What is missing to create new herbicides and solving the problem of resistance?

The problem of weeds resistance to herbicides and potential solutions. Alternatives to chemical methods of weed control. the mechanisms of herbicide induced pathogenesis, and data on the involvement of programmed cell death in this process are discussed.

Рубрика Сельское, лесное хозяйство и землепользование
Вид статья
Язык английский
Дата добавления 11.10.2024
Размер файла 40,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

In conclusion, based on the analysis of data on the mechanism of herbicide-induced pathogenesis and information on the peculiarities of the sites of action of the most effective classes of herbicides, it is possible to identify research directions that should develop criteria for selecting new sites of herbicides action and roughly outline these criteria as follows.

Firstly, the study of herbicide-induced pathogenesis mechanisms, including the participation of PCD in this process, will allow the development of methods to assess how important a particular metabolic pathway or physiological system is for the plant's vital activity. Accordingly, it will be possible to determine the extent to which disturbances in their functioning can ensure high efficiency of herbicidal action.

Secondly, the study of mechanisms supporting plant organism homeostasis will allow the development of clear criteria for selecting potential herbicide action sites. At present, when choosing a specific enzyme as herbicide action site, it can be used the following characteristics of this enzyme. It is logical to assume that for high herbicidal activity, the content of the enzyme, chosen as the action site, should be low [75]. In addition, the rate of enzyme turnover should not be high.

Despite the insufficiently studied mechanisms of maintaining homeostasis, information about the presence of feedback loops that regulate the expression of the selected enzyme can be taken into account when choosing this enzyme as a site of herbicide action. If it is expected that herbicidal action will be caused by a deficiency of products of the metabolic pathway to which this enzyme belongs, the negative feedback that could lead to increased expression of this enzyme should be absent. This requirement can be implemented if the enzyme catalytic activity requires the presence of cofactors, and the herbicide action leads to their deficiency. A more complex way to implement this requirement lies in the fact that the consequences of herbicide action hinder the expression of the gene encoding its site of action. In this case, a positive feedback loop arises, which strengthens the inhibitory effect of the herbicide. In the case when the herbicidal action is caused by the accumulation of a phytotoxic metabolite that is a substrate of the herbicide-inhibited enzyme, the negative feedback loop will favor the action of the herbicide, but it should be directed not at expression of the enzyme which is the site of action, but at the enzymes preceding it.

It should be recognized, that the mentioned research areas are not in the center of attention of the experts in the field of herbology and weed control. The terms «induced pathogenesis», «programmed cell death», «feedback» are not often found in the titles of articles in weed science related journals [132]. However, in our opinion, studying the mechanisms of herbicide-induced pathogenesis, in particular the PCD participation in this process, as well as the study of feedback loops, that support plant cell homeostasis, will allow to obtain the magic key that will open the way to creating herbicides with new mode of action and solving the problem of weed resistance to herbicides.

herbicide resistance weed cell death

References

1. Kraehmer H., Laber B., Rosinger C., Shulz A. (2014). Herbicides as weed control agents: state of the art: I. Weed control research and safener technology: the path to modern agriculture. Plant Physiol., 166, рр. 1119-1131.

2. Kraehmer H., Van Almsick A., Beffa R., Dietrich H., Eckes P., Hacker E., Hain R., Strek H.J., Stuebler H., Willms L. (2014). Herbicides as weed control agents: state of the art: II. Recent achievements. Plant Physiol., 166, рр. 1132-1148.

3. Beckie H.J. (2006). Herbicide-Resistant Weeds: Management Tactics and Practices. Weed Technol., 20(3), рр. 793-814.

4. Powles S.B., Yu Q. (2010). Evolution in action: plants resistant to herbicides. Ann. Rev. Plant Biol., 61, рр. 317-347

5. Vencill W.K., Nichols R.L., Webster T.M., Soteres J.K., Mallory-Smith C., Burgos N.R., Johnson W.G., McClelland M.R. (2012). Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops. Weed Sci., 60 (1), рр. 2-30.

6. Shaner D. (2014). Lessons Learned From the History of Herbicide Resistance. Weed Sci., 62 (2), рр. 427-431.

7. Delye C., Jasieniuk M., Le Corre V. (2013). Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 29 (11), рр. 649-658.

8. Gaines T.A., Duke S.O., Morran S., Rigon C.A.G., Tranel P.J., Kupper A., Dayan F.E. (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem., 295 (30), рр. 10307-10330.

