Наследственные болезни человека

Генные мутации у человека как причина наследственных патологий. Понятие ферментопатий, мутации структурных и функциональных генов. Болезни с наследственным предрасположением. Наследование ограниченное и контролируемое. Структурные изменения хромосом.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 01.11.2009
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3. Третьим механизмом является полиплоидизация. При этом в каждой клетке геном целиком представлен более чем дважды. У человека обнаружена только триплоидия, при которой число хромосом равно 3n = 69.

Аномальное число хромосом в клетке (анеуплоидия) увеличивает риск последующих нарушений, таких, как потеря хромосом вследствие анафазного отставания впоследующих клеточных делениях. Для многих случаев мозаицизма с двумя клеточными популяциями, состоящими из равных пропорций трисомных и эуплоидных клеток, такое объяснение представляется наиболее удовлетворительным. Хромосома, лишенная партнера, в таких случаях, по-видимому, мешает нормальной конъюгации двух других гомологов.

Синдром Дауна. Это наиболее частое хромосомное заболевание человека, его частота новорожденных 1-2/1000, и именно этот синдром является наиболее распространенной причиной обращения в медико-генетические консультации. Рис.1 показывает, что физические различия между тремя основными расовыми группами существенно перекрываются фенотипическим сходством всех больных. На рис.2 приведены наиболее частые клинические симптомы. Наиболее важными характеристиками синдрома являются следующие:

а) это четко очерченное состояние. Несмотря на значительную изменчивость отдельных признаков, у опытного клинициста диагноз редко вызывает сомнение;

б) частота синдрома увеличивается с возрастом матери;

в) в большинстве случаев в семье регистрируется только один больной; в очень небольшом числе семей наблюдаются повторные случаи;

г) монозиготные (МЗ) близнецы обычно конкордантны, в то время как большинство дизиготных близнецов дискордантны. Из этого правила, однако, есть исключения - иногда встречаются дискордантные пары МЗ. Это связано, вероятно, с утерей лишней хромосомы той клеткой, из которой сформировался нормальный партнер;

д) мужчины с синдромом Дауна бесплодны, однако описано по крайней мере 17 женщин с этим синдромом, у которых были дети. Среди 19 таких детей (включая одну пару МЗ близнецов) у 7 имеется синдром Дауна, 9-нормальные, 2 - умственно отсталые без синдрома Дауна и 2 - мертворожденных МЗ близнеца - с нормальными кариотипами, которые учитывались как один индивид. Все матери и пораженные дети, у которых было проведено исследование хромосом, имели кариотип 47,G +, один из умственно отсталых детей без синдрома Дауна имел нормальный кариотип - 46, XY;

е) продолжительность жизни больных сокращена. Согласно австралийским данным, опубликованным еще в 1963г., 31,1% больных умирают в конце первого года жизни, 46% - в конце третьего года. Продолжительность жизни укорочена и в поздних периодах жизни. В другой выборке 37 из 73 больных умерли от респираторных заболеваний (туберкулез не учитывался), что в 123 раза выше частоты смертельных случаев по тем же причинам в общей популяции того же возраста.5 больных умерли от других инфекций. Эти данные дают основания предполагать наличие при болезни Дауна дефекта иммунной системы. Увеличена также частота врожденных пороков сердца. С появлением антибиотиков и развитием сердечной хирургии эти больные живут намного дольше. Однако вряд ли крайние значения продолжительности жизни будут слишком большими, поскольку предполагается, что больные с синдромом Дауна стареют быстрее, чем нормальные люди;

ж) степень выраженности отдельных фенотипических характеристик синдрома изменчива. Например, врожденный порок сердца отмечается у некоторых, но не у всех больных, и это верно для многих других клинических признаков, описанных выше и перечисленных на рис.2. Такая высокая изменчивость фенотипических проявлений характерна для всех хромосомных синдромов человека;

з) в 20 раз повышен риск смерти от острого лейкоза. Причины этого неизвестны. Существует три гипотезы: высокий риск анеуплоидии, связанный с митотическими нарушениями в стволовых клетках крови, сниженная резистентность к инфекции лейкозогенными вирусами и, как показывают экспериментальные данные, низкая эффективность системы репарации.

