Научные и технические основы бесконтактного теплового контроля букс железнодорожного подвижного состава

Разработка метода исследования бесконтактного теплового контроля и нагрева буксовых узлов с цилиндрическими и коническими роликоподшипниками и методики оценки контролепригодности ходовых частей подвижного состава к тепловой бесконтактной диагностике букс.

Рубрика Транспорт
Вид автореферат
Язык русский
Дата добавления 08.02.2018
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При контроле по нижней поверхности буксы (КТСМ-02) отличие амплитудных значений по буксам на первой и второй оси менее существенное (1,21 раза), как показывают аналогичные расчетные осциллограммы сигнала (см. рисунок 13, б). Это связано с тем, что контроль производится по одной и той же зоне поверхности букс и отличие значений амплитуд сигналов вызвано только аэродинамическими причинами.

Полученные результаты исследований контролепригодности тележек скоростных поездов послужили основанием для первоочередного оснащения установками КТСМ-02 основных магистралей ОАО «РЖД». Методика была использована также для обоснования внедрения на ОАО «РЖД» специализированных пунктов теплового контроля тягового подвижного состава с комбинированным использованием КТСМ-01 и КТСМ-02.

Рисунок 13 - Моделирование траектории сканирования приемником ИК излучения первой и второй букс тележки 68-4076 и соответствующие осциллограммы теплового сигнала на приемнике в интегральных температурах

Разработанная термомеханическая модель позволяет моделировать распределение температур в буксовом узле в отдельных аварийных ситуациях, наиболее часто встречающихся в эксплуатации. Это касается процесса нарушения торцевого крепления подшипников со сдвигом буксы, а также процесса ослабления посадки внутренних колец подшипников. В разделе 3 диссертации приведены результаты экспериментального исследования ситуаций с данными неисправностями. По причине ограниченных возможностей применяемых при испытаниях технических средств, исследовались только начальные стадии развития неисправных состояний. В разделе 4 на модели прогнозировалось возможное развитие состояний буксового узла с указанными неисправностями.

При разрушенном торцевом креплении и последующем выходе из строя переднего подшипника, несмотря на нарушение геометрии (сдвиг роликов и кольца), может поддерживаться относительная временная работоспособность заднего подшипника в режиме эксплуатационных нагрузок радиального направления. Буксовый узел в этом состоянии с относительно работоспособным только задним подшипником может функционировать без аварийного нагрева определенное время (ограниченное продолжительностью действия на узел только радиальных нагрузок), при этом температура наружных колец и внешних поверхностей корпуса буксы не превышает минимальных пороговых значений, принятых для настройки средств теплового контроля. При последующем моделировании заклинивания роликов заднего подшипника, что может быть, как показал эксперимент, вызвано действием осевых сил на буксовый узел, заклинивание приводит к многократному увеличению темпа нагрева заднего подшипника. При этом аварийный темп разогрева подшипника и деталей буксового узла значительно выше, чем, если бы в буксе работали два подшипника при тех же условиях заклинивания роликов одного из подшипников.

В разделе 3 экспериментально было установлено, что при ослаблении посадки внутреннего кольца на ось может возникнуть ситуация, когда внутреннее кольцо вследствие заклинивания роликов стоит на месте с обоймой роликов, а вращается ось внутри кольца. Поскольку данный режим является наиболее опасным с точки зрения развития аварийной ситуации, особенно в случае сухого трения между осью и внутренним кольцом, проведено моделирование данного процесса. Результаты моделирования показывают, что средний расчетный темп нагрева оси при провороте внутреннего кольца одного из подшипников в зависимости от параметров трения составляет от 8 до 37 град/мин. Это говорит о том, что за 25 минут (интервал соответствует времени движения вагона на скорости 60 км/час между двумя соседними постами теплового контроля) от начала заклинивания роликов ось под проворачивающимся внутренним кольцом может нагреться в зависимости от условий трения от 266 до 800 єС. Это может служить основанием для определения рациональной величины уменьшения расстояния между пунктами теплового контроля.

В пятом разделе приводятся результаты разработки и технического воплощения распределенной системы теплового контроля и мониторинга нагрева буксовых узлов.