9. Heap, I. The International Survey of Herbicide Resistant Weeds. Online. Internet. Thursday, May 5, 2022.

10. Sohwartau V.V., Mykhalska L.M. (2022). Herbicide-resistant weed biotypes in Ukraine. Dop. Nat. Acad. Nauk. of Ukraine, 6, рр. 85-94 [in Ukrainian].

11. Yu Q., Powles S. (2014). Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol., 166, рр. 1106-1118.

12. Jugulam M., Chandrima S. (2019). Non-Target-Site Resistance to Herbicides: Recent Developments. Plants, 8 (10), 417.

13. Hwang J., Norsworthy J.K., Piveta L.B., De Carvalho Rocha Souza M.C., Barber L.T., Butts T.R. (2023). Metabolism of 2,4-D in resistant Amaranthus palmeri S. Wats. (Palmer amaranth). Crop Protect., 165, 106169.

14. Caverzan A., Piasecki C., Chavarria G., Stewart C.N.Jr., Vargas L. (2019). Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int. J. Mol. Sci., 20 (5), 1086.

15. Radchenko M.P., Ponomareva I.G., Pozynych I.S., Morderer Ye.Yu. (2021). Stress and use of herbicides in field crop. Agric. Sci. Pract., 8 (3), рр. 50-70.

16. Zhang Y., Gao H., Fang J., Wang H., Chen J., Li J., Dong L. (2022). Up-regulation of bZIP88 transcription factor is involved in resistance to three different herbicides in both Echinochloa crus-galli and E. Glabrescens. J. Exp. Bot., 73 (19), рр. 6916-6930.

17. Gawlik-Dziki U., Wrzesinska-Krupa B., Nowak R. Pietrzak W., Zyprych-Walczak J., Obrpalska-Stplowska A. (2023). Herbicide resistance status impacts the profile of non-anthocyanin polyphenolics and some phytomedical properties of edible cornflower (Centaurea cyanus L.) flowers. Sci. Rep., 13, 11538.

18. Gupta S., Harkess A., Soble A., Van Etten M., Leebens-Mack J., Baucom R.S. (2023). Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. New Phytol., 238, рр. 263-1277.

19. Lu H., Liu Y., Li M., Han H., Zhou F., Nyporko A., Yu Q., Qiang S., Powles S. (2023). Multiple metabolic enzymes can be involved in cross-resistance to 4-hydrox-yphenylpyruvate-dioxygenase-inhibiting herbicides in wild radish. J. Agric. Food Chem., 71 (24), рр. 9302-9313.

20. Takano H., Greenwalt S., Ouse D., Zielinski M., Schmitzer P. (2023). Metabolic cross-resistance to florpyrauxifen-benzyl in barnyardgrass (Echinochloa crus-galli) evolved prior to its commercialization. Weed Sci., 71 (2), рр. 77-83.

21. Palma-Bautista C., Vazquez-Garcia J.G., De Portugal J., Bastida F., Alcantara-de la Cruz R., Osuna-Ruiz M.D., Torra J., De Prado R. (2023). Enhanced detoxification via Cyt-P450 governs cross-tolerance to ALS-inhibiting herbicides in weed species of Centaurea. Envir. Pollut. (Barking, Essex: 1987), 322, 121-140.

22. Palma-Bautista C., Belluccini P., Vazquez-Garcia J.G., Alcantara-de la Cruz R., Barro F., Portugal J., De Prado R. (2023). Target-site and non-target-site resistance mechanisms confer multiple resistance to glyphosate and 2,4-D in Carduus acanthoides. Pest. Biochem. Physiol., 191.

23. Bobadilla L.K., Tranel P.J. (2023). Predicting the unpredictable: the regulatory nature and promiscuity of herbicide cross resistance. Pest. Manag, Sci. Accep. Author Manuscript.

24. Woong Park K., Mallory-Smith C. (2005). Mutiple herbicide resistance in downy brome (Bromus tectorum) and it impact on fitness. Weed Sci., 53 (6), рр. 780-786.

25. Geddes C.M., Pittman M.M., Hall L.M., Topinka A.K., Sharpe S.M., Leeson J.Y., Beckie H.J. (2022). Increasing frequency of multiple herbicide-resistant kochia (Bassia scoparia) in Alberta. Canad. J. Plant Sci., 103 (2), рр. 233-237.

