Технология IP-телефонии

Основные характеристики технологии IP-телефонии, ее преимущества и недостатки. Основные устройства, обеспечивающие передачу речи. Стандарты и протоколы в IP. Интерес к IP-телефонии на корпоративном рынке. Программный продукт Internet-телефонии.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 08.11.2011
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Распределенный центр обработки вызовов может ответить на звонок в любое время суток, не зависимо от месторасположения абонента.

Видеовызов позволяет использовать все преимущества оперативного общения с абонентом, быстроты принятия решения и демонстрации каких-либо материалов. Эта функция значительно экономит средства и время, которое могло бы быть потрачено на непосредственное общение.

Провайдерам и операторам домашних сетей будет интересно использовать VoIP -шлюз и аналоговые выносы Cisco ATA для предоставления клиентам услуг IP -телефонии по тарифам, меньшим, чем у традиционных операторов.

2.2 Программный продукт Internet-телефонии

Internet приносит в компьютерную телефонию (Computer Telephone Integration, CTI) по меньшей мере две возможности:

1. Использование Internet в качестве альтернативного канала для передачи голосового трафика. Сейчас появилась возможность интеграции голосовых сообщений и потока данных в одной сети - что может быть более экономным, чем использование традиционных каналов обычной телефонии.

2. Возможность использования Internet для контроля и мониторинга телефонных вызовов. Телефоны имеются повсюду - они легко доступны и просты в использовании. Internet может добавить мощь компьютера к телефону, чтобы сделать его более надежным и функциональным.

Компьютеры могут посылать сообщения друг другу через Internet - e-mail - наиболее знакомый пример. Однако, звук также может быть оцифрован и передан между компьютерами точно так же как любой другой тип данных.

Internet-телефония использует Internet, чтобы послать звуковое сообщение между двумя или больше компьютерными пользователями в реальном времени. Самый первый программный продукт Internet-телефонии, позволяющий пересылать голосовые сообщения по сети, - VocalTec Internet Phone - был представлен израильской фирмой VocalTec (www.vocaltec.com) в начале 1995 года. Впервые пользователь персонального компьютера, оснащенного звуковой платой, микрофоном и имеющего подключение к Internet, смог вести голосовые переговоры с другим таким же пользователем, независимо от того как далеко друг от друга они находились. Большинство программных продуктов из этой же серии, появившихся позже, позволяют пользователям говорить в микрофон и слышать ответ собеседника через колонки.

Не успев родиться, новая возможность привлекла всемирное внимание.

Технология неуклонно улучшалась и очень быстро подошла к отметке, когда общение голосом стало легко возможным, и продолжает развиваться дальше.

Множество компаний представили аналогичные программы. При этом, во многих системах наряду с возможностью обмениваться голосовыми сообщениями уже добавлена возможность вести еще и переписку, набирая сообщения на клавиатуре компьютера, пересылать файлы прямо во время разговора, обмениваться графическими образами, а иногда и видеоизображения. Требования же к качеству Internet-соединения весьма небольшие, так, почти всегда бывает достаточно обычного модема, работающего на скорости 14,400 kbps, чтобы достаточно отчетливо слышать голос человека, который вполне может находиться в это время на другой стороне планеты.

Рассмотрим некоторые программы Internet-телефонии более подробно:

1.VocalTec Internet Phone 4.0

Разработан фирмой VocalTec Ltd. Работает под операционными системами Windows 95, Windows NT, MAC OS, Power Macintosh, имеется версия, работающая под Windows 3.1. Объем инсталляционного файла составляет порядка 4Mb. Позволяет звонить как через сервер доступа, так и непосредственно по IP- адресу. В процессе разговора пользователи могут обмениваться файлами, а также вести переписку, причем если у каждого из пользователей имеется установленные русские шрифты, то сообщения можно писать по-русски. В программу встроена возможность при отсутствии вызываемого абонента, отправить ему голосовое сообщение по электронной почте. Для того, чтобы прослушать такое послание, пользователь должен будет установить Internet Voice Mail. Качество звука - очень хорошее, что неудивительно, ибо фирма VocalTec достаточно давно занимается передачей голосовых сообщений через Internet, а версия IPhone далеко не первая. Коммерческая версия стоит $49.95 долларов США, но есть возможность загрузить демонстрационную версию программы с ограниченным сроком действия. Не так давно в продаже появилась следующая версия программы, которая поддерживает передачу еще и видеоизображения.

2.FreeTel 1.0

Очень небольшая по размеру (всего 265Kb), но очень интересная программа Internet-телефонии, разработанная фирмой FreeTel. Работает под управлением Windows 3.1 или Windows 95. Разговор происходит с помощью подключения к серверу FreeTel и выбора из списка подключенных в данный момент к серверу пользователей интересующего человека. Также, как и IPhone, позволяет вести текстовые беседы, но при этом национальные раскладки клавиатуры не поддерживаются, поэтому приходиться общаться либо по-английски, либо волапюком. Программу можно бесплатно переписать с WEB-сервера компании FreeTel, а если заплатить $29.95, то можно получить версию FreeTel+ с большими возможностями. Например, версия FreeTel+ позволяет выбирать собеседника не из общего списка, а из групп, создаваемых зарегистрированными пользователями. При этом появляется возможность по желанию скрыть свое присутствие в общей группе или в группах пользователей во избежание незапланированных звонков. Стоит заметить, что как только кто- то видит, что к серверу подключился пользователь из России, на него обрушивается шквал звонков. Скажем, по личным впечатлениям, у меня сложилось мнение, что как минимум половина жителей Лос-Анджелоса говорят по- русски.

3.CoolTalk

Эта программа Internet-телефонии входит в состав браузера Netscape
Navigator 3.0 распространяемый фирмой Netscape, либо ее можно загрузить отдельно (размер около 2Mb). Программа бесплатная. Функционально CoolTalk - это Plug-In к браузеру. С помощью программы можно звонить непосредственно по IP-адресу вызываемого абонента. После установления соединения имеется возможность, кроме обмена голосовыми сообщениями, передавать друг другу текстовые сообщения или рисовать одновременно в одном окне. Качество звука выше среднего. Имеется поддержка полнодуплексного соединения, при условии достаточно хорошей звуковой платы. Есть возможность вставить в группу запуска операционной системы небольшую программу, которая активизирует CoolTalk в случае, если пришел вызов. Недавно в печати появилось сообщение, что в состав браузера Netscape Navigator 4.0 войдет обновленная версия CoolTalk, которая будет называться LiveTalk. В отличие от CoolTalk, программа LiveTalk будет совместима со стандартом ITU H.323

4.NetMeeting

Так же, как и программа CoolTalk входит в состав полной версии Internet- браузера от фирмы Microsoft - MS Internet Explorer 3.0. Программа бесплатная. NetMeeting обладает практически теми же возможностями, что и программа CoolTalk. При этом имеется еще одна интересная возможность: с помощью NetMeeting можно организовать небольшую конференцию, где каждый из участников будет слышать все, что говорят собеседники. Кроме того, имеется возможность выбрать абонента из списка подключенных к серверу Microsoft.