Другие аутосомные трисомии. Патау и сотр. (1960) впервые описали случай аутосомной трисомии, отличный от трисомии 21. Это открытие было результатом целенаправленного поиска на основе гипотезы, которая была сформулирована авторами следующим образом:

"С генетической точки зрения маловероятно, что добавление к нормальному набору какой-то аутосомы будет иметь такой же ограниченный эффект, как Х-трисомии. В настоящее время известен только один тип аутосомной трисомии, и, хотя лишняя хромосома являеться одной из двух самых маленьких аутосом, ее наличие в триплицированном состоянии приводит к монголизму… Следует ожидать, что другие аутосомные трисомии, если они совместимы с жизнью должны также приводить к врожденным порокам".

Благодаря систематическому обследованию новорожденных с множественными пороками развития Патау с сотр. удалось выявить три случая трисомии: двух больных с трисомией по 18-й хромосоме и одного - с трисомией по одной из D-хромосом. Одновременно Эдвардс и сотр. также обнаружили новорожденного с трисомией 18 (первоначально ошибочно идентифицированную как трисомия17). Трисомия D позже была идентифицирована как трисомия 13. Основные признаки и симптомы заболеваний, связанных с этими хромосомными аномалиями, представлены

на рис.3 и 4. В последующие годы все попытки открыть новые синдромы аутосомных трисомий среди новорожденных оказались безуспешными, на основании чего был сделан вывод о том, что онилетальны. Этот вывод был подтвержден исследованиями хромосом при спонтанных абортах; в клетках таких эмбрионов обнаруживались и другие варианты трисомии. Открытие трех новых синдромов - трисомии 8,9 и 22-последовало после разработки методов дифференциального окрашивания. Как и следовало ожидать, и эти, по-видимому, весьма редкие хромосомные аномалии вызывают тяжелые и комплексные пороки развития.

Триплоидия. Первые примеры триплоидии обнаружены у двух абортированных плодов. Приблизительно в это же время описан сомнительный случай мозаицизма. Более поздние исследования показали, что триплоидия у спонтанных абортусов не так уже редка, а в очень небольшом числе случаев наблюдается даже у живорожденных детей. К 1974 г. на оснований изучения 275 триплоидных абортусов, полученных при сроках беременности менее чем 20 недель, была накоплена более или менее детальная ин формация. Двадцать два из исследованных плодов достигли возраста 28 недель; пять других погибли in utero; остальные прожили несколько часов или дней после рождения. Все живорожденные дети, прожившие дольше нескольких дней (к 1974 г. их было 8) оказались триплоид-диплоидными мозаиками.

Наиболее характерным признаком триплоидии является пузырное перерож - дение плаценты (mole hydatidiforme). У некоторых эмбрионов обнаруживаются локальные пороки развития, но часть плодов имеет как будто бы нормальный фенотип.

Триплоиды, родившиеся живыми, имеют небольшой вес, широкий задний родничок с недоразвитыми затылочными и теменными костями черепа и другие неспецифические аномалии, которые характерны для многих аутосомных аберраций. Триплоиды мужского пола с кариотипом 69, XXY характеризуются нарушением гениталий: у них маленький половой член в сочетании с гипоспадией, расщепленной мошонкой и неопустившимися яичками. Некоторые из мозаиков выживают. Клинические признаки не очень четкие, предварительный диагноз можно поставить на основании умственной отсталости в сочетании с аномалиями плаценты, синдактилией, аномалиями гениталий и асимметрией.

Триплоидия возникает вследствие ошибок при образовании половых клеток. Различия в причинах появления триплоидов определяют среди них соотношения индивидов с генотипами XXX, XXY и XYY. Существуют факты, свидетельствующие о том, что причиной триплоидии может быть двойное оплодотворение или отсутствие первого мейотического деления ооцита.