26. Shaw D.R. (2016). The «wicked» nature of the herbicide resistance problem. Weed Sci., 64 (S1), рр. 552-558.

27. Barrett M., Ervin D.E., Frisvold G.B., Jussaume R.A., Shaw D.R., Ward S.M. (2017). A wicked view. Weed Sci., 65 (4), рр. 441-443.

28. Harker K.N., Mallory-Smith C., Maxwell B.D., Mortensen D.A., Smith R.G. (2017). Another view. Weed Sci., 65 (2), рр. 203-205.

29. Harker K., O'Donovan J. (2013). Recent weed control, weed management, and integrated weed management. Weed Technol., 27 (1), рр. 1-11.

30. Westwood J.H., Charudattan R., Duke S.O., Fennimore S.A., Marrone P., Slaughter D.C., Swanton C., Zollinger R. (2018). Weed management in 2050: perspectives on the future of weed science. Weed Sci., 66 (3), рр. 275-285.

31. Duke S.O., Powles S.B., Sammons R.D. (2018). Glyphosate -- how it became a once in a hundred year herbicide and its future. Outlooks on Pest. Manag., 29 (6), pp. 247-251(5).

32. Bernoldson N-O. (2010). Breeding spring wheat for improved allelopathic potential. Weed Res., 50 (1), рр. 49-57.

33. Seal A.N., Pratley J.E. (2010). The specificity of allelopathy in rice (Oryza sativa). Weed Res., 50(4), рр. 303-311.

34. Hada Z., Jenfaoui H., Khammassi M., Matmati A., Souissi T. (2022). Allelopathic effect of barley (Hordeum vulgare) and rapeseed (Brassica napus) crops on early growth of acetolactate synthase (ALS)-resistant Glebionis coronaria. Tunis. J. Plant Protec., 17 (2), рр. 55-66.

35. Spoth M., Haring S., Everman W., Reberg-Horton C., Greene W., Flessner M. (2022). Narrow-windrow burning to control seeds of Italian ryegrass (Lolium perenne ssp. multiflorum) in wheat and Palmer amaranth (Amaranthus palmeri) in soybean. Weed Technol., 36 (5), рр. 716-722.

36. Perotti V.E., Larran A.S., Palmieri V.E., Martinatto A.K., Permingeat H.R. (2020). Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci., 290, 110255.

37. Moore L., Jennings K., Monks D., Boyette M., Leon R., Jordan D., Ippolito S., Blankenship C., Chang P. (2023). Evaluation of electrical and mechanical Palmer amaranth (Amaranthus palmeri) management in cucumber, peanut, and sweetpotato. Weed Technol., 37 (1), рр. 53-59.

38. Duke S.O. (2023), Why are there no widely successful microbial bioherbicides for weed management in crops? Pest. Manag. Sci.

39. Broster J.C., Jalaludin A., Widderick M.J., Chambers A.J., Walsh M.J. (2023). Herbicide resistance in summer annual weeds of australia's northern grains region. Agronomy, 13 (7), 1862.

40. Gressel J., Segel L.A. (1990). Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol., 41, рр. 186-198.

41. Gressel J. (1992). Honorary member address: addressing real weed science needs with innovations. Weed Technol., 63), рр. 509-525.

42. Norsworthy J.K., Ward S.M., Shaw D.R., Llewellyn R.S., Nichols R.L., Webster T.M., Bradley K.W., Frisvold G., Powles S.T., Burgos N.R., Witt W.W., Barret M. (2012). Reducing the risk of herbicide resistance: best management practices and recommendation. Weed Sci., 60 (SP1), рр. 31-62.

43. Devos Y., Reheul D., De Schrijver A., Cors F., Moens W. (2004). Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Environ. Biosaf. Res., 3 (3), рр. 135-48.

44. Tan S., Evans R.R., Dahmer M.L., Singh B.K., Shaner D.L. (2005). Imidazolinone-tolerant crops?: history, current status and future. Pest. Manag. Sci., 61 (3), рр. 246-257.

45. Li H., Li J., Zhao B., Wang J., Yi L., Liu C., Wu J., King G.J., Liu K. (2015). Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. Theor. Appl. Genet., 128, рр. 107-118.

46. Sebastian S.A., Fader G.M., Ulrich J.F., Forney D.R., Chaleff R.S. (1989). Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci., 29, рр. 1403-1408.

47. Wei T., Jiang L., You X., Ma P., Xi Z., Wang N.N. (2023). Generation of herbicide-resistant soybean by base editing. Biology, 12 (5), 741.