Безусловно, кроме этих программ существует еще великое множество подобных. Кроме того, необходимо отметить, что в настоящее время фактически каждая крупная компания, занимающаяся передачей данных, начала исследование возможностей Internet-телефонии, чтобы лучше понять эту угрозу их рынкам.

3. ОСНОВНЫЕ ПРИНЦИПЫ РАБОТЫ IP-ТЕЛЕФОНИИ

Интернет фундаментально изменяет наши представления и о телефонии и о способах коммуникации. Хотя телефонные сети и сети передачи данных сосуществовали в течение десятилетий, они развивались независимо друг от друга. IP-телефония объединяет их в единую коммуникационную сеть, которая предлагает мощное и экономичное средство связи. Десятки компаний по всему миру предлагают коммерческие решения для IP-телефонии. Все крупные телекоммуникационные компании начали исследования, с целью лучше понять открывающиеся перспективы. Решения IP-телефонии комбинируют голос и данные в одной сети и предлагают дешевые международные и междугородные звонки и целый набор коммуникационных услуг любому пользователю.

На рисунке 3 показана схема соединения IP сети с ТфОП.

Рис.3 Соединение IP сети с ТфОП.

Общий принцип действия телефонных серверов IP-телефонии таков: с одной стороны, сервер связан с телефонными линиями и может соединиться с любым телефоном мира. С другой стороны, сервер связан с Интернетом и может связаться с любым компьютером в мире. Сервер принимает стандартный телефонный сигнал, оцифровывает его (если он исходно не цифровой), значительно сжимает, разбивает на пакеты и отправляет через Интернет по назначению с использованием протокола Интернет (TCP/IP). Для пакетов, приходящих из Сети на телефонный сервер и уходящих в телефонную линию, операция происходит в обратном порядке. Обе составляющие операции (вход сигнала в телефонную сеть и его выход из телефонной сети) происходят практически одновременно, что позволяет обеспечить полнодуплексный разговор. На основе этих базовых операций можно построить много различных конфигураций. Допустим, звонок телефон-компьютер или компьютер-телефон может обеспечивать один телефонный сервер. Для организации связи телефон(факс)-телефон(факс) нужно два сервера. Для того, чтобы осуществить междугородную (международную) связь с помощью телефонных серверов, организация или оператор услуги должны иметь по серверу в тех местах, куда и откуда планируются звонки. Стоимость такой связи на порядок меньше стоимости телефонного звонка по обычным телефонным линиям. Особенно велика эта разница для международных переговоров

На Рис. 3 приведена схема подключения телефонного оборудования к сети IP.

Рис. 3. Схема организации телефонной связи по сети передачи данных IP.

Основными устройствами, обеспечивающими передачу речи, являются шлюз VoIP, к которому может быть подключена УПАТС или отдельные телефонные аппараты, и речевой терминал. В качестве речевого терминала, в частности, может выступать персональный компьютер удаленного абонента корпоративной сети, снабженный соответствующими аппаратными и программными средствами. В качестве протокола канального уровня, при передачи информации между узлами сети, используется протокол Frame Relay. Для передачи информации, между соседними узлами сети выделяется виртуальный канал с максимально возможной согласованной скоростью передачи.

Оценка количества речевых трактов при организации речевой связи по физическому каналу 2048 кбит/с

Как и в предыдущем случае, рассуждения основаны на том, что между соседними узлами на базе физического канала 2048 кбит/c создан виртуальный канал с максимально возможной согласованной скоростью передачи. В рамках этого канала передаются речевые пакеты IP от различных абонентов, одновременно ведущих телефонные переговоры. Требуется определить максимально возможное количество телефонных абонентов, которые будут иметь возможность одновременно использовать данный канал.

Размер пакета IP составляет 68 байтов, и таким образом размер кадра Frame Relay составит 74 байта (2 байта - флаги, 2 байта - FCS, 2 байта - стандартный заголовок, 68 байтов - пакет IP). Необходимо вычислить, какое количество кадров Frame Relay можно передать по каналу 2048 кбит/c за 30 мс (это условие обосновывается тем, что речевой кадр размером 20 байтов любого из абонентов должен быть передан от узла к узлу со скоростью не менее 5,3 кбит/с). Количество речевых кадров, а значит и число возможных абонентов составит 104.

Таким образом, проведенный анализ показывает, что в физическом канале пропускной способности 2048 кбит/с можно организовать одновременную передачу речевой информации от 104 различных абонентов КСПД (имеющих различные адреса IP), что равносильно организации 104 отдельных речевых трактов.

3.1Информационное представление речевого сигнала

Рассмотрим процесс речевого диалога в системе Интернет с информационной точки зрения. Этот процесс имеет следующие три фазы:

· соединение абонентов,

· обмен информацией,

· разъединение абонентов.

Во время исполнения первой и третьей фаз передаются только управляющие данные и при этом происходит установление соединения. На протяжении второй фазы абоненты обмениваются как управляющими так и информационными данными.

Источником информационных данных является речевой сигнал, возможной моделью которого является нестационарный случайный процесс. В первом приближении можно выделить следующие типы сигнальных фрагментов: вокализированные, невокализированные, переходные и паузы. При передаче речи в цифровой форме, т.е. в виде последовательности чисел, каждый тип сигнала при одной и той же длительности и одинаковом качестве требует различного числа двоичных единиц (бит) для кодирования и передачи. Следовательно, скорость передачи разных типов сигнала также может быть различной. Отсюда следует важный вывод: передачу речевых данных в каждом направлении дуплексного канала разумно рассматривать как передачу асинхронных логически самостоятельных фрагментов цифровых последовательностей (транзакций) с блочной (дейтаграммной) синхронизацией внутри транзакции, наполненной блоками различной длины.

Описанная модель речевого сигнала является базисной для изучения (анализа)и построения (синтеза) IP-телефонных систем. Асинхронность же транзакций позволяет с одной стороны оптимизировать трафик за счет снижения средней скорости передачи и с другой - за счет относительной свободы в воспроизведении каждой транзакции скомпенсировать неидеальности канала передачи. В связи с изложенным обсуждаемая информационная модель речевого сигнала позволяет изменить стандартную постановку задачи конструирования кодека речевого сигнала для систем IP-телефонии. В отличие от традиционных обсуждаемые кодеки целесообразно строить с переменной скоростью. Этот вопрос мы подробнее рассмотрим в разделе, посвященном речевым кодекам.