Мозаики. Мозаиками называют особей, в организме которых сосущуствуют две или болеегенетически различныхклеточных популяции. Мозаицизм обнаруживается довольно часто при численных аномалиях как половых хромосом, так и аутосом. Хромосомных мозаиков иногда называют миксоплоидами. Мозаик может возникнуть в следствие митотического нерасхождения или в результате утери хромосомы вследствие анафазного отставания (рис.5). Оценки частоты таких нарушений митоза получены в случае синдрома Дауна. Риск анафазного отставания в 400 раз выше в трисомной зиготе, чем в эуплоидной, а митотического нерасхождения в 70 раз. Эти оценки основаны на сопоставлении относительных частот различных типов мозаицизма и на анализе эффекта возраста матери. Частота мозаиков, возникающих вследствие мейотического нерасхождения с последующей утратой дополнительной хромосомы в анафазе теоретически должна увеличиваться с возрастом матери, так же, как и при обычных гаметических трисомиях. В то же время частота мозаиков, возникших в результате нерасхождения хромосом в митозе не должна зависеть от возраста матери. Следовательно, долю мозаиков, возникших вследствие анафазного отставания, можно оценить при сравнении эффекта возраста матери на частоту мозаицизма и гаметических трисомий. Однако точную оценку получить трудно, поскольку некоторые мозаики не диагностируются: при ограниченном числе клеток используемых для кариотипирования, аберрантные можно пропустить, т.к их очень мало. Кроме того, мозаики с небольшим количеством аберрантных клеток характеризуются соответственно и невыраженными фенотипическими отклонениями (если таковые вообще есть). Такие мозаики обнаруживаются случайно, главным образом когда трисомные клетки имеются в их терминативной ткани и в потомстве встречаются трисомики. К настоящему времени среди описанных в литературе случаев мозаицизма приходится 17-30% на митотическое нерасхождение. Как и ожидалось, возраст матери был особенно низким в тех случаях, где доля трисомных клеток (в расчете на все исследованные) составляла менее одной трети. Суммарная частота мозаиков среди всех с клиническими симптомами болезни Дауна составляет приблизительно 2%.

2.2 Структурные изменения хромосом

Частота транслокационного синдрома Дауна. Транслокация при синдроме Дауна объясняет много семейных случаев, но не все. Стандартная трисомия 21может повторно возникать в одной и той же семье, указывая на наличие у родителей каких-то конституциональных факторов, предрасполагающих к нерасхождению, или мозаицизму. В табл.3 приведены данные о частоте транслокационных случаев (наследуемых и спорадических) среди больных с синдромом Дауна для двух групп матерей: молодых и пожилых. Большинство случаев характеризуется описанными выше транслокациями D/G и G/G.

Пробелы и разрывы. Необходимым условием возникновения структурной хромосомной перестройки любого типа является наличие в хромосоме разрыва. Если исходить из того, что ДНК представляет собой единую длинную нить, проходящую через всю хромосому, хромосомный разрыв предполагает и разрыв сахаро-фосфатного остова ДНК. В световом микроскопе бывает трудно отличить хромосомный разрыв от ахроматической (неокрашенной) области, называемой пробелом. Эти пробелы могут отражать как истинные разрывы, так и участки локальной деспирализации. Хромосомные разрывы часто учитывают при оценке мутационного процесса, поэтому необходимо прийти к соглашению относительно того какие аберрации учитывать как разрывы, а какие - как пробелы. Схема, положенная в основу одного из таких соглашений, представлена на Рис.6. Указанные в ней отличительные признаки достаточно строгие и, вероятно, занижают количество разрывов. Разрывы и пробелы могут возникать во время интерфазы как до, так и после репликации ДНК. Если разрыв происходит до репликации, повреждение будет видно в последующей метафазе в обеих хроматидах (изохроматидный разрыв). Если событие произойдет после фазы репликации, поврежденной окажется только одна хроматида (хроматидный разрыв).

Внутрихромосомные перестройки (внутренние обмены). В пределах одной хромосомы могут произойти разрывы в двух разных участках, и фрагмент между точками разрыва, перевернувшись, может вновь соединиться с хромосомой. Такая перестройка (инверсия) не приводит к нарушениям в митозе, особенно если разрыв произошел в фазе G1. Она может быть обнаружена методами дифференциального окрашивания. В тех случаях, когда инверсия не затрагивает центромеру, она называется парацентрической, если же точки разрыва находятся по обе стороны от центромеры, такую инверсию называют перицентрической. Гетерозиготы по инверсиям не очень редки в популяциях человека. Инверсии могут создавать затруднения в конъюгации гомологичных хромосом в мейозе и приводить к частичной элиминации некоторых типов половых клеток у гетерозигот по инверсиям (рис.7). У гомозигот таких затруднений нет. Инверсии (особенно перицентрические), несомненно, играли важную роль в филогении высших приматов.