48. Ustun R., Uzun B. (2023). Development of a high yielded chlorsulfuron-resistant soybean (Glycine max L.) variety through mutation breeding. Agriculture, 13 (3), 559.

49. Bozic D., Saric M., Malidza G., Ritz C., Vrbnicanin S. (2012). Resistance of sunflower hybrids to imazamox and tribenuron-methyl. Crop Protect., 39, рр. 1-10.

50. Sala C.A., Bulos M., Alteri E., Ramos M.L. (2012). Genetics and breeding of herbicide tolerance in sunflower. Helia, 35 (57), рр. 57-70.

51. Diggle A.J., Neve P.B., Smith F.P. (2003). Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res., 43 (5), рр. 371-382.

52. Hongle X., Lanlan S., Wangcang S., Muhan Y., Mingbo J., Fei X., Chuantao L., Renhai W. (2023). Confirmation and chemical control of acetyl-CoA carboxylase- and acetolactate synthase-resistant Japanese foxtail in China. Crop Protect., 169, 106257.

53. Soltani N., Shropshire C., Sikkema P. (2022). Control of glyphosate-resistant horseweed with Group 4 herbicides in soybean. Weed Technol., 36 (5), рр. 643-647.

54. Dhanda S., Kumar V., Geier P., Currie R., Dille J., Obour A., Yager E., Holman J. (2023). Synergistic interactions of 2,4-D, dichlorprop-p, dicamba, and halauxifen /fluroxypyr for controlling multiple herbicide-resistant kochia (Bassia scoparia L.). Weed Technol., 1-8.

55. Yadav R., Jha P., Hartzler R., Liebman M. (2023). Multi-tactic strategies to manage herbicide-resistant waterhemp (Amaranthus tuberculatus) in corn-soybean rotations of the midwestern U.S. Weed Sci., 71 (2), рр. 141-149.

56. Green J. (2007). Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistant weed management. Weed Technol., 21 (2), рр. 547-558.

57. Yu X., Sun Y., Lin C., Wang P., Shen Z., Zhao Y. (2023). Development of transgenic maize tolerant to both glyphosate and glufosinate. Agronomy, 13 (1), 226.

58. Godar A., Norsworthy J., Barber T. (2023). Enlist™ corn tolerance to preemergence and postemergence applications of synthetic auxin and ACCase-inhibiting herbicides. Weed Technol., 37 (2), рр. 147-155.

59. Duenk E., Soltani N., Miller R., Hooker D., Robinson D., Sikkema P. (2023). Multiple herbicide-resistant waterhemp control in glyphosate/glufosinate/2,4-D-resistant soybean with one- and two-pass weed control programs. Weed Technol., 37 (1), рр. 34-39.

60. Morderer Y.Y., Merejinskiy Y.G. (2009). Herbicides. Vol. 1. Mechanisms of action and practice of application. Kyiv: Logos [in Ukrainian].

61. Zhang J., Hamill A., Weaver S. (1995). Antagonism and synergism between herbicides: trends from previous studies. Weed Technol., 9 (1), рр. 86-90.

62. Isaacs M.A., Hatzios K.K., Wilson H.P., Toler J. (2006). Halosulfuron and 2,4- D Mixtures' Effects on Common Lambsquarters (Chenopodium album). Weed Technol., 20(1), рр. 137-142.

63. Sobiech L., Joniec A., Lorys B., Rogulski J., Grzanka M., Idziak R. (2023). Autumn application of synthetic auxin herbicide for weed control in cereals in Poland and Germany. Agriculture, 13 (1), 32.

64. Yukhymuk V.V., Radchenko M.P., Sytnyk S.K., Morderer Ye.Yu. (2021). Interaction effect in the tank mixtures of herbicides diflufenican, metribuzin and can- fentrazone. Fisiol. rast. genet., 53 (6), рр. 513-522.

65. Yukhvmuk V.V., Radchenko M.P., Guralchuk Zh.Z., Morderer Ye.Yu. (2022). Efficacy of weed control by herbicides diflufenican, metribuzin and carfentrazone when applied in winter wheat crops in autumn. Fisiol. rast genet., 54 (2), рр. 148-160.

66. Yukhymuk V., Radchenko M., Guralchuk Zh., Rodzevych O., Khandezhyna M., Morderer Ye. (2023). Effectiveness of weed control by tank mixture of herbicides aclonifen and prometryn on sunflower crops. Bulg. J. Agric. Sci., 29 (3), pp. 481-489.