3.2Передача факсов через IP

Впервые ITU-T опубликовал протокол взаимодействия аналоговых факсимильных аппаратов в 1980 г. Факсимильные аппараты, поддерживающие его, получили название факсимильных аппаратов Группы 3. Протокол состоит из нескольких частей, которые отражают различные стадии процедуры передачи факсов. Сообщения, согласно протоколу Группы 3, передаются при помощи сформированной аналоговыми модемами модулированной несущей через обычную телефонную сеть. При этом скорость передачи образа документа может составлять 64 Кбит/с.

Процедура управления сессией описана ITU-T в спецификации Т.30, а процедура передачи образа документа в спецификации Т.4. Спецификация Т.30 разделяет процесс передачи факсимильного сообщения на пять фаз:

Фаза А - Набор номера, установление соединения

Фаза В - Взаимная идентификация факсимильных аппаратов и выбор скорости

Фаза С - Передача образа документа

Фаза D - Сверка числа страниц, завершение передачи

Фаза Е - Разрыв соединения

Согласно спецификации Т.4, передача образа документа в самой простой своей реализации, представляет собой процедуру синхронной блочной передачи файла формата TIFF-F в виде потока бит с использованием преобразования Гауфмана при помощи модемов. В конце каждого блока следует специальный символ - EOL (end of line). В конце последнего блока на странице символ EOL повторяется шесть раз. Опыт современных компаний-операторов телефонной связи показывает, что передача факсимильных сообщений через каналы междугородней и международной связи - достаточно востребованная пользователями услуга и выгодный бизнес. Несмотря на это, трансляция факсов через сеть IP изначально не была отражена ITU-T в стандарте Н.323. Объясняется это, скорее, не забывчивостью ITU, а изначальной ориентацией стандарта на мультимедийные приложения. Лишь в 1998 г., во второй версии Н.323, спецификация Т.38 вводит понятие технологии Fax Relay, предназначенной для передачи факсимильных сообщений в режиме реального времени. В основе Fax Relay лежит имитация со стороны IP-шлюза относительно факсимильного аппарата полностью прозрачной среды передачи, с сохранением всех фаз вызова отражённых в спецификациях Группы 3.

Практическая реализация услуги FoIP присутствует во всех современных IP-шлюзах операторского уровня. Однако совместимость шлюзов различных производителей при передаче факсимильного трафика часто оказывается под вопросом. Конкретная реализация механизма Т.38 в оборудовании того или иного производителя является закрытой информацией. Особый интерес представляет информация компании CISCO Systems о реализации Т.38 Fax Relay в производимых ею шлюзах IP-телефонии. Согласно CISCO Systems, после установления соединения с IP-шлюзом и передачи информации о номере вызываемого абонента (Фаза А) происходит попытка вызывающего факсимильного аппарата соединится с вызываемым факсимильным аппаратом и установить параметры скорости соединения (Фаза В), при этом голосовые шлюзы на приёмном и передающем концах детектируют, перехватывают и транслируют в сторону соединённых с ними через телефонную сеть факсимильных аппаратов стандартные сообщения спецификации Т.30, в которых задают скорость соединения от 2,4 до 14,4 Кбит/с..Таким образом, при использовании Fax Relay отпадает необходимость кодировать и передавать через канал IP аналоговую несущую (фазы В и D), так как между шлюзами сообщения Т.30, распознанные детекторами, передаются под управлением протокола Н.245, а при передаче образа документа (Фаза С) применяется кодирование со скоростями 2,4 - 14,4 Кбит/с. Следует заметить, что процесс передачи образа документа предъявляет определённые требования к фазовым искажениям сигнала и задержкам в тракте передачи, а также задержкам при кодировании / декодировании. По этой причине, преобразование факсимильного сигнала с использованием гибридных речевых кодеков использующих технологии CELP, MP-MLQ и т.п. неэффективно. Для кодирования факсимильного сигнала наиболее подходящими будут кодеки ИКМ. Потому, среди кодеков, реализованных в современных шлюзах IP-телефонии всегда присутствуют ИКМ кодеки. Процесс передачи образа документа через пакетную сеть, как непрерывного синхронного потока данных, осуществляется с использованием протокола UDP и дополнительных технологических приёмов, среди которых:

1. Избыточное кодирование и коды с коррекцией ошибки.

2. Повторная трансляция потерянных или испорченных блоков информации и пакетов.

3. Буферизация принимаемых данных

телефония передача речь internet

3.2.1 Факс-сервер

Факс-сервер представляет собой компьютер, оборудованный несколькими специальными факсимильными платами (или одной многоканальной картой) и интегрированный с локальной вычислительной сетью (ЛВС). Он обладает многими преимуществами по сравнению с группой из нескольких автономных телефаксов, позволяя обмениваться факсимильными сообщениями с лучшим качеством, большими удобствами и меньшими издержками. Факс-сервер наделяет каждого пользователя ЛВС возможностью передавать и принимать факсимильные сообщения с помощью своего рабочего ПК. При его использовании отпадает необходимость в дорогой термобумаге, так как все принятые сообщения сохраняются в виде файлов, которые в случае необходимости можно распечатать с помощью обычного сетевого или локального принтера; облегчается контроль затрат на пересылку сообщений (факс-сервер регистрирует все процессы в файле-отчете); и наконец, факс-сервер является более дешевым вариантом, чем подключение каждой рабочей станции к телефонной сети с помощью модема.

Передача. На каждом ПК локальной сети устанавливается специальная программа. Она дает возможность пользователю отправлять документы со своего компьютера. Достаточно указать документ, подлежащий отправке, и телефонный номер адресата. Все остальное факс-сервер сделает сам, оповестив пользователя об успешной передаче документа адресату. Причем все несрочные сообщения могут быть сохранены на диске факс-сервера и отправлены в ночное время по более низким тарифам. Некоторые факсимильные серверы также позволяют рассылать документы большому числу адресатов.

Прием. Факс-сервер принимает каждое поступающее факсимильное сообщение и сохраняет его в общей директории либо в персональной директории пользователя, извещая об этом в первом случае секретаря, а во втором - конкретного пользователя. Права доступа к обеим директориям для каждого пользователя могут быть ограничены. Этим обеспечивается сохранение конфиденциальности принимаемой информации.

Понятно, что сохранение поступающих сообщений в персональных директориях пользователей является наиболее удобным, однако для реализации такой возможности требуется применение специальных способов маршрутизации сообщений. На сегодняшний день актуальны следующие два способа: ручная маршрутизация и распознавание тональных сигналов.

При применении ручной маршрутизации все поступающие сообщения сохраняются в общей директории. На компьютер секретаря каждый раз выводится извещение и "шапка" поступившего сообщения. Если ее достаточно для определения конечного адресата, то секретарь нажатием одной клавиши отправляет сообщение в персональную директорию сотрудника. В противном случае секретарь просматривает все сообщение и только после этого переадресует документ.