Другой тип внутренних обменов представляют кольцевые хромосомы (рис.8). Перестройка этого типа возникает при утрате обоих теломерных участков хромосомы (как ацентрических фрагментов) и последующем воссоединении открытых концов. Судьба кольцевой хромосомы в митозе зависит от того, как завершилось воссоединение концов сестринских хроматид. Если во время репликации ДНК обмен между сестринскими нитями в точках разрыва не происходит, то кольцо, удваиваясь, образует два отдельных кольца, каждое со своей центромерой. Такие кольцевые хромосомы проходят через митоз без затруднений. Один обмен между сестринскими нитями ведет к образованию большого кольца с двумя центромерами. Дицентрическая структура обычно разрушается в наступающем митозе. Два обмена могут привести к образованию двух колец, "сцепленных" друг с другом подобно звеньям цепи. Детали различных вариантов представлены на рис.8. Иногда хроматидные разрывы и образование колец происходят в фазе G2, и тогда в отдельной клетке наблюдается картина, показанная на рис.9

Межхромосомные перестройки (внешние обмены). Во многих случаях воссоединение открытых концов затрагивает разные хромосомы как гомологичные, так и негомологичные. Если разрыв происходит в фазе G1, то воссоединение обычно завершается в той же фазе G1 (или ранней S) перед репликацией ДНК. Если каждая из перестроенных хромосом сохраняет центромеру, то такие транслокационные хромосомы могут пройти через наступающий митоз без всяких затруднений. Если одна из перестроенных хромосом приобретает две центромеры, формируется дицентрическая хромосома. В зависимости от деталей репликации она может пройти через наступающий митоз при следующих условиях:

1) если обе центромеры отойдут к одному и тому же полюсу и 2) если репликация и сестринский хроматидный обмен между двумя центромерами не приведут к переплетению хроматид. Если разрывы и воссоединения концов завершатся после репликации ДНК, то затронутой окажется только одна сестринская хроматида каждой хромосомы. Воссоединенные сестринские хроматиды еще остаются спаренными с их неповрежденными партнерами. Это ведет к межхромосомным обменам, которые обнаруживаются в первом митотическом делении после воссоединения. Различные типы этих обменов показаны на рис.10.

Если каждая из перестроенных хромосом сохранит центромеру (рис.11, класс I, III и V), то анафазное расхождение хро-матид в обеих таких хромосомах будет протекать без всяких затруднений. Однако если обе центромеры окажуться в одном и том же сегменте, то образующиеся дочерние клетки в любом случае будут анеуплоидными: либо центромеры отойдут к разным полюсам и возникнет "анфазный мост", который приведет в конце концов к разрыву, либо две центромеры отойдут одному и тому же полюсу. В этом случае перестройка завершится только негомологичным воссоединением (рис.11, классы VI, VII). Дальнейшие события откладываются до следующего митоза, в котором появляется дицентрическая хромосома. Иногда она может пройти и этот митоз. В любом случае, однако, при указанных выше условиях межхромосомные обмены, как правило, приводят к гибели клеток вследствие анеуплоидии или нарушений в митозе.

Делеционные синдромы. Индивид, гетерозиготный по делеции, является моносомиком по соответствующему району хромосомы. Де Груши и сотр. (1963) первыми описали делению del 18p-, однако делеционный синдром впервые был обнаружен Леженом и сотр. в 1963 г. Ими были выявлены трое детей с делецией короткого плеча хромосомы 5 (del 5p-). Кроме обычных признаков аутосомных аномалий (обшее отставание в развитии и низкий вес при рождении) у этих детей отмечалось лунообразное лицо с гипертелоризмом (широко расставленные глаза). Во внешнем облике больных не было каких-то ярких особенностей, однако их плач напоминал мяуканье кошки (cri du chat или cat cry).

Существует несколько разных механизмов возникновения делеций и соответственно разные типы самих делеций:

1) истинная концевая делеция,

2) интерстициальная делеция и 3) делеция в результате транслокации. Во многих сообщениях указывается на наличие при синдроме "кошачьего крика" транслокации.

