Оптико-электронные (квантовые) системы и устройства

Изучение свойств материалов, используемых для изготовления ОЭС. Характеристика типов фильтров, оптических систем, детекторов излучения (фотонные, тепловые приемники), охлаждающих, сканирующих систем и анализаторов изображения (растровая модуляция).

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 16.12.2009
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сканирование световым лучом

По принципу действия к системам с электронным сканированием близки устройства со сканированием световым лучом. Пример такого устройства -термоэлектронный преобразователь изображения - термикон (рис.57)

Приемная поверхность термикона состоит, в том числе, из очень тонкой ИК чувствительной пленки. С обратной стороны последней наносится специальный фотоэлектрический слой, эффективность которого зависит от температуры. На фотослой проецируется изображение яркого светящегося пятна, движущегося по экрану электронно-лучевой трубки по заданному закону. В зависимости от положения светящегося пятна на фотослое и распределения температуры на поверхности П количество эмитируемых электронов и фототок в цепи кольцевого коллектора изменяется на 2-3% на каждый градус изменения температуры. Изменение фототока усиливается и управляетэлектроннолучевая трубка И2.

Область применения (расширяющаяся) - в МДП структурах. Максимальное разрешение близко 50 линий на кадр при 1.

16.3 Оптико-механическое сканирование.

В оптико - механических сканирующих устройствах процесс сканирования осуществляется за счет изменения направления оптической оси ОЭс. При этом общее поле обзора последовательно анализируется мгновенным полем зрения оптической системы. Общая классификация таких устройств приведена на Рис.9.

Сканирование может производится за счет движения всей оптической системы прибора или её элементов - зеркал, призм, клиньев, линз, диафрагм. Оптико-механические системы, в которых сканирование осуществляется диафрагмой (щелью) , движущейся в фокальной плоскости иногда называют экранирующими. Широко известный пример - диск Нипкова. Своеобразные методы сканирования используются в системах с волоконной оптикой. Сканирование может осуществляться также путем изменения коэффициента преломления или других оптических свойств материалов, входящих в систему. Сканирование движения всей системы осуществляется в тех случаях, когда возможно использовать перемещение платформы, на которой размещается ОЭС. Для обзора более широкой полосы на местности в таких системах часто используется сканирование по строке. (рис.59).

Сканирование зеркалами: различают сканирование в пространстве предметов (зеркало размещается перед объективом, рис.60) и сканирование в пространстве изображений (используется широкоугольный объектив, обеспечивающий высокое качество изображения по всему полю обзора, зеркало за ним, рис. 61).

Наряду с простым зеркалом в сканирующей системе может использоваться система зеркал, зеркальные призмы, пирамиды и т.д. (рис.62-64). В качестве исполнительных механизмов применяются шаговые двигатели, кулачковые механизмы и т.д.

Рис.9. Классификация оптико-механических сканирующих устройств

Эффективность ОЭП, предназначенных для обзора пространства с неподвижного носителя может быть существенно повышена за счет применения черезстрочной развертки сканирующего луча (рис.65) линейки многоэлементного приемника. Достигаемый результат - уменьшение числа элементов приемника и уменьшение полосы частот коммутационно-усилительного тракта, причем это уменьшение равно m раз, где m = N (числу граней призмы). Недостаток - возможность пропуска цели, именно поэтому ОЭС (платформа) должна быть неподвижна.

Сканирование отверсием в непрозрачном экране - наиболее простой способ сканирования. Классический пример диск Нипкова. Пример этих устройств показан на рис. 66,67. Отверстие в диске Д (рис.66) расположено таким образом, что изображение, ограниченное диафрагмой ДП последовательно анализируется по строкам так, что когда одно отверстие выходит за пределы окна диафрагмы ДП, другое выходит прочерчивая следующую строку. Одна из последних конструкций с указанным механизмом сканирования - тепловизор "Янтарь" (70-е годы , поле обзора 5х4, мгновенное поле зрения 5, частота кадров 25 Гц), которым удалось убеспечить минимально обнаруживаемую разность температур =0,2 - 0,3С.