Распознавание тональных сигналов является наиболее практичным способом маршрутизации. Его суть проста. Каждый сотрудник имеет персональный добавочный номер, который указывается после номера телефакса организации. Для того чтобы передать документ конкретному сотруднику, достаточно позвонить по номеру организации и после ответа факс-сервера ввести добавочный номер сотрудника с помощью тональных сигналов. Таким образом, документ сразу попадает в его персональную директорию. Этот способ является наиболее практичным, поскольку все телефаксы имеют режим тонального набора. Соответственно, набрав номер из пяти или более знаков, абонент безо всякого труда переключит телефакс в режим тонального набора и введет еще две-три цифры. Это удобно, не отнимает много времени и гарантирует доставку сообщения адресату.

4. АНАЛИЗ ПОДХОДА ОРГАНИЗАЦИИ СЕТИ IP-ТЕЛЕФОНИИ

4.1Варианты построения сетей IP-телефонии

Для создания корпоративной IP-телефонной сети необходимо установить специальное шлюзовое оборудование (Voice Gateway), соединив офисные УПАТС через сеть Internet . эксплуатации. При этом обычный провайдер услуг сети Internet не сможет гарантировать предоставление требуемой полосы пропускания, так как по каналу передаются и данные и речь. Во избежании подобных проблем выгоднее всего воспользоваться услугами ITSP. Провайдеры IP-телефонии гарантируют не только доступ к шлюзовому оборудованию, но и необходимую полосу пропускания.

ITSP предоставляют возможности для вызовов следующих типов:

1."От телефона к телефону". Вызов идет с обычного телефонного аппарата к комплекту оборудованию ITSP и через сеть Internet доходит до другого ITSP, который осуществляет обратные преобразования.

2."От компьютера к телефону". Для компании предпочтительнее установить на каждое автоматизированное рабочее место локальной сети программное обеспечение IP-телефонии и микрофон (большинство современных ПК уже имеют звуковые адаптеры и акустические системы) и подключить локальную сеть к ITSP.

3."От WEB браузера к телефону". С развитием Internet стал популярен поиск деловых партнеров через сеть. На WEB-узле компании, в области информации о контактах размещается кнопка "Вызов", нажав на которую можно осуществить речевое соединение с компанией. Это удобно для деловых людей, не расстающихся со своими портативными компьютерами, или для пользователей, обращающихся в центры технической поддержки за консультациями. Стоимость такого звонка для вызывающего пользователя равна стоимости подключения к провайдеру Internet.

Сеть на базе протокола H.323

Наиболее известным является подход, предложенный Международным союзом электросвязи (ITU) в Рекомендации H.323. Сети, построенные на базе протоколов H.323, ориентированы на интеграцию с телефонными сетями и могут рассматриваться как наложенные на сети передачи данных сети ISDN. В частности, процедура установления соединения в таких сетях IP-телефонии базируется на Рекомендации ITU Q.931 и практически идентична данной процедуре в сетях ISDN.

Описанный вариант построения сетей IP-телефонии больше подходит для операторов телефонной связи, желающих использовать сети с маршрутизацией пакетов IP для предоставления услуг междугородной и международной связи.

Рис. 4.1 Архитектура сети, базирующейся на протоколе H.323

Причем IP-телефония будет для них основной предоставляемой услугой. Протокол RAS, входящий в набор протоколов H.323, обеспечивает операторам связи высокий уровень контроля за использованием сетевых ресурсов, поддержку аутентификации пользователей и начисление оплаты за

предоставленные услуги. Кроме базового вызова в сетях, построенных на базе протоколов H.323, предусмотрено предоставление дополнительных услуг в соответствии c Рекомендациями ITU H.450.х.

Сеть на базе протокола SIP(Session Initiation Protokol)

Второй подход, связанный с использованием протокола SIP (Session Initiation Protocol), ориентирован на интеграцию услуги передачи речевого трафика по IP-сетям с остальными услугами Internet. Этот подход, предложенный телекоммуникационной стандартизирующей организацией IETF в документе RFC 2543, является намного более простым для реализации в сравнении с H.323, но меньше подходит для организации взаимодействия с телефонными сетями. В основном это связано с тем, что сервер SIP не

сохраняет сведений о текущих соединениях (Stateless), то время как узлы ТфОП напротив сохраняют информацию обо всех установленных соединениях (Statefull). Кроме того, сигнальный протокол SIP, базирующийся на основе протокола HTTP (RFC 2068), плохо согласуется с системами сигнализации, используемыми в ТфОП.

Этот вариант больше подходит для поставщиков услуг Интернет для предоставления еще одной услуги - Интернет-телефонии. Причем эта услуга будет являться всего лишь небольшой частью пакета услуг, и будет предоставляться, например, по фиксированным тарифам, при этом будет использоваться максимально упрощенная схема управления услугами.

Рис.4.1 Архитектура сети, базирующейся на протоколе SIP

Сеть на базе протокола MGCP

Еще один подход, связанный с декомпозицией шлюзов, предполагает разбиение шлюзов на основные функциональные блоки: шлюз - MG (Media Gateway), устройство управления шлюзом - CA (Call Agent) и сигнальный шлюз - SG (Signalling Gateway), и определение интерфейсов между блоками.

Весь интеллект декомпозированного шлюза: обработка сигнальной информации и логика контроля ресурсов - сосредоточен в устройстве управления. Сами шлюзы только выполняют функции преобразования речевой информации, поступающей со стороны ТФОП в вид пригодный для передачи по сетям с маршрутизацией пакетов IP: кодирование и упаковка речевой информации в пакеты RTP/UDP/IP, а также обратное преобразование. Один контроллер шлюзов CA управляет одновременно несколькими шлюзами. Сигнальный шлюз выполняет функции STP . транзитного пункта сигнализации. Такое решение обеспечивает высокую степень масштабируемости и простоту эксплуатации сети. Шлюзы не являются интеллектуальными устройствами, требуют меньшей производительности процессоров и, следовательно, становятся менее дорогими. Кроме того очень быстро вводятся новые протоколы сигнализации или дополнительные услуги, так как эти изменения затрагивают только контроллер шлюзов, а не сами шлюзы.

Третий подход, предлагаемый организацией IETF (рабочая группа MEGACO) достаточно хорошо подходит для развертывания глобальных сетей IP-телефонии, приходящих на смену традиционным телефонным сетям. Если распределенный шлюз подключается к ТФОП при помощи сигнализации по выделенным сигнальным каналам (ВСК), то сигнальная информация вместе с пользовательской информацией сначала поступает в транспортный шлюз, азатем передается в устройство управления без посредничества шлюзасигнализации. Одно из основных требований, предъявляемых к протоколуMGCP, состоит в том, что устройства, реализующие этот протокол, должны работать в режиме без сохранения информации о последовательности транзакций между устройством управления и транспортным шлюзом, т.е. в устройствах не требуется реализации конечного автомата для описания этой последовательности. Однако не следует распространять подобный подход на последовательность состояний соединений, сведения о которых хранятся в устройстве управления.