Внутренние обмены: парацентрические и перицентрические инверсии. Парацентрические инверсии (т.е. не вовлекающие центромеру) у человека обнаруживаются с большим трудом. Начиная с 60-х it. было - опубликовано много работ о предполагаемых перицентрических (т.е. захватывающих центромеру) инверсиях. У некоторых носителей таких инверсий выявлены различные аномалии типа умственной отсталости или пороков развития. Фенотип других не обнаруживал каких-либо заметных

отклонений, но в браках с ними регистрировались повторные спонтанные аборты. У представителей третьей группы не обнаружено вообще никаких аномалий. Следует отметить, что при использовании обычных методов окрашивания хромосом перицентрические инверсии выявляются относительно редко.

Межхромосомные обмены: центрические слияния (робертсоновские транслокации). Центрическое слияние является наиболее частым типом хромосомных перестроек в человеческих популяциях. Первые описанные случаи транслокационного синдрома Дауна были связаны с центрическим слиянием между длинным плечом хромосомы 21 и одной из D - или G-хромосом. В последствии о таких больных сообщалось неоднократно. Среди всех случаев синдрома Дауна транслокации этого типа составляют всего лишь несколько процентов, и многие из них являются вновь возникшими. Важно, что в центрическое слияние могут вовлекаться все пять пар акроцентрических хромосом. Короткие плечи этих хромосом содержат ядрышковые организаторы, в частности гены рРНК.

При этом в интерфазном ядре короткие плечи, включая центромерные районы, располагаются в тесной близости от ядрышка. Благодаря применению методов дифференциального окрашивания появилась возможность исследовать участие отдельных D - и G-хромосом в центрических слияниях.

Центрическое слияние означает, что короткие плечи двух акроцентрических хромосом и, вероятно, одна из центромер утрачены, т.е. утрачены также и гены рРНК. Действительно, по данным ДНК-РНК-гибридизации среднее число генов рРНК меньше у так называв мых сбалансированных носителей центрических слияний, чем в общей популяции. Однако это не приводит к каким-либо функциональным различиям, и носители таких хромосом совершенно здоровы.

Межхромосомные обмены: реципрокные транслокации. В отличие от центрическихслияний реципрокные транслокации не обязательно связаны с утратой материала. Фрагменты хромосом воссоединяются в новых комбинациях, но с сохранением в зиготе эуплоидного числа 46, а не 45, как при центрических слияниях. На рис.11 представлены типы дочерних клеток, которые можно ожидать в случае реципрокных транслокаций. Чаще всего выявляются только частичные трисомики и частичные моносомики. Другие комбинации, как полагают, летальны.

Типичный случай описан в работе. На рис.12 показаны два умственно отсталых сибса в возрасте 11 и 9 лет. В их фенотипе обнаружены как конкордантные, так и дискордантные признаки (табл.4). При исследовании кариотипа обычным методом у обоих детей выявлено удлинение длинного плеча одной из С-хромосом (рис.13); у матери и бабки (по линии матери) обнаружена такая же хромосома и, кроме того, другая аномальная хромосома в группе 6-X-12), у которой почти полностью отсутствовало короткое плечо (рис.14). С помощью G-метода у матери выявлена реципрокная транслокация между хромосомами 7 и 10, кариотип 46, XX, t (7;

10) (р22; pll). Результатом такой перестройки является частичная трисомия 10р + у обоих детей. Особенность данного заключается не только в конкордантности многих признаков у обоих детей, что укладывается в единый клинический синдром, но и в наличии ряда дискордантных симптомов, что указывает на изменчивость фенотипических аномалий, вызванных одной и той же хромосомной аберрацией.

3. Наследование, ограниченное и контролируемое

Гены, имеющиеся в кариотипе обоих полов, но проявляющиеся преимущественно лишь у одного пола, называются ограниченные полом. Эти гены могут быть не сцеплены с половыми хромосомами и локализованы в любой аутосомной хромосоме. Вот пример строгой ограниченности полом. Если S и s представляют собой два аллеля, выражение которых ограничено полом, то три генотипа SS; Ss; ss оказываются неразличимыми у одного пола, но дают два или три различных фенотипа у другого пола, в зависимости от того, сходна ли гетерозигота с одной из гомозигот или отличается от обеих. Различные анатомические и физиологические черты, присущие женскому полу, такие, например как ширина таза или возраст начала менструации, контролируются генами, получаемыми от обоих родителей. Такие сугубо мужские черты, как характер роста волос на лице или количество и распределение волосяного покрова на теле также контролируются генами, общими для обоих полов. Здесь следует подчеркнуть, что ограниченность полом - не то же самое, что сцепление с полом. Последний термин касается локализации генов в половых хромосомах; первый термин - проявления генов только у одного из двух полов.