67. Duus J., Kruse N.D., Streibig J.C. (2018). Effect of mesotrione and nicosulfuron mixtures with or without adjuvants. Planta Daninha, 36, рр. 1-11.

68. Yukhymuk V.V., Radchenko M.P., Sytnik S.K., Morderer Y.Y. (2022). Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize crops. Reg. Mechanisms in Biosyst., 13 (2), pp. 114-120.

69. Walsh M.J., Stratford K., Stone K., Powles S.B. (2012). Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol., 26 (2), рр. 341-347.

70. O'Brien S.R., Davis A.S., Riechers D.E. (2018). Quantifying resistance to isoxaflutole and mesotrione and investigating their interactions with metribuzin POST in waterhemp (Amaranthus tuberculatus). Weed Sci., 66 (5), pp. 586-594.

71. Osipitan O.A., Scott J.E., Knezevic S.Z. (2018). Tolpyralate applied alone and with atrazine for weed control in corn. J. Agric. Sci., 10 (10), рр. 32-39.

72. Willemse C., Soltani N., Benoit L., Jhala A.J., Hooker D.C., Robinson D.E., Sikkema P.H. (2021). Is there a benefit of adding atrazine to HPPD-inhibiting herbicides for control of multiple-herbicide-resistant, including group 5-resistant, waterhemp in corn? J. Agric. Sci., 13 (7), pp. 21-31.

73. Duke S.O. (2012). Why have no new herbicide modes of action appeared in recent years? Pest. Manag. Sci., 68 (4), рр. 505-512.

74. Duke S.O., Stidham M.A., Dayan F.E. (2019). A novel genomic approach to herbicide and herbicide mode of action discovery. Pest. Manag. Sci., 75 (2), рр. 314-317.

75. Dayan F.E., Duke S.O. (2020). Discovery for new herbicide sites of action by quantification of plant primary metabolite and enzyme pools. Engineering, 6 (5), рр. 509-514.

76. Qu R.-Y., He B., Yang J.-F., Lin H.-Y., Yang W.-C., Wu Q.-Y., Li Q.X., Yang G.-F. (2021). Where are the new herbicides? Pest. Manag. Sci, 77 (6), рр. 2620-2625.

77. Sparks T.C., Lorsbach B.A. (2017). Perspectives on the agrochemical industry and agrochemical discovery. Pest. Manag. Sci., 73 (4), рр. 672-677.

78. Chen S., Fabbri B., CaJacob C., Anderson J., Duff S. (2007). Suppression of CtpA in mouseearcress produces a phytotoxic effect: validation of CtpA as a target for herbicide development. Weed Sci., 55 (4), рр. 283-287.

79. Hall C.J, Mackie E.R.R., Gendall A.R., Perugini M.A., Soares da Costa T.P. (2020). Review: amino acid biosynthesis as a target for herbicide development. Pest. Manag. Sci., 76 (12), pp. 3896-3904.

80. Yan Y., Liu Q., Zang X., Yuan X., Bat-Erdene U., Nguyen C., Gan J., Zhou J., Jacobsen S.E., Tang Y. (2018). Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature, 559, рр. 415-418.

81. Zabalza A., Zulet A., Gil-Monreal M., Igal M., Royuela M. (2013) Branched-chain amino acid biosynthesis inhibitors: herbicide efficacy is associated with an induced carbon-nitrogen imbalance. J. Plant Physiol., 170 (9), рр. 814-821.

82. Dayan F.E., Duke S.O. (2014). Natural compounds as next-generation herbicides. Plant Physiol., 166 (3), рр. 1090-1105.

83. Lee D.L., Prisbylla M.P., Cromartie T.H., Dagarin D.P., Howard S.W., Provan W.M., Mutter L.C. (1997). The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci., 45 (5), рр. 601-609.

84. Vivancos P.D., Driscoll S.P., Bulman C.A., Ying L., Emami K., Treumann A., Mauve C., Noctor G., Foyer C.H. (2011). Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiol., 157 (1), рр. 256-268.

85. Maroli A., Gaines T., Foley M., Duke S., Dogramaci M., Anderson J., Horvath D.P., Chao W.S., Tharayil N. (2018). Omics in Weed Science: A perspective from genomics, transcriptomics, and metabolomics approaches. Weed Sci., 66 (6), рр. 681-695.

86. Zulet-Gonzalez A., Gorzolka K., Doll S., Gil-Monreal M., Royuela M., Zabalza A. (2023). Unravelling the phytotoxic effects of glyphosate on sensitive and resistant Amaranthus palmeri populations by GC--MS and LC--MS metabolic profiling. Plants, 12 (6), 1345.

87. Maroli A., Nandula V., Duke S. Tharayil N. (2016). Stable Isotope Resolved Metabolomics Reveals the Role of Anabolic and Catabolic Processes in Glyphosate-Induced Amino Acid Accumulation in Amaranthus palmeri Biotypes. J. Agric. Food Chem., 64 (37), рр. 7040-7048.

88. Maroli A., Nandula V., Dayan F., Duke S., Gerard P., Tharayil N. (2015). Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype. J. Agric. Food Chem., 63 (41), рр. 9199-9209.

89. Sandhu P.K., Leonard E., Nandula V., Tharayil N. (2023). Global metabolome of palmer amaranth (Amaranthus palmeri) populations highlights the specificity and inducibility of phytochemical responses to abiotic stress. J. Agric. Food Chem., 71 (7), pp. 3518-3530.

90. Piasecki C., Yang Y., Benemann D.P., Kremer F.S., Galli V., Millwood R.J., Cechin J., Agostinetto D., Maia L.C., Vargas L., (2019). Transcriptomic analysis identifies new non-target site glyphosate-resistance genes in conyza bonariensis. Plants, 8 (6), 157.

91. Hu M., Zhang H., Kong L., Ma J., Wang T., Lu X., Guo Y., Zhang J., Guan R., Chu P. (2023) Comparative proteomic and physiological analyses reveal tribenuron-methyl phytotoxicity and nontarget-site resistance mechanisms in Brassica napus. Plant Cell and Envir., 46 (7), pp. 2255-2272.

92. Bjelk L., Monaco T. (1992). Effect of chlorimuron and quizalofop on fatty acid biosynthesis. Weed Sci., 40 (1), рр. 1-6.

93. Morderer Y.Y., Radchenko M.P., Sychuk A.M. (2013). Programmed cell death in pathogenesis induced in plants by herbicides. Fisiol. rast. genet., 45 (6), рр. 517526.

94. Chen S., Dickman M. (2004). Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot., 55 (408), рр. 2617-2623.

95. De Freitas D., Coelho M., Souza M., Marques A., Ribeiro B. (2007). Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV). Biotech. Lett., 29, рр. 79-87.

96. Graham M.Y. (2005). The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiol., 139 (4), рр. 1784-1794.

97. Chichkova N.V., Shaw J., Galiullina R.A., Drury G.E., Tuzhikov A.I., Kim S.H., Kalkum M., Hong T.B., Gorshkova E.N., Torrance L., Vartapetian A.B., Taliansk, M. (2010). Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J., 29 (6), рр. 1149-1161.

98. Ozheredov S.P., Emets A.I., Litvin D.I., Britsun V.N., Schvartau V.V., Lozinskii M.O., Blium I.B. (2010). Antimitotic activity of new 2,6-dinitroaniline derivatives and their synergistic activity in composition with graminicides. Tsitol. Gen., 44 (5), рр. 54-59. PMID: 21061692

99. Sychuk A.M., Radchenko, M.P., Morderer Ye.Yu. (2013). Programmed cell death in the pathogenesis induced by herbicides acetyl-CoA carboxylase inhibitors. Biol. Stud., 2, pp. 101-106.

100. Sychuk Л.М. (2015). Participation of programmed cell death in herbicide-induced pathogenesis. (Extended abstract of candidate thesis). Kyiv, Ukraine [in Ukrainian].

101. Reape, T.J., Molony, E.M. & Mccabe, P.F. (2008). Programmed cell death in plants: distinguishing between different modes. Exp. Bot., 59 (3), рр. 435-444.

102. Lockshin R.A., Zakeri Z. (2004). Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 36 (12), pp. 2405-2419.

103. Golstein P., Kroemer G. (2007). Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci., 32 (1), рр. 37-43.

104. Kacprzyk J., Daly C.T., McCabe P.F. (2011). The botanical dance of death: programmed cell death in plants. In Kader J.-C. & Delseny M. (ed.). Adv. Bot. Res., Vol. 60 (pp. 169-261). Burlington: Acad. Press.