Отметим, что протокол MGCP является внутренним протоколом, поддерживающим обмен информацией между функциональными блоками распределенного шлюза. Протокол использует принцип master/slave (ведущий/ведомый), причем устройство управления шлюзами является ведущим, а транспортный шлюз - ведомым, выполняющим команды, поступающие от устройства управления.

Подход на базе протокола MGCP обладает очень важным преимуществом перед подходом, предложенным ITU в Рекомендации H.323: поддержка управляющим устройством сети - CA сигнализации ОКС7 и других видов сигнализации, а также прозрачная трансляция сигнальной информации по сети IP-телефонии. В Н.323 сигнализация ОКС7, как и любая другая сигнализация, конвертируется шлюзом в сигнальные сообщения Н.225.0 (Q.931).

Основным недостатком последнего подхода является незаконченность стандартов. Функциональные составляющие декомпозированных шлюзов, разработанные различными фирмами-производителями телекоммуникационного оборудования, практически не совместимы. Функции управляющего устройства - CA точно не определены. К недостаткам можно также отнести отсутствие стандартизированного протокола взаимодействия между CA. Кроме того, протокол MGCP является протоколом управления шлюзами, но он не предназначен для управления соединениями с участием терминального оборудования пользователей (IP-телефонами). Это означает, что в сети, построенной на базе протокола MGCP, должен присутствовать Привратник или сервер SIP для управления терминальным оборудованием.

Стоит также отметить, что в существующих приложениях IP-телефонии: таких как предоставление услуг международной и междугородной связи, использовать протокол MGCP не целесообразно, в связи с тем, что подавляющее количество систем IP-телефонии сегодня построено на базе протокола H.323. Оператору придется строить отдельную сеть IP-телефонии, построенную на базе протокола MGCP, что связано со значительными капиталовложениями. В то время как, оператор связи, имеющий оборудование стандарта H.323, может подключиться к существующим сетям IP-телефонии.

Стоит также отметить, что в проекте Рекомендации Н.323, версии 4 ITU ввел принцип декомпозиции шлюзов, описанный в последнем подходе.

Управление функциональными блоками декомпозированного шлюза будет осуществляться контроллером шлюза - MGC (Media Gateway Controller) при помощи протокола Н.248, который пока еще не утвержден ITU, но уже сегодня превосходит протокол MGCP по своим возможностям. Европейский телекоммуникационный институт стандартизации ETSI (рабочая группа TIPHON) также предусмотрел интеграцию принципа декомпозиции шлюза с протоколами H.323.

Рис.4.1. Архитектура сети, базирующейся на протоколе MGCP

Также в проекте Рекомендации Н.323, версии 4 предусмотрена возможность прозрачной передачи сигнализации ОКС7 и других видов сигнализации по сетям IP-телефонии и обработка всех видов сигнализации Привратником без преобразования в сигнальные сообщения Н.225.0. Выше указанное означает, что Рекомендация H.323 вбирает в себя все самое лучшее, что предлагается в альтернативных подходах к построению сетей IP-телефонии.

Кроме того, поддержка Привратником сигнализации OKC7 обеспечивает возможность развертывания Интеллектуальных сетей связи (ИС) на базе сетей IP-телефонии.

4.2 Основные принципы построение сети H.323

Для того, чтобы предоставлять услуги IP-телефонии по dial-up, как минимум необходимо установить станционный шлюз, к которому подключаются телефонные линии городской АТС. Шлюз настраивается на оборудование оператора IP-телефонии. Клиенту предоставляется городской телефонный номер, и уникальный персональный код доступа (PIN).

Шлюзы и объединяющая их IP-сеть являются необходимыми элементами для построения телефонной пакетной сети, однако на практике в состав операторского решения входит немало и других компонентов --контроллеры домена или привратники (gatekeeper), система биллинга, и т. п. Они не входят в число обязательных элементов сети, но существенно облегчают жизнь операторам.

Сеть IP-телефонии (согласно рекомендациям ITU-T H.323) представляет собой набор следующих устройств, соединенных по IP-сети:

шлюз(gateway);

диспетчер(gatekeeper);

монитор(administration manager).

Шлюз

Шлюз представляет собой связующее звено между телефонной сетью общего пользования и сетью с коммутацией пакетов, обеспечивает стандартный интерфейс для связи с ТФОП, преобразует речевые и факсимильные сигналы используя алгоритмы кодирования/декодирования (кодеки) из формата коммутации каналов в формат коммутации пакетов и обратно. Он работает с gatekeeper-ом по протоколу RAS для маршрутизации вызовов в сети.

С телефонной сетью общего пользования или учрежденческой связи шлюзы IP-телефонии взаимодействуют через интерфейс телефонной линии или ISDN. Цифровой сигнальный процессор (Digital Signal Processor, DSP) осуществляет, когда это необходимо, демультиплексирование (в случае линий T-1/E-1) и оцифровывание (в случае аналоговых линий), сжатие и кодирование речи и передачу упакованной речи дальше в сеть. Благодаря универсальности протокола IP, т. е. его способности использовать в качестве транспорта практически все что угодно, это может быть интерфейс Ethernet, Token Ring, ATM, SDH и т. д. Таким образом, шлюз IP-телефонии выполняет следующие пять основных функций:

* функции интерфейса с УАТС, телефонной сетью общего пользования и другими телефонными сетями;

* базовые функции обслуживания вызовов (соединение/разъединение и т. п.);

* компрессию и декомпрессию речи в реальном времени;

* упаковку и распаковку сжатой речи;

* функции интерфейса с сетью IP.

Шлюз, в совокупности с привратником сети IP-телефонии, образует универсальную платформу для предоставления всего спектра услуг IP-телефонии. Несомненно, IP телефония постепенно отвоевывает позиции у традиционной коммутируемой телефонии. Первые заявки на IP телефонию - от альтернативных поставщиков услуг и от конечных пользователей. Растет количество заявок и от корпоративных пользователей.

IP телефония сталкивается с классической проблемой: начинать развертывание систем от предоставления магистральных сервисов, или сначала развивать клиентскую часть (два шлюза должны быть развернуты, чтобы обеспечить сервис между телефонами).

Весь спектр решений, от магистральных шлюзов до шлюзов V/IP, устанавливаемых в РС пользователей для подключения офисных АТС и телефонов, предлагает компания Nortel Networks и в частности одно из ее подразделений - компания Micom (продукты объединены в пакет решений под названием "IPConnect"). К достижениям Micom на рынке IP технологий относятся:

1) первая промышленная реализация технологии передачи голоса в IP (Шлюз V/IP Телефон/Факс поверх IP), предназначенной для реальных бизнес приложений;

2) возможность получения дополнительных статей доходов от уже существующей телекоммуникационной инфраструктуры и интеграции следующих компонентов:

3)LAN и IP;

4)WAN;

5)цифровые/Аналоговые PBX;

6)использование технологии ClearVoice, основанной на стандарте G.729.