Ограниченное полом наследование представляет собой крайний пример контролируемости полом. Если генотип проявляется у обоих полов, но по - разному, принято говорить о проявлении гена, контролируемого (зависимого) полом, или модифицируемого полом.

Контролируемая полом доминантность, по-видимому, лежит в основе характера облысения. Изучение этой черты представляет существенные трудности в связи с тем, что фенотип облысения различно проявляется. Облысение может быть слабым или полным, лысина может локализоваться по - разному, проявляться в раннем или пожилом возрасте, иногда облысение связано с нарушением функции щитовидной железы или последствиями инфекционных болезней. У большинства - наследственная этиология. Признак может проявляться у обоих полов, но чаще и выраженнее проявляться у мужчин.

Основоположником изучения признаков, контролируемых полом, является Бернштейн, который проанализировал наследование певческих голосов у взрослых европейцев. Если вывод - шесть различных певческих голосов (бас, баритон, тенор, сопрано, меццо-сопрано и альт) контролируются одной парой аллелей. Более поздние исследования показали, что тип голоса контролируется половой конституцией, начиная с периода полового созревания, находится под влиянием половых гормонов.

Приложение

Таб.4 Конкордантные и дискордантные признаки


Подобные документы

  • Обусловленность наследственной изменчивости типов мутаций и их комбинаций в последующих скрещиваниях. Генные, геномные, хромосомные мутации. Снижение жизнеспособности особей как последствие мутаций. Причины возникновения мутаций, безуспешность их лечения.

    презентация [5,5 M], добавлен 11.02.2010

  • Классификация и свойства генов, особенности структурных и регуляторных генов. Структурные единицы наследственности организмов. Особенности генома человека. Наследственный материал, заключенный в клетке человека. Уровни структурной организации хромосом.

    презентация [564,6 K], добавлен 28.10.2014

  • Особенности эволюции человека как биологического и социального существа, а также понятие "генотип" и "фенотип". Классификация мутации, основанной на размерах сегментов генома. Комплементация функционального дефекта в клетках больных анемией Фанкони.

    курсовая работа [48,2 K], добавлен 15.08.2014

  • Хромосомный мутагенез и факторы его вызывающие. Хромосомы человека и основные типы структурных. Спонтанный хромосомный мутагенез. Специфичность и особенности химического мутагенеза. Культивирование крови, приготовление препаратов хромосом.

    дипломная работа [52,0 K], добавлен 14.09.2003

  • Частота ошибок при последовательной репликации. Значение процесса конкуренции и отбора для процессов эволюции. Механизм мутации, свойства воспроизведения, случайное производство альтернативных возможностей. Роль случайности в процессе мутации и эволюции.

    курсовая работа [217,9 K], добавлен 25.10.2009

  • Методы предупреждения наследственных заболеваний. Методологический план понятия "генетические факторы". Особенности генотипа человека, классификация факторов, на него воздействующих. Мутации как наследственно закрепленные изменения генетического кода.

    презентация [125,9 K], добавлен 15.12.2010

  • Особенности и методы изучения генетики человека. Наследование индивидуальных особенностей человека. Аутосомно-доминантный тип наследования. Признаки, сцепленные с полом. Условные обозначения, принятые для составления родословных. Хромосомные болезни.

    презентация [1,9 M], добавлен 21.02.2013

  • Хромосомная теория наследственности. Генетический механизм определения пола. Поведение хромосом в митозе и мейозе. Классификация хромосом, составление идиограммы. Методы дифференциальной окраски хромосом. Структура хромосом и хромосомные мутации.

    реферат [32,7 K], добавлен 23.07.2015

  • Морфологические, физиологические и биохимические признаки пола. Половые хромосомы, их отношение к определению пола. Механизмы наследования генных признаков. Типы хромосомного определения пола. Генетически обусловленные наследственные болезни человека.

    презентация [1,1 M], добавлен 01.10.2013

  • Наружные и внутренние паразиты животных и человека. Тип плоских червей. Кровеносная система и кожное дыхание. Нематодные болезни растений. Мутации, увеличивающие продолжительность жизни круглых червей в десять раз. Биохимический состав клеток червей.

    презентация [279,0 K], добавлен 09.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.