Многолетний опыт эксплуатации технических средств контроля показывает, что наилучшие результаты могут быть достигнуты при слежении за нагревом букс по нескольким постам контроля. Это позволяет применить новые диагностические признаки, связанные с динамикой нагрева буксы. С учетом структуры и принципов обслуживания подвижного состава в пути следования сформирована схема передачи информации от устройств контроля перегретых букс. В соответствии с данной схемой разработана архитектура распределенной системы. Архитектура системы имеет сетевую иерархическую топологию (рисунок 14). Таким образом, в соответствии со структурой организации ОАО «РЖД» структура распределенной системы, которая получила производственное название АСК ПС (Автоматизированная система контроля подвижного состава), строится с выделением следующих уровней:

Рисунок 14 - Структура АСК ПС

1 уровень - Линейный (измерительная подсистема в виде средств теплового контроля на перегоне и подсистема концентрации данных от СТК);

2 уровень - Дорожный;

3 уровень - Центральный.

В состав технических средств, образующих 1 уровень, входит разработанная с использованием проведенных исследований СТК КТСМ-02.

Создание КТСМ-02 (Комплекс Технических Средств Многофункциональный) базировалось на принципе построения многофункциональной напольной системы диагностики подвижного состава. В комплекс может включаться до пятнадцати подсистем контроля состояния подвижного состава, напольное оборудование которых с первичными преобразователями (датчиками и дополнительными устройствами) размещается на насыпи, рядом или на верхнем строении пути соответственно проводимым подсистемами измерениям. На основании выводов, полученных в исследованиях для напольного оборудования подсистемы КТСМ-02 Б (контроль нагрева букс) разработана специальная малогабаритная напольная камера КНМ-05, которая устанавливается на подошве рельса, как показано на рисунке 15.

Рисунок 15 - Общий вид напольной камеры КТСМ-02 и ее расположения на рельсе

По важнейшим показателям назначения и экономическим показателям разработанный многофункциональный комплекс КТСМ-02 превосходит все эксплуатируемые на железных дорогах ОАО «РЖД» средства теплового контроля буксовых узлов.

Согласно общей структурной схеме АСК ПС (см. рисунок 14) данные от измерительной подсистемы (установок КТСМ) поступают в сеть передачи данных (СПД) на базе концентраторов информации КИ_6М, разработанных при участии автора. СПД предназначена для организации информационного обмена между территориально рассредоточенными источниками и потребителями информации с максимально эффективным использованием каналов и линий связи и ОАО «РЖД».

Прикладное программное обеспечение АСК ПС состоит из автоматизированных рабочих мест оператора линейного поста контроля (АРМ ЛПК) и центрального поста контроля (АРМ ЦПК), обеспечивает решение следующих основных задач:

- автоматический прием информации от средств теплового контроля;

- автоматическое формирование сигналов тревог и оповещения при перегреве букс;

- просмотр и анализ архивов сохраненной информации в интерактивном режиме;

- выдачу архивных и статистических данных о работе СТК;

- изменение параметров настройки пороговых значений Тревог.

Программные средства АРМа ЦПК позволяют также осуществлять:

-слежение за развитием в поезде дефектов (мониторинг) на участке.

В основе информационного обеспечения распределенной системы теплового контроля лежит разработанная апостериорная модель распознавания классов состояния буксового узла. Разработка модели состоит из следующих процессов:

- обоснование выбора диагностических признаков;

- расчетно-апостериорный метод определения контрольных значений диагностических признаков.

Согласно исследований, проведенных С.П. Лозинским, Е.Е. Трестманом, В.И. Самодуровым, В.Л. Образцовым, а также опыта эксплуатации СТК, накопленного автором данной работы, при тепловом контроле буксовых узлов могут использоваться несколько диагностических признаков.

На основании определения потенциальной информативности признаков и анализа исследований упомянутых авторов будем использовать два базовых признака распознавания: амплитуда сигнала букс (уровень - Ur) и отношение амплитуды сигнала каждой буксы вагона к среднему значению амплитуд сигналов остальных букс Urcр по соответствующей стороне вагона (отношение - Otn).

Рассмотрим полученные путем обработки сигналов от букс в эксплуатации распределения вероятности исправных и неисправных букс для двух диагностических признаков (Ur, Otn). Данные собирались на Свердловском отделении дороги от букс проходящих поездов с установок КТСМ-01 в течение 2006 года. Распределение вероятности для класса исправных состояло из выборки: 6 500 000 букс (апрель - декабрь 2006 года), для класса неисправных букс - выборки - 1200. На рисунке 15 приведено пересечение опытных распределений двух классов состояний букс. Задача распознавания состоит в определении уравнения линии вида D (Ur, Otn), которая, проходя по рассматриваемому пространству (плоскости в нашем случае), минимизировала бы вероятность суммарной ошибки распознавания неисправных букс по двум признакам. Назовем эту линию для удобства пороговой кривой, которая определяет границу между классами разных состояний.

Теоретическое решение задачи определения разделяющей функции в условиях неоднозначности распределений (см. рисунок 16) приведет к большому числу ошибок распознавания, что недопустимо для железнодорожной отрасли.

Предложено пороговую кривую в пространстве значений признаков Ur, Otn образовывать наложением трех пороговых ограничений (см. рисунок 16):

1) порог только по уровню относительной (избыточной) температуры нагрева буксы (признак Ur), определенному предельно допускаемым в эксплуатации нагревом подшипников;

Рисунок 16 - Опытные распределения двух диагностических параметров (Ur, Otn) для классов исправных (зеленый) и неисправных (красный) букс и схема образования пороговой кривой

2) пороговое ограничение в зоне пересечения областей значений обоих признаков для классов исправных и неисправных букс (в так называемой «зоне неопределенности»);

3) пороговое ограничение для букс с большим нагревом относительно других букс в вагоне (признак Otn).

Рассмотрим правила образования каждого порогового ограничения.

Для первого ограничения лимитирующей температурой нагрева служит абсолютное значение температуры недопустимого в эксплуатации процесса каплепадения смазки. Зная данную температуру, через коэффициент передачи относительной температуры с подшипника на зону контроля корпуса буксы (определенный с помощью термомеханической модели) находим пороговую относительную температуру на корпусе в зоне контроля.

Для второго ограничения в зоне неопределенности предлагается на базе имеющегося богатого статистического материала применить коэффициент, представляющий соотношение количества (вероятности) неисправных букс к количеству исправных букс. Для одномерного распределения

.

Для двумерного (по двум признакам Ur ,Otn) запишется в виде

,

где РН(Ur,Otn), РИ(Ur,Otn) - частость неисправных и исправных букс;

fН(Ur,Otn), fИ (Ur,Otn) - частота неисправных и исправных букс;

NН, NИ - общее количество неисправных и исправных букс.

В результате по рассчитанным принятым диапазонам значений коэффициента К можем построить множество пороговых кривых для зоны 2, каждая из которых будет отражать определенную известную нам степень риска от минимального значения до максимального.

Для третьего ограничения для букс с высоким относительным нагревом необходимо использование нового признака, производного от признаков Ur и Оtn (признак «Разность»):

Рi = Uri - Urср. = Uri(1-1/Otni).

Разность значений признака Ur рассматриваемой буксы и среднего значения по вагону Urср можно трактовать как перегрев буксы относительно «нормального» уровня нагрева для данного режима. Потенциал признака «Разность» можно повысить за счет применения статистического алгоритма расчета «нормального» уровня нагрева букс.

С использованием разработанной апостериорной методики определения порогов теплового контроля выбираются соответствующие пороговые значения для СТК на территории России и утверждаются ОАО «РЖД».

В заключение остановимся кратко на основных результатах внедрения программно-технических средств распределенной системы теплового контроля и мониторинга нагрева буксовых узлов. В диссертации приводится график влияния объема внедрения КТСМ по годам на уменьшение браков по буксовому узлу. Напомним, что браки по буксовому узлу составляют около 60 % всех браков по вагонному хозяйству. В диссертации приведены также графики, которые показывают, что с увеличением объемов внедрения КТСМ и АСК ПС на сети дорог происходит снижение задержек поездов и снижение отказов средств теплового контроля.

По данным Департамента вагонного хозяйства о работе СТК за 1-е полугодие 2008 г., в диссертации выполнена оценка вероятностных характеристик работы распределенной системы контроля и мониторинга на сети дорог ОАО «РЖД». Получены следующие значения: вероятность ложной тревоги РЛТ = 6,48х10-8 и вероятность пропуска неисправных букс: РПР = 3,55х10-10.

Заключение

В результате проведенных теоретических и экспериментальных исследований разработаны условия реализации предложенного метода исследования бесконтактного теплового контроля различных типов буксовых узлов с цилиндрическими и коническими роликоподшипниками, что обеспечило получение научно обоснованных технических решений, внедрение которых вносит значительный вклад в обеспечение безопасности движения железнодорожного транспорта России и СНГ.

Нижеприведенные выводы, результаты и рекомендации являются основными составными частями решенной проблемы.

1. Впервые создан комплекс математических моделей бесконтактного теплового контроля, системно интегрирующий моделирование следующих процессов: действие нагрузок на буксовый узел во время движения вагона, выделения тепла в зонах трения, распространения тепловых потоков от подшипников к шейке оси и к наружным поверхностям, доступным для теплового контроля зон корпусов букс, излучения тепловой энергии в ИК области спектра, восприятия ИК излучения приемником напольных средств контроля при воздействии различных дестабилизирующих факторов внешней среды с учетом различных геометрических параметров корпусов букс и ориентации сканирующей системы.

Вычислительная реализация комплекса математических моделей позволяет проводить имитационное моделирование процессов теплового контроля и разрабатывать рекомендации по созданию новых систем теплового контроля и совершенствованию технологии контроля базовыми системами, существенно сократив объем экспериментальных исследований.

2. Разработан и реализован комплекс экспериментальных исследований для изучения температурных режимов буксовых узлов с различными типами подшипников в работоспособном и предаварийном состояниях при наличии наиболее часто возникающих в эксплуатации неисправностей. Комплекс включает в себя исследования на стенде, в поездных условиях и в процессе подконтрольной эксплуатации с контактными и бесконтактными измерениями температур и относительных уровней нагрева буксовых узлов.

3. Полученные при инструментальных измерениях распределения температур буксовых узлов в поездных и стендовых условиях, в сравнении с результатами расчетов на термомеханической модели, сопоставимы качественно и количественно (расхождение не более 10 %).

4. Разработана на базе созданных математических моделей методика оценки контролепригодности ходовых частей подвижного состава к тепловой бесконтактной диагностике букс, которая может быть использована для оценки эффективности применяемых средств теплового контроля и при проектировании нового подвижного состава.

Методика применена для оценки контролепригодности буксовых узлов локомотивов постоянного и переменного тока различных серий, грузовых и пассажирских вагонов нового поколения, в том числе с коническими подшипниками кассетного типа. Результатом применения методики явилось:

- обоснование преимуществ контроля установками КТСМ-02 высокоскоростного пассажирского подвижного состава на тележках моделей 68-4076, 68-4075, что было в первую очередь внедрено (замена КТСМ-02 на КТСМ-01) на магистралях ОАО «РЖД» с высокоскоростным движением;

- для обеспечения полноценного контроля буксовых узлов локомотивов обосновано комбинированное применение установок КТСМ-01 и КТСМ-02, что привело к созданию на железных дорогах ОАО «РЖД» специализированных пунктов контроля.

5. Исследованиями на моделях установлено, что нагрев колес при различных режимах торможения (кратковременном, длительном) колодочным тормозом, а также при движении с неотпущенными тормозами, незначительно сказывается на нагреве буксовых узлов (в пределах погрешности напольных средств теплового контроля). Нагрев тормозных дисков скоростных пассажирских вагонов при различных режимах торможения также не сказывается на нагреве буксового узла.

Характер нагрева колеса при тормозных процессах показывает, что для создания систем контроля неотпущенных тормозов по нагреву колес наиболее эффективной зоной контроля является обод колеса и диск.

6. При оценке влияния нагрева неисправной буксы на элементы колеса получено, что при заклинивании роликов между кольцами подшипников средний темп нагрева поверхности корпуса буксы составляет 1,06 град/мин, при этом темп нагрева поверхности ступицы колеса:

- при заклинивании переднего подшипника составляет 0,29 град/мин;

- при заклинивании переднего подшипника - 0,16 град/мин.

Это означает, что температура ступицы при неисправном переднем подшипнике в 6 раз меньше, а при неисправном заднем - в 3,7 раза меньше, чем температура корпуса буксы. Это доказывает нецелесообразность использования для контроля буксовых узлов вспомогательных напольных камер, в которых приемник ориентирован на ступицу колеса.

7. Результаты стендовых испытаний и моделирования аварийного состояния буксового узла с часто встречающейся неисправностью - разрушенным торцевым креплением и смещением корпуса буксы - показывают, что несмотря на последующий выход из строя переднего подшипника может поддерживаться относительная временная работоспособность заднего подшипника в режиме эксплуатационных нагрузок только радиального направления. При этом температура наружных колец и внешних поверхностей корпуса буксы не превышает минимальных пороговых значений, принятых для настройки средств теплового контроля. При такой ситуации полностью исключить случаи несвоевременного обнаружения аварийного разрушения подшипников при нарушении торцевого крепления и сползании корпуса буксы только средствами теплового контроля нельзя.

8. На основе полученных и обоснованных в работе решений создания и совершенствования систем теплового контроля букс:

- разработано техническое обеспечение принципиально новой многофункциональной напольной системы диагностики подвижного состава КТСМ-02, состоящей из действующих подсистем обнаружения перегретых букс КТСМ-02Б и неисправностей тормозного оборудования КТСМ-02Т, с возможностью расширения для подключения к базовой системе подсистем контроля других параметров состояния подвижного состава;

- разработаны рекомендации по повышению эффективности контроля букс разнотипного подвижного состава базовыми средствами КТСМ-01. 9. С учетом структуры и принципов обслуживания подвижного состава в пути следования разработана и технически реализована архитектура распределенной системы теплового контроля и мониторинга нагрева буксовых узлов (АСК ПС) отраслевого назначения.

Для функционирования АСК ПС разработано программное обеспечение автоматизированных рабочих мест оператора линейного поста контроля (АРМ ЛПК) и центрального поста контроля (АРМ ЦПК), которые обеспечивают решение основных задач контроля и диагностики.

10. Для информационного обеспечения АСК ПС в части статистического распознавания класса перегретых (неисправных) букс разработана апостериорная модель, позволяющая определять пороговые значения диагностических признаков в зависимости от сезона, характера участка.

Оцененные по данным эксплуатации сети дорог ОАО «РЖД» за 1-е полугодие 2007 и 2008 гг. значения характеристик работы распределенной системы контроля и мониторинга АСК ПС:

- вероятность ложной тревоги (2008 год - 6,48х10-8; 2007 год - 9,08х10-8),

- вероятность пропуска неисправной буксы (2008 год - 3,55х10-10; 2007 год - 3,79х10-10)

свидетельствуют о рациональном выборе пороговых значений контроля нагрева букс и эффективности работы всех подсистем распределенной системы контроля и мониторинга.

11. По основным техническим характеристикам, влияющим на технико-экономическую эффективность средств теплового контроля, КТСМ-02 имеет преимущество перед КТСМ-01. Годовой экономический эффект от внедрения КТСМ-02 в расчете на одну единицу равен 144.7 тыс. руб.

бесконтактный тепловой контроль букса

Основные положения диссертации опубликованы в работах

1. Миронов А.А. Имитационная модель функционирования аппаратуры теплового контроля буксовых узлов подвижного состава // Транспорт, наука, техника, управление.- 2009.-№5. -С. 8-14.

2. Миронов А.А. Создание отраслевой системы мониторинга безопасности железнодорожного подвижного состава в пути следования // Транспорт Урала. - 2006. - № 2(9). - С. 42-47.

3. Миронов А.А. Виртуальная модель бесконтактного теплового контроля буксовых узлов подвижного состава // Транспорт Урала. - 2008. - № 3(18). - С. 59-65.

4. Миронов А.А., Образцов В.Л., Павлюков А.Э. Температурный режим буксового узла при нарушении торцевого крепления и тепловой контроль // Железнодорожный транспорт. - 2005. - № 6. - С. 60-61.

5. Миронов А.А., Занкович А.В., Павлюков А.Э. Исследование термонагруженности буксового узла с кассетным подшипником // Транспорт Урала. - 2005. - № 6. - С. 54-61.

6. Миронов А.А., Салтыков Д.Н., Образцов В.Л., Павлюков А.Э. Оценка пороговых значений в задаче диагностики букс подвижного состава по тепловым признакам // Транспорт Урала. - 2007. - № 3(14). - С. 69-73.

7. Миронов А.А., Образцов В.Л., Павлюков А.Э. О взаимном нагреве колеса и буксового узла в процессе эксплуатации подвижного состава // Транспорт Урала. - 2008. - № 4(19). - С. 24-29.

8. Миронов А.А., Образцов В.Л., Павлюков А.Э. Контроль нагрева букс и безопасность движения высокоскоростного подвижного состава // Транспорт Урала. - 2009. - № 1(20). - С. 50-54.

9. Павлюков А.Э., Миронов А.А., Занкович А.В. Диагностическая модель бесконтактного теплового контроля букс подвижного состава // Транспорт Урала. - 2004. - № 2. - С. 44-52.

10. Салтыков Д.Н., Павлюков А.Э., Миронов А.А. Исследование и разработка новых технических решений повышения безопасности движения железнодорожного транспорта//Транспорт Урала.- 2006.- №3(10).-С.35-40.

11. Миронов А.А., Павлюков А.Э., Образцов В.Л., Занкович А.В. Моделирование температурных полей буксового узла с цилиндрическими и коническими роликовыми подшипниками // Вестник ВНИИЖТ. - 2007. - № 2. - С. 37-40.

12. Миронов А.А., Ефимов В.П., Павлюков А.Э. Буксовый узел тележки - преемственность технологий моделирования при решении задач жизненного цикла // Тяжелое машиностроение. - 2005. - № 8. - С. 29-33.

13 Миронов А.А., Образцов В.Л., Митюшев В.С., Салтыков Д.Н. Тепловой контроль буксовых узлов инфракрасной оптикой // Локомотив. -2008. - № 4. - С. 29-32

14. Пат. 2340496 Рос. Федерация, МКИ B 61 K 9/06 от 14.08.2006. Способ обнаружения заторможенных колесных пар рельсового подвижного состава / Митюшев В.С., Мозжевилов А.Б., Миронов А. А., Лядов В.В.; ООО «Инфотэкс АТ». - 2008. - Бюл. № 34.

15. Пат. 2350502 Рос. Федерация, МКИ В 61 K 9/04 от 24.09.2007. Устройство для настройки средств теплового контроля ходовых частей подвижного состава / Лядов В.В., Миронов А.А., Образцов В.Л., Пигалев Н.Г.; ООО «Инфотэкс АТ». - 2009. - Бюл. № 9.

16. Пат. 2281873 Рос. Федерация, МКИ B 61 H 11/02 от 18.02.2005. Устройство для автоматического торможения подвижного состава при сходе с рельсов / Салтыков Д.Н., Павлюков А.Э., Миронов А.А., Балабанов Е.В.; Уральск. гос. ун-т путей. сообщ. - 2006. - Бюл. № 23.

17. Положительное решение о выдаче патента на изобретение от 27.04.09. Заявка № 2008111204/11(012118) от 24.03.08. МПК В61К 9/06(2006.01). Напольная камера устройства для теплового контроля ходовых частей рельсового подвижного состава / Балабанов Е.В., Лядов В.В., Миронов А.А., Мозжевилов А.Б., Образцов В.Л., Пигалев Н.Г.; ООО «Инфотэкс АТ».

18. Миронов А.А. Новые функциональные возможности комплексов КТСМ и систем централизованного контроля АСК ПС // Автоматика, связь, информатика. - 2005. - № 12. - С. 64-67.

19. Миронов А.А. Перспективные направления совершенствования средств контроля типа КТСМ-02 и АСК ПС // Автоматика, связь, информатика. - 2009. - № 1. - С. 34-37.

20. Миронов А.А., Тагиров А.Ф. Применение комплектов КТСМ в современных условиях // Автоматика, связь, информатика. - 2002.- № 9. - С. 5-9.

21. Миронов А.А., Образцов В.Л., Павлюков А.Э. Резервы повышения эффективности тепловой диагностики буксовых узлов // Автоматика, связь, информатика. - 2004. - № 2. - С. 5-9.

22. Миронов А.А., Образцов В.Л., Соболев В.Я., Григорьев К.В. Анализ опыта эксплуатации технических средств контроля ходовых частей подвижного состава в движущихся поездах // Автоматика, связь, информатика. - 2005. - № 3. - С. 28-30.

23. Миронов А.А., Образцов В.Л., Соболев В.Я., Григорьев К.В. Анализ опыта эксплуатации технических средств контроля ходовых частей подвижного состава в движущихся поездах // Автоматика, связь, информатика. - 2005. - № 5. - С. 31-34.

24. Миронов А.А., Образцов В.Л., Павлюков А.Э. Контролепригодность подвижного состава к тепловой бесконтактной диагностике // Автоматика, связь, информатика. - 2006. - № 11. - С. 54-57.

25. Миронов А.А., Образцов В.Л., Павлюков А.Э., Митюшев В.С., Пигалев Н.Г. Тепловая диагностика подшипников кассетного типа грузовых вагонов //Автоматика, связь, информатика. - 2007. - № 9. - С. 12-14.

26. Миронов А.А., Образцов В.Л., Павлюков А.Э., Митюшев В.С., Пигалев Н.Г. Тепловая диагностика подшипников кассетного типа пассажирских вагонов // Автоматика, связь, информатика. - 2007. - № 10. - С. 20-22.

27. Миронов А.А., Образцов В.Л., Павлюков А.Э. Технические средства диагностики ходовых частей подвижного состава // Вагоны и вагонное хозяйство. - 2005. - № 2. - С. 4-46.

28. Миронов А.А., Образцов В.Л., Пигалев Н.Г., Павлюков А.Э. Особенности теплового контроля буксовых узлов со смещением корпуса // Вагоны и вагонное хозяйство. - 2005. - № 3. - С. 44-47.

29. Миронов А.А., Павлюков А.Э., Образцов В.Л., Пигалев Н.Г. Температурные режимы работы букс // Вагоны и вагонное хозяйство. - 2006. -№ 3(7). - С. 8-13.

30. Миронов А.А., Митюшев В.С., Григорьев К.В., Образцов В.Л. Распознавание буксовых узлов по тепловым сигналам // Вагоны и вагонное хозяйство. - 2007. - N 3. - С. 42-45.

31. Григорьев К.В., Миронов А.А., Митюшев В.С., Образцов В.Л. Контролировать нагрев буксовых узлов будут в градусах // Вагоны и вагонное хозяйство. - 2009. - N 2. - С. 22-24.

32. Миронов А.А. Расчет теплообразования в вагонной буксе с роликовыми подшипниками цилиндрического типа // Безопасность движения, совершенствование конструкций вагонов и ресурсосберегающие технологии в вагонном хозяйстве: сб. науч. тр. / под. ред. проф. А.В. Смольянинова. - Екатеринбург: УрГУПС. - 2006. - № 38(121). - С. 66-70.

33. Миронов А.А., Образцов В.Л., Занкович А.В., Пигалев Н.Г., Балабанов Е.В., Павлюков А.Э. Кинетика разрушения роликовых подшипников и обнаружение неисправностей букс средствами тепловой диагностики // Безопасность движения, совершенствование конструкций вагонов и ресурсосберегающие технологии в вагонном хозяйстве: сб. науч. тр. / под ред. проф. А.В. Смольянинова. - Екатеринбург: УрГУПС, 2006. - № 38(121). - С. 71-85.

34. Миронов А.А. Ретроспективные аспекты создания, совершенствования и модернизации тепловой диагностики перегретых букс // Проблемы и перспективы развития железнодорожного транспорта: материалы Всерос.науч.-техн. конф.- Екатеринбург: УрГУПС, 2003. - Т. 1. - С. 165-172.

35. Миронов А.А., Павлюков А.Э., Занкович А.В. Разработка термомеханической модели работы буксового узла грузового железнодорожного вагона. Механика и процессы управления: труды 34-го Уральского семинара по механике и процессам управления УРО РАН. - Екатеринбург : Ред. Миасского науч. центра, 2004. - Т. 2. - С. 188-197.

36. Миронов А.А., Кораблев П.А. Информационная система контроля подвижного состава. Современные информационные технологии, электронные системы и приборы железнодорожного транспорта: сб. науч. тр. / под. ред. д-ра техн. наук Б.С. Сергеева. - Екатеринбург: УрГУПС, 2005. - С. 92-97.

37. Миронов А.А. Обоснование критериев тепловой бесконтактной диагностики букс подвижного состава // Безопасность движения поездов: Тр. VI-й науч.-практ. конф. - М.: МИИТ, 2005. - С. VII-17-VII-18.

38. Миронов А.А. Автоматизация контроля нагрева букс подвижного состава // Проблемы и перспективы железнодорожного транспорта: Тез. LXVI Междунар. науч.-практ. конф. - Д.; ДИИТ, 2006. - С. 74.

39. Миронов А.А., Тагиров А.Ф., Образцов В.Л. Автоматизированная система контроля подвижного состава (АСК ПС). Безопасность движения, совершенствование конструкций вагонов и ресурсосберегающие технологии в вагонном хозяйстве: сб. науч. тр. / под ред. проф. А.В. Смольянинова. - Екатеринбург: УрГУПС, 2003. - С. 65-70.

40. Миронов А.А., Образцов В.Л. О стратегии и средствах реализации систем комплексного контроля технического состояния подвижного состава в пути следования // Безопасность движения поездов: Тр. науч.-практ. конф. - М.: МИИТ, 2003. - С. IV-60-IV-61.

41. Миронов А.А. Вероятностный и детерминированный подходы к задаче бесконтактного теплового диагностирования подшипников железнодорожных вагонов // Наука, техника и высшее образование: проблемы и тенденции развития: сб. науч. тр. / под ред. проф. В.П. Мозолина, проф. А.Л. Голубенко. - Изд-во Рост. ун-та, 2006. - С. 148-149.

42. Миронов А.А. Вычислительная технология оценки приспособленности проектируемых ходовых частей подвижного состава к тепловой бесконтактной диагностике букс // Безопасность движения поездов.: Тр. VII-й науч.-практ. конф. - М.: МИИТ, 2006. - С. V-25-V-26.

43. Миронов А.А., Образцов В.Л, Пигалев Н.Г, Павлюков А.Э. Совершенствование средств тепловой диагностики букс для повышения уровня безопасности движения // Проблемы и перспективы развития железнодорожного транспорта: материалы Всерос. науч.-техн. конф. - Екатеринбург: УрГУПС, 2003. - Т. 1. - С. 84-94.

44. Миронов А.А., Занкович А.В., Павлюков А.Э. Моделирование температурного поля вагонной буксы с коническими подшипниками кассетного типа. Подвижной состав ХХI века: идеи, требования, проекты: IV-я Междунар. науч.-техн. конф.: Тез. докл. - СПб., 2005. - С. 144-146.

45. Программное изделие № 45602127.50.5500.003-05, версия 2.0.5.0. Программное обеспечение Автоматизированного рабочего места оператора линейного поста контроля. Сертификат соответствия №ССЖТ. RU.ЦШ15.В.00324.- М.: Федеральное агентство железнодорожного транспорта. Государственное учреждение - регистр сертификации на федеральном железнодорожном транспорте. Зарегистрировано в реестре 24.03.2008.

46.Программное изделие № 45602127.50.5200.001-03. Программное обеспечение Центрального поста системы передачи данных. Сертификат соответствия №ССЖТ. RU.ЦШ15.В.00124.- М.: Федеральное агентство железнодорожного транспорта. Государственное учреждение - регистр сертификации на федеральном железнодорожном транспорте. Зарегистрировано в реестре 29.06.2006.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.