Зенитный теплопеленгатор - одна из таких разработок (её исллюстрирует рис. 67) проста по конструкции и эффективна. Зеркало (D~1500 мм, f~640 мм) создает изображение точечной цели в плоскости непрозрачной диафрагмы с вырезом , вращаемой двигателем М21 - модулятор). Сигнал запитывает неоновую лампочку Л, которая вращается с частотой диафрагмы М2 в пределах окружности, удобной для восприятия оператором. Легко видеть, что при условии точной ориентации приемного зеркала на цель, лампочка очерчивает полный круг и вспыхивает в определенном секторена краткие моменты времени при прочих условиях

Сканирование путем управления оптическими свойствами элементов, входящих в систему. Управление осуществляется магнитным или электрическим полем. Известно, например, что такие материалы, как нитробензол, кварц, некоторые кристаллы изменяют показатель преломления n при воздействии электрического поля. Для сканирования можно использовать систему фильтров как на рис.68, выполненных из чередующихся слоев некоторых материалов, например, сульфида цинка и креолита. Такие фильтры пропускают только монохроматическое излучение, длина волны которых в четыре раза больше толщины l фильтра. Если изготовить фильтр в виде клина и направить на него монохроматическое излучение, то последнее пройдет только в той части, где толщина соответствует четверти длины волны (при условии n=/4). Введя второй фильтр, развернутый на 90, обеспечим возможность прохождения только той части излучения, которая соответствует участкам фильтров с толщиной 1/4. Подводя к фильтрам напряжение, можно перемещать линии равной толщины и т.о. обеспечить сканирование изображения.

(На рис.68 - ГКР - генератор кадровой и строчной разверток; КФГ, КФВ - клиновые фильтры горизонтальной и вертикальной развертки).

17. Анализаторы изображения - растровая модуляция

Анализатор изображения - это устройство, служащее для извлечения из оптического сигнала в виде изображения наблюдаемого объекта информации о параметрах или свойствах этого объекта.

Обычно анализ изображения осуществляется путем непрерывной или дискретной выборки значений сигнала в отдельных точках плоскости изображений. Сканирование осуществляется с помощью специальных устройств - растровых анализаторов.

17.1 Классификация и принцип действия растровых анализаторов (Р.А.)

РА можно классифицировать по относительному расположению оси вращения растра и оптической оси объектива, по характеру зависимости, амплитуды, частоты, фазы или других параметров модуляции или угла визирования источника излучения, по виду модуляции или параметрам модулированного сигнала.

Классификация по относительному расположению оси вращения растра и оптической оси объектива ОЭП представлена на рис.69. Поэтому признаку различают растры с концентрической (а), эксцентрической (б) и со скрещенными осями.

Ось вращения концентрического растра совпадает с оптической осью ОЭП. Такой растр имеет нерабочую зону в центре, т.к. размеры деталей его рисунка и их линейная скорость около центра приближаются к нулю. Такой растр устанавливается во внутренней обойме подшипника, возможно его неподвижное закрепление - если изображение поля вращается - в этом случае уменьшается нерабочая часть растра в центре. В простейшем случае растр располагается вблизи приемника, как можно ближе к плоскости изображения (ПИ), но и приемник должен быть максимально приближенк ПИ, эти два конструктивных решения могут быть несовместимы. Более того из-за неоднородности чувствительности по площадке приемника в подобной конструкции появляются дополнительные и резкие изменения сигнала.

Ось вращения эксцентрического растра параллельна оптической оси ОЭП. В этом случае "мертвая" зона у растра отсутствует.

Растровый анализатор со скрещивающимися осями имеет ось вращения расположенную под некоторым углом (обычно - прямым) к оси ОЭП.

Различают два вида РА:

-с ограниченной (а) и неограниченной (б) зонами линейности

/Q - параметр модуляции, - угол визирования, - угол поля зрения л - угловой размер зоны линейности/.