105. Radchenko M.P., Gurianov D.S., Morderer Ye.Yu. (2022). DNA fragmentation and endonuclease activity under the effect of herbicides acetyl-CoA-carboxy-lase and acetolactate synthase inhibitors. Fisiol. rast. genet., 54 (5), рр. 404-418.

106. Perez-Perez M.E., Lemaire S.D., Crespo J.L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiol., 160 (1), рр. 156-64.

107. Wang Y., Zheng X., Yu B., Han S., Guo J., Tang H., Yu A.Y.L., Deng H., Hong Y., Liu Y. (2015). Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy, 11 (12), рр. 2259-2274.

108. Xiong Y., Contento A.L., Nguyen P.Q., Bassham D.C. (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol., 143 (1), рр. 291-299.

109. Shin J.-H., Yoshimoto K., Ohsumi Y., Jeon J.-S., An G. (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol. Cells, 27 (1), рр. 67-74.

110. Minina E.A., Moschou P.N., Vetukuri R.R., Sanchez-Vera V., Cardoso C., Liu Q., Bozhkov P.V. (2018). Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J. Exp. Bot., 69 (6), рр. 1415-1432.

111. Olenieva V., Lytvyn D., Yemets A., Bergounioux C., Blume Y. (2019). Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in Arabidopsis thaliana. Cell Biol. Int., 43 (9), рр. 1056-1064.

112. Zhao L., Jing X., Chen L., Liu Y., Su Y., Liu T., Gao C., Yi B., Wen J., Ma C., Tu J., Zou J., Fu T., Shen J. (2015). Tribenuron-methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Mol. Plant, 8 (12), pp. 1710-1724.

113. Zhao L., Deng L., Zhang Q., Jing X., Ma M., Yi B., Wen J., Ma C., Tu J., Fu T., Shen J. (2018). Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 14 (4), рр. 702-714.

114. Stidham M.A. (1991). Herbicides that inhibit acetohydroxyacid synthase. Weed Sci., 39 (3), рр. 428-434.

115. Endo M., Shimizu T., Fujimori T., Yanagisawa S., Toki S. (2013). Herbicideresistant mutations in acetolactate synthase can reduce feedback inhibition and lead to accumulation of branched-chain amino acids. Food Nutr. Sci., 4 (5), pp. 522-528.

116. Hofius D., Munch D., Bressendorff S., Mundy J., Petersen M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ., 18, рр. 1257-1262.

117. Ustun S., Hafren A., Hofius D. (2017). Autophagy as a mediator of life and death in plants. Current Opinion in Plant Biology, 40, pp. 122-130.

118. Fernandez-Escalada M., Zulet-Gonzalez A., Gil-Monreal M., Zabalza A., Ravet K., Gaines T., Royuela M. (2017). Effects of EPSPS Copy Number Variation (CNV) and glyphosate application on the aromatic and branched chain amino acid synthesis pathways in Amaranthus palmeri. Front. Plant Sci., Sec. Agroecology

119. Zulet-Gonzalez A., Barco-Antonanzas M., Gil-Monreal M., Royuela M., Zabalza A. (2020). Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate. Front. Plant Sci., Sec. Plant Metabolism and Chemodiversity, 11.

120. Rangani G., Porri A., Salas-Perez R.A., Lerchl J., Karaikal S.K., Velasquez J.C., Roma-Burgos N. (2023). Assessment of efficacy and mechanism of resistance to soil-applied PPO inhibitors in Amaranthus palmeri. Agronomy, 13, 592.

121. Li W., Wu C., Wang M., Jiang M., Zhang J., Liao M., Cao H., Zhao N. (2022). Herbicide resistance status of italian ryegrass (Lolium multiflorum Lam.) and alternative herbicide options for its effective control in the huang-huai-hai plain of China. Agronomy, 12, 2394.

122. Fang J., He Z., Liu T., Li J., Dong L. (2020). A novel mutation Asp-2078-Glu in ACCase confers resistance to ACCase herbicides in barnyardgrass (Echinochloa crusgalli). Pest. Biochem. Physiol., 168, 104634.

123. Huan Z., Xu Z., Lv D., Wang J. (2013). Determination of ACCase sensitivity and gene expression in quizalofop--ethyl-resistant and -susceptible barnyardgrass (Echinochloa crus-galli) biotypes. Weed Sci., 61 (4), рр. 537-542.

124. Gonzalez-Torralva F., Norsworthy J.K. (2023). Overexpression of acetyl CoA carboxylase 1 and 3 (ACCase1 and ACCase3), and CYP81A21 were related to cyhalofop resistance in a barnyardgrass accession from Arkansas. Plant Signal. & Behavior, 18 (1), 2172517.