Архитектура сети IP-телефонии представляет собой соединенные по IP-сети Шлюзы в телефонную сеть, которые предоставляют непосредственный интерфейс абоненту и осуществляют кодировку, сжатие и пакетизацию голоса/факса и их восстановление. Весь механизм взаимодействия шлюзов и учет производится Диспетчерами. Для удобства удаленного конфигурирования и администрирования сети может быть использован Монитор. Эти три компонента у разных производителей могут называться по-разному, но все они выполняют функции, обобщенные выше.

Кроме описанных выше требований, оборудование для IP-телефонии может поддерживать еще некоторые возможности.

Привратник (gatekeeper)

Использование привратника повышает возможности масштабирования, за счет централизации данных о маршрутах и планах нумерации, что облегчает процессы модификации и расширения сети. Привратник работает с адресной системой, определяет IP адреса удаленного шлюза, указанного в конфигурации для вызываемого номера. Данное устройство также управляет полосой пропускания и качеством услуг. Каждый привратник имеет понятие "зоны" административного контроля, в пределах которой он управляет множеством шлюзов. Такие зоны, как правило, устанавливаются соответственно границам географических зон. Привратник управляет маршрутизацией сигнальных сообщений между терминалами, расположенными в одной зоне: привратник может организовывать сигнальный канал напрямую между терминалами или же ретранслировать сигнальные сообщения от одного терминала к другому. В этом случае привратник в любое время знает состояние конечных пользователей, поэтому на него может возлагаться предоставление дополнительных услуг: переадресация, передача, постановка на ожидание и перехват вызова и т.д.

При отсутствии в сети привратника, преобразование адреса вызываемого абонента в транспортный адрес IP-сети должно выполняться шлюзом.

Серверы биллинга

Серверы биллинга используются для проведения расчетов за предоставляемые оператором услуги связи. Для того, чтобы не использовать различные биллинговые системы для учета различных услуг, лучше всего остановиться на биллинговых системах нового типа, позволяющих учитывать все современные услуги связи.

RADIUS сервер выполняет функции идентификации, авторизации и учета (ААА). Сервер RADIUS собирает и сохраняет данные о вызовах, которые поступают от шлюзов VoIP. Серверы биллинга собирают эти данные с серверов RADIUS и обрабатывают данные с помощью специальных биллинговых приложений. Счета рассылаются абонентам через Интернет или по почте в зависимости от модели обслуживания, принятой у того или иного провайдера.

Монитор

Монитор - необязательный дополнительный модуль сети IP-телефонии, подключаемый только к IP-сети, используемый для удаленного конфигурирования и поддержки остальных устройств сети- шлюзов и диспетчеров.

Функции: интерфейс для удаленной настройки через IP-сеть параметров шлюзов и диспетчеров сети IP-телефонии.

Монитор является удобным средством конфигурирования и администрирования сети. В первых шлюзах для этого просто использовались стандартные сетевые приложения, такие как pcAnywhere. Позднее в целях оптимизации работы производители оборудования IP-телефонии стали выпускать собственные приложения для этих целей.

Влияние задержек в сети IP/H.323

Сети с коммутацией пакетов были созданы для передачи данных, и возможность их использования для передачи голосового или факсимильного трафика в реальном времени, по аналогии с традиционной телефонией, в значительной степени зависит от вносимой ими при прохождении сигнала задержки.

Важно отметить тот факт, что задержки в сетях с коммутацией пакетов влияют не только на качество передачи речевого трафика в реальном времени. Не менее важно и то, что данные задержки в определённых ситуациях могут нарушить правильность функционирования телефонной сигнализации в цифровых трактах Е1/Т1 на стыке голосовых шлюзов с оборудованием коммутируемых телефонных сетей. Причиной этого можно назвать тот факт, что набор рекомендаций Н.323 в момент своего появления в 1997 г. был ориентирован на мультимедийные приложения, осуществляющие аудио и видео конференцсвязь через сети IP. Данное решение позволяло значительно снизить стоимость таких систем по сравнению с их аналогами, работающими в сетях традиционной телефонии с коммутацией каналов. В процессе выделения IP-телефонии в самостоятельное направление и развития её до услуги операторского уровня, возникла необходимость соединения IP-шлюзов с телефонными станциями ТфОП по цифровым трактам Е1/Т1. При этом, шлюзы осуществляют взаимодействие с цифровыми АТС, используя стандартные механизмы телефонной сигнализации Q.931, интерпретированные через команды Н.225 и транслируемые в IP-сети с использованием протокола TCP. Согласно рекомендации Q.931, при установлении телефонного соединения значения временных задержек между фазами выполнения команд сигнализации строго регламентированы. Однако, при интерпретации в IP-шлюзах команд телефонной сигнализации Q.931 стеком Н.225/ТСР/IP, задержки, возникшие на пути прохождения сигнала увеличивают заданные временные интервалы между командами Q.931, и в большинстве случаев нарушают целостность функционирования данного протокола. Хотя версия 2 набора рекомендаций Н.323 в фазе 2 предусматривает процедуру Н.323v2 Fast Connect, ускоряющую обработку команд Q.931 стеком Н.225/ТСР, задержки IP-канала, особенно характерные для инфраструктуры Интернет, могут заведомо превышать все допустимые значения временных интервалов протокола Q.931. Данное обстоятельство можно расценивать как ещё один аргумент в пользу использования выделенных каналов при построении сетей IP-телефонии.

4.3 Анализ задержки передачи речи по сети передачи данных IP

Для определенности условимся, что в сети осуществляется телефонные разговоры между 103 абонентами речевых терминалов двух различных узлов КСПД, соединенных каналом 2048 кбит/c. Локальная сеть функционирует согласно протоколу Ethernet, 10 Мбит/c. Метод передачи информации, предусмотренный протоколом Ethernet, заключается в том, что перед посылкой данных станции "слушают" сеть, чтобы определить, используется ли она в данный момент. Если сеть используется, то желающая передавать станция ожидает. Передача информации осуществляется кадрами Ethernet, которые имеют формат, представленный в табл. 4.3

Табл. 4.3 Формат кадра Ethernet

Каждый речевой пакет пользователя упаковывается в кадр Ethernet и передается по локальной сети согласно приведенному выше правилу. Это означает, что пакет 113 - го абонента будет передан с задержкой 8 мс. Такое заключение сделано из следующих соображений: размер кадра Ethernet для каждого абонента будет иметь размер 94 байта или 752 бита (68 байтов - размер речевого пакета IP, 26 байтов - служебная информация кадра Ethernet), а скорость передачи кадра по локальной сети составляет 10 Мбит/c. Значит, максимальная задержка передачи по локальной сети будет составлять:

103 * [ 752 бита / 10000000 бит/c ] = 0,008 с.

На данных (скоростных) направлениях применяются магистральные маршрутизаторы серии Cisco 7000, или, в недалеком будущем, Cisco 7200, которые отличаются высокой производительностью (например, у маршрутизатора Cisco 7200 скорость передачи по системной шине составляет 600 Мбит/с). Из этих соображений, вносимая ими задержка, при обработке пакетов IP на сетевом уровне ЭМВОС, будет незначительная и учитываться не будет.

Из маршрутизатора речевой пакет IP передается на порт с функциями FRAD коммутатора Frame Relay серии Cascade STDX - 6000, где формируется кадр Frame Relay для передачи информации между узлами сети. Информация между маршрутизатором и коммутатором передается со скоростью 2048 кбит/c (скорость физического интерфейса), и это означает, что последовательная задержка передачи пакета IP в худшем случае составит 27 мс (задержка передачи 103 пакетов IP размером 68 байт со скоростью 2048 кбит/с составит 27мс). Размер кадра Frame Relay составит 74 байта (2 байта - флаги, 2 байта - FCS, 2 байта - стандартный заголовок, 68 байтов - пакет IP). Таким образом, последовательная задержка передачи речевого пакета 103-го пользователя составит 30 мс. Задержка распространения сигнала, рассчитывалась из того условия, что передача осуществляется по коаксиальному кабелю, и в соответствии с рекомендацией ITU G.114 рассчитывается из соотношения: задержка распространения (мс) = 0,004 * протяженность канала связи (км)

На Рис. 4.3 представлена схема распределения задержек при передачи речи по сети IP КСПД.

4.4 Выделенный канал

Перед началом обмена коммерческим трафиком сеть начинающего оператора IP-телефонии будет проходить тестирование для определения качества терминации телефонных вызовов и процента их успешного завершения. От результатов тестирования зависит стоимость терминации трафика через данную сеть. Успех этой процедуры определяется двумя факторами: способом организации подключения к коммутируемой Телефонной сети Общего Пользования ТфОП и качеством связующего IP-канала между шлюзами. По личному опыту замечу, что требования иностранных компаний операторов к задержке и пропускной способности сети подключающегося оператора достаточно высоки. Например, известная компания-оператор IP-телефонии ITXC высказывает следующие пожелания к качеству сети подключающегося партнёра:

1. Пропускная способность IP-канала - минимум 360 Кбит/с (при терминации трафика в ТфОП по одному тракту Е1 PRI)

2. Постоянное выделенное соединение с фиксированным IP-адресом .

3. Round -Trip Latency - Задержка сигнала в IP-канале при его прохождении в оба конца - менее 400 мс, то есть менее 200 мс при прохождении сигнала в одном направлении.

4. Потери IP-пакетов не более 7% от общего числа в моменты пиковой загрузки канала.

5. PDD - Post Dial Delay - время завершения вызова - 10 секунд с момента набора последней цифры и получения ответного тонального сигнала от вызываемого абонента

6. Завершение вызовов должно быть сопоставимо или выше с завершением вызовов в традиционной коммутируемой телефонной сети.

Кроме вышеперечисленных, ITXC выдвигает также ряд требований, касающихся типов и конфигурации используемого оборудования, биллинговой системы, доступности сети для удалённого мониторинга.

Тем, кто хотя бы однажды запускал со своего компьютера команды PING или TRACERT, полагаю, не требуется объяснять, что обеспечить IP-канал с приведёнными характеристиками и достаточной безопасностью, используя инфраструктуру Публичного Интернет, в большинстве случаев затруднительно. Если компания дорожит своим авторитетом и собирается укреплять свои позиции на рынке IP-телефонии, то вполне обоснованным решением будет организация выделенного канала nґ 64 Кбит/с для включения в IP-сеть Партнёра.

Построение выделенного канала nґ 64 Кбит/с длительный и дорогой процесс. Затраты при этом напрямую связаны с его пропускной способностью и, отчасти, с географической протяжённостью. Тем важнее для начинающего оператора последующее эффективное использование этого канала. Эффективность использования IP-канала во многом определяется объёмом пропущенного через него трафика. Применительно к IP-телефонии можно говорить о максимально возможном числе одновременных телефонных соединений. На сегодняшний день существует большое число способов, методик и рекомендаций, касающихся расчёта пропускной способности канала в зависимости от различных факторов и характеристик используемого оборудования.

5. ОСНОВНЫЕ КОДЕКИ И АЛГОРИТМЫ, ИСПОЛЬЗУЕМЫЕ В IP

Одним из важных факторов эффективного использования пропускной способности IP-канала, является выбор оптимального алгоритма кодирования/декодирования речевой информации - кодека.

Для кодирования звуковой информации обычно используются следующие кодеки: G.711, G.722, GSM0610, G.723, G.723.1, G.728, и G.729. Для кодека G.711 требуется ширина полосы частот в 64 Кбит/с, поэтому он приемлем не во всех IP-сетях (например, в Интернет), т.к. большинство пользователей Интернета имеет канал заведомо меньшей ширины. Кодеки с низкой шириной полосы частот - G.729 в 8 Кбит/с и G.723.1 в 5.3/6.3 Кбит/с - вполне подходят для использования в Интернет. В частности, G.723.1 является одним из нескольких "стандартных" кодеков для IP-телефонии, особенно после того, как Intel, Microsoft и Netscape объявили о поддержке этого стандарта звукового кодирования.

Все существующие сегодня типы речевых кодеков по принципу действия можно разделить на три группы:

1. Кодеки с Импульсно Кодовой Модуляцией (ИКМ) и Адаптивной Дифференциальной Импульсно Кодовой Модуляцией (АДИКМ), появившиеся в конце 50 -х годов и использующиеся сегодня в системах традиционной телефонии. В большинстве случаев, представляют собой сочетание АЦП/ЦАП

2. Кодеки с вокодерным преобразованием речевого сигнала возникли в системах мобильной связи для снижения требований к пропускной способности радиотракта. Эта группа кодеков использует гармонический синтез сигнала на основании информации о его вокальных составляющих - фонемах. В большинстве случаев, такие кодеки реализованы как аналоговые устройства.

3. Комбинированные (гибридные) кодеки сочетают в себе технологию вокодерного преобразования/синтеза речи, но оперируют уже с цифровым сигналом посредством специализированных DSP. Кодеки этого типа содержат в себе ИКМ или АДИКМ кодек и реализованный цифровым способом вокодер.