Классификация РА по виду модулированного сигнала представлена на рис. 70. Здесь различают три типа: с непрерывной, импульсной и смешанной модуляцией.

Растры с непрерывной модуляцией характеризуются тем, что излучение цели проходит через них в течение времени, составляющего ~50%. В этом случае приемник освещается непрерывным периодическим сигналом, амплитуда, частота и фаза первой гармоники которого зависит от угловых координат цели. Различают амплитудную частотную, фазовую, АЧ, АФ и ЧФ непрерывную модуляцию.

Растры с импульсной модуляцией - излучение от цели проходит через них на приемник в течение времени, короткого по сравнению с периодом модуляции. Причем относительное положение импульса от цели во времени зависит от её угловых координат. Импульсная модуляция может быть амплитудной (АИМ), частотной (ЧИМ), фазовой (ФИМ), широтной и модуляцией по длительности, кодовой и смешанной импульсной.

Растры со смешанной модуляцией характеризуются тем, что наряду с непрерывной модуляцией потока имеет место периодическое импульсное изменение параметров модулированного сигнала. Причем перемещение цели приводит к нарушению закона этого периодического изменения параметров.

17.2 Амплитудная модуляция

Кодирование информации о положении цели в поле зрения можно обеспечить поместив в фокальную плоскость РА в виде секторного диска (рис.71). Затемненная часть РА обычно равна кружку рассеяния объектива, как и ширина темных и светлых секторов по краям - здесь достигается 100% модуляция сигнала. Амплитуда сигнала, вырабатываемая ФП, в данной конструкции зависит не только от положения изображения цели на растре но и от величины потока излучения от цели. Избавится от этого можно введя АРУ и дополнительную полную модуляцию потока излучения. Структурная схема соответствующего ОЭП приведена на рис.72. Естественно, что секторный диск в одних случаях обеспечивает неограниченную зону линейности, в других ограниченную (рис.73, 74). Следует отметить, что фактически понятие: "линейности" условно.

17.3 Частотная модуляция

Зависимость частоты модулированного потока излучения от угловых координат цели, т.е кодирование информации, можно обеспечить, поместив в плоскость изображения эксцентрический РА в виде диска (рис.75), каждый из секторов которого имеет одинаковое число непрозрачных и прозрачных полос, причем центральная полоса каждого сектора направлена по радиусу, остальные ей параллельны. При вращении растра поток излучения модулируется с частотой тем большей, чем дальше от центра находится изображение цели, т.к число модулирующих полос возрастает от центра к периферии диска. Измерение координат цели можно осуществить, если применять две оптические системы размещенные относительно растра т.о., чтобы изображение одной и той же цели были смещены относительно друг друга на 90.Так как фактически в такой системе изменение частоты происходит дискретно, то точность измерения координат пропорциональна , где F - фокусное расстояние, y - величина, определяющая ступенчатый характер изменения частоты при перемещении изображения по радиусу растра. Для преобразования частоты модуляции в амплитуду электрического сигнала с целью декодирования применяются частотные детекторы (рис.76) - в простейшем случае это резонансный контур.Величина напряжения Uвых снимаемого с контура зависит от частоты. Могут быть использованы два контура, резонансные частоты которых 1, 2 разнесены относительно средней частоты. В этом случае в одном контуре при увеличении амплитуда напряжения возрастает, в другом уменьшается, а разность амплитуд определяется знаком и величиной отклонения частоты. Вместо контуров можно использовать схему, состоящую из двух ветвей - с индуктивным и емкостным сопротивлением.

17.4 Фазовая модуляция

Зависимость фазы модуляции потока излучения от угловых координат точечного источника можно обеспечить, например, с помощью РА со скрещенными осями, выполненного в виде надетой на вращающийся барабан тонкой пленки, прозрачность котрой изменяется по синусоидальному закону:

,

где - пропускание, L - длина окружности барабана пленки, N - число полных изменений прозрачности (рис.77).

Следовательно, если на поверхности плёнки сформировано изображение цели, то поток излучения, проходