Ошибки процессов (1) матричных (репликация, транскрипция и трансляция) и (2) генетических (репарация, рекомбинация, сегрегация) |
Ошибки (1) и (2). Внутриклеточная регуляция, онтогенетическая адаптация, биоценотические связи |
Внутриклеточная регуляция, характер распределения регуляторных макромолекул между дочерними клетками |
|
Характер появления новых изменений |
Случайный, у отдельных особей, обычная частота 1:105, при действии ФК -- до 20-40% |
Случайный и массовый, упорядоченный |
Случайный и массовый, определенный |
|
Характер наследования в ряду поколений |
Менделевский |
Менделевский и неменделевский (цитоплазматический или по типу длительных модификаций) |
Неменделевский, возможность "поглощения" признаков у гибридов |
Подобные документы
Амплификация как важный механизм увеличения объема генома. Роль горизонтального переноса генетического материала в эволюции генома. Значение сохранения дозового баланса генов в генотипе для формирования фенотипа. Взаимодействия между генами в генотипе.
реферат [18,7 K], добавлен 24.02.2010Генетическая терминология, организация генома вирусов, понятие о лизогенном и литическом цикле. Особенности генома и жизненного цикла ретровирусов, геном бактерий. Современные представления о геноме человека: теоретические и практические аспекты.
презентация [125,3 K], добавлен 04.04.2011Модификационная изменчивость - процесс взаимосвязи организма со средой; популяции и чистые линии; фенотип и генотип. Мутационная изменчивость: типы, классификация. Закон гомологических рядов в наследственной изменчивости, использование в селекции.
курсовая работа [53,6 K], добавлен 09.06.2011Особенности эволюции человека как биологического и социального существа, а также понятие "генотип" и "фенотип". Классификация мутации, основанной на размерах сегментов генома. Комплементация функционального дефекта в клетках больных анемией Фанкони.
курсовая работа [48,2 K], добавлен 15.08.2014Предпосылки эволюции: изменчивость и наследственность. Формы изменчивости, основные понятия и термины. Наследственные изменения - мутации. Эволюционная характеристика мутаций. Генетические различия между близкими группами. Корреляции.
курсовая работа [280,9 K], добавлен 09.11.2006Наследственность и изменчивость - фундаментальные свойства организмов - осуществляются генами. Гены хранят и передают информацию об организме последующим поколениям. Структура, классификация, функции генов. Современные представления о генотипе.
реферат [174,6 K], добавлен 14.04.2008Генетика как наука, изучающая явления наследственности и изменчивости в человеческих популяциях, особенности наследования нормальных и патологических признаков, зависимость заболеваний от наследственной предрасположенности и факторов внешней среды.
презентация [4,0 M], добавлен 21.02.2014Механизм эволюции прокариотического и эукариотического геномов. Свойства, отбор и динамика рисунка локализации мобильных генетических элементов. Роль мобильных генетических элементов и горизонтального переноса генетического материала в эволюции генома.
курсовая работа [84,5 K], добавлен 30.09.2009Изменчивость (биологическая)- разнообразие признаков и свойств у особей и групп особей любой степени родства, ее формы. Генетическая рекомбинация и трансформация. Изменчивость фагов и микроорганизмов. Практическое применение изменчивости микроорганизмов.
реферат [20,6 K], добавлен 26.12.2013Генотип и среда как факторы межиндивидуальной изменчивости кожно-гальванической реакции человека, характер и особенности их влияния. Генетические исследования деятельности сердечнососудистой системы, этапы и принципы их проведения, анализ результатов.
контрольная работа [25,0 K], добавлен 12.02.2016