В голосовых шлюзах IP-телефонии понятие кодека подразумевает не только алгоритмы кодирования/декодирования, но и их аппаратную реализацию. Большинство кодеков, используемых в IP-телефонии, описаны рекомендациями семейства "G" стандарта Н.323. Рассмотрим некоторые основные кодеки, используемые в шлюзах IP-телефонии операторского уровня:

1)G.711

Рекомендация, утверждённая МККТТ в 1984 г., описывает кодек, использующий ИКМ преобразование аналогового сигнала с точностью 8 бит, тактовой частотой 8 КГц и простейшей компрессией амплитуды сигнала. Скорость потока данных на выходе преобразователя составляет 64 Кбит/с (8 Бит ґ 8 КГц). Для снижения шума квантования и улучшения преобразования сигналов с небольшой амплитудой, при кодировании используется нелинейное квантование по уровню согласно специальному псевдо - логарифмическому закону A или m - Law. Первые ИКМ кодеки с нелинейным квантованием появились уже в 60-х гг. Кодек G.711 широко распространён в системах традиционной телефонии с коммутацией каналов. Несмотря на то, что рекомендация G.711 в стандарте Н.323 является основной и первичной, в шлюзах IP-телефонии данный кодек применяется редко из-за высоких требований к полосе пропускания и задержкам в канале передачи (всё-таки 64 Кбит/с это много). Использование G.711 в системах IP-телефонии обосновано лишь в тех случаях, когда требуется обеспечить максимальное качество кодирования речевой информации при небольшом числе одновременных разговоров. Одним из примеров применения кодека G.711 могут послужить IP-телефоны компании CISCO.

2)G.723.1

Рекомендация G.723.1 описывает гибридные кодеки, использующие технологию кодирования речевой информации, сокращённо называемую - MP-MLQ (Multy-Pulse - Multy Level Quantization - Множественная Импульсная, Многоуровневая Квантизация), данные кодеки можно охарактеризовать, как комбинацию АЦП/ЦАП и вокодера. Как уже упоминалось выше, своим возникновением гибридные кодеки обязаны системам мобильной связи. Применение вокодера позволяет снизить скорость передачи данных в канале, что принципиально важно для эффективного использования как радиотракта, так и IP-канала. Основной принцип работы вокодера - синтез исходного речевого сигнала посредством адаптивной замены его гармонических составляющих соответствующим набором частотных фонем и согласованными шумовыми коэффициентами. Кодек G.723 осуществляет преобразование аналогового сигнала в поток данных со скоростью 64 Кбит/с (ИКМ), а затем при помощи многополосного цифрового фильтра/вокодера выделяет частотные фонемы, анализирует их и передаёт по IP-каналу информацию только о текущем состоянии фонем в речевом сигнале. Данный алгоритм преобразования позволяет снизить скорость кодированной информации до 5,3 - 6,3 Кбит/с без видимого ухудшения качества речи. Структурная схема кодека приведена на рисунке 3. Кодек имеет две скорости и два варианта кодирования: 6,3 Кбит/с с алгоритмом MP-MLQ и 5,3 Кбит/с с алгоритмом CELP. Первый вариант предназначен для сетей с пакетной передачей голоса и обеспечивает лучшее качество кодирования по сравнению с вариантом CELP, но менее адаптирован к использованию в сетях со смешанным типом трафика (голос/данные). Процесс преобразования требует от DSP 16,4 - 16,7 MIPS (Million Instructions Per Second) и вносит задержку 37 мс. Кодек G.723.1 широко применяется в голосовых шлюзах и прочих устройствах IP-телефонии. Кодек уступает по качеству кодирования речи кодеку G.729а, но менее требователен к ресурсам процессора и пропускной способности канала.


Подобные документы

  • Перспективы развития IP-телефонии (Интернет-телефонии). Сеть Интернет и протокол IP. История развития IP-телефонии. Преимущества использования IP-телефонии. Показатель качества IP-телефонии. Система расчетов за услуги IP-телефонии биллинга и менеджмента.

    курсовая работа [35,3 K], добавлен 16.05.2008

  • Основы IP-телефонии: способы осуществления связи, преимущества и стандарты. Разработка схемы основного канала связи для организации IP-телефонии. Функции подвижного пункта управления. Разработка схемы резервного канала связи для организации IP-телефонии.

    курсовая работа [2,4 M], добавлен 11.10.2013

  • История развития IP-телефонии. Принцип действия. Качество IP-телефонии. Интернет-телефония - частный случай IP-телефонии. Система для звонков по телефону и посылки факсов средствами IP. Стандарт Media Gateway Control. Voice Profile Internet Mail.

    реферат [66,9 K], добавлен 10.04.2007

  • Зарождение концепции многоуровневой иерархической структуры сети телефонной связи. Электронная технология, позволившая перевести все средства телефонии на элементную базу. Развитие IР-телефонии, обеспечивающей передачу речи по сетям пакетной коммутации.

    реферат [25,4 K], добавлен 06.12.2010

  • Согласование различных сценариев IP-телефонии. Осуществление передачи голоса и видеоизображения с помощью IP-телефонии. Способы осуществления просмотра изображения, которое передается собеседнику. Размер звуковых буферов и задержка вызова абонента.

    контрольная работа [1,7 M], добавлен 20.02.2011

  • Основные понятия IP телефонии, строение сетей IP телефонии. Структура сети АГУ. Решения Cisco Systems для IP-телефонии. Маршрутизаторы Cisco Systems. Коммутатор серии Catalyst 2950. IP телефон. Настройка VPN сети. Способы и средства защиты информации.

    дипломная работа [1,1 M], добавлен 10.09.2008

  • Понятие и история развития IP-телефонии, принцип ее действия и структура, необходимое оборудование. Качество связи IP-телефонии, критерии его оценивания. Технические и экономические аспекты связи в России. Оборудование для современной Интернет-телефонии.

    курсовая работа [1,3 M], добавлен 29.11.2010

  • Применение систем IP-телефонии. Интеграция телефонии с сервисами Интернета. Передача голоса по сети с помощью персонального компьютера. Совместимость мобильных номеров. Минимальная стоимость звонка. Номера экстренных вызовов. Регистрация IP-устройства.

    творческая работа [1,3 M], добавлен 05.06.2012

  • Технология IP-телефонии и Wi-Fi. Необходимость внедрения мобильной офисной сети IP-телефонии, план ее проектирования. Настройка сервера Yeastar MyPBX 400 для подключения к оператору Зебра телеком. Расчет капитальных затрат и эксплуатационных расходов.

    дипломная работа [2,3 M], добавлен 19.02.2013

  • Рассмотрение особенностей разработки комплекса по автоматизации анализа попыток внешних проникновений и контроля локальных соединений для сервера телефонии. Общая характеристика протокола SSH, основные версии. Анализ обычной парольной аутентификации.

    курсовая работа [367,8 K], добавлен 22.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.