125. Akbarabadi A., Ismaili A., Nazarian Firouzabadi F., Ercisli S., Kahrizi D. (2023). Assessment of ACC and P450 genes expression in wild oat (Avena ludoviciana) in different tissues under herbicide application. Biochem. Genet.

126. Yang J., Yu Ha., Cui H., Chen J., Li X. (2022). PsbA gene over-expression and enhanced metabolism conferring resistance to atrazine in Commelina communis. Pest. Biochem. Physiol., 188.

127. Bayramov S., Varanasi V.K., Vara Prasad P.V., Jugulam M. (2023). Expression of herbicide target-site and chloroplastic genes in response to herbicide applications in italian ryegrass (Lolium multiflorum ssp. multiflorum (Lam.)). J. Agric. Sci., 15 (5).

128. Takahashi S., Murata N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Sci., 13 (4), рр. 178-182.

129. Iwakami S., Uchino A., Watanabe H., Yamasue Y., Inamura T. (2012) Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest. Manag. Sci., 68 (7), рр. 1098106.

130. Mithila J., Hall J., Johnson W., Kelley K., Riechers D. (2011). Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci., 59 (4), рр. 445-457.

131. Duke S.O., Lydon J., Becerril J.M., Sherman T.D., Lehnen L.P., Matsumoto H. (1991). Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci., 39 (3), рр. 465-473.

132. Dayan F.E. (2023). Trends in weed science research since 2010. Outlooks on Pest. Manag., 34 (3), pp. 96-98.

Размещено на Allbest.ru


Подобные документы

  • World forest region map. Deforestation as the conversion of forest land to non-forest land for use (arable land, pasture). Effect of destruction of large areas of forest cover on the environment and reduce biodiversity. The methods of forest management.

    презентация [1,4 M], добавлен 06.05.2012

  • Estimation de l'unite de la resistance des materiaux largement utilises dans les structures statiques et des disciplines connexes a la conception de pieces de machines, les batiments, ponts et routes. Analyse de l'etat de contraintes dans de la tige.

    контрольная работа [397,1 K], добавлен 16.12.2012

  • The Chernobyl disaster is a huge global problem of 21st century. Current status of Chernobyl NPP. The most suitable decision of solving problem of wastes is a reburial in the repository "Buryakovka". The process of the Arch assembling and sliding.

    реферат [396,5 K], добавлен 19.04.2011

  • Investigation of the problem with non-local conditions on the characteristic and on the line of degeneracy . The solution of the modied Cauchy problem with initial data. The solution of singular integral equations. Calculation of the inner integral.

    статья [469,4 K], добавлен 15.06.2015

  • Chemical reaction. Components of typical DFMC. Micro Fuel Cell Stack for cellular Phone. Developments of micro fuel cell for cellular phones. Proposed design of micro fuel cell. The overall reaction in a DMFC. Construction and main components of DMFC.

    реферат [419,1 K], добавлен 21.09.2010

  • Experimental details of the chemical transients kinetics and pulsed field desorption mass spectrometry methods. Kinetic measurements with the PFDMS method. Data on the CO hydrogenation over CoCu-based catalysts using CTK. CO hydrogenation reaction.

    статья [334,2 K], добавлен 10.05.2011

  • The application of microwaves in the organic synthesis community. Microwaves are a form of electromagnetic energy. Two Principal Mechanisms for Interaction With Matter. Conventional Heating Methods, The Microwave Heating and The Microwave Effect.

    контрольная работа [32,0 K], добавлен 13.12.2010

  • Comparative analysis of acronyms in English business registers: spoken, fiction, magazine, newspaper, non-academic, misc. Productivity acronyms as the most difficult problem in translation. The frequency of acronym formation in British National Corpus.

    курсовая работа [145,5 K], добавлен 01.03.2015

  • Problem of choice basic lines of child: half, color of eyes, hair, modern possibilities of medicine. Possibility choice of design of child at artificial impregnation. Ethic problem of choice of design. Value of problem of choice of sex of child in China.

    статья [15,1 K], добавлен 02.12.2010

  • Methodological characteristics of the adaptation process nowadays. Analysis of the industrial-economic activity, the system of management and the condition of adaptation process. Elaboration of the improving project of adaptation in the Publishing House.

    курсовая работа [36,1 K], добавлен 02.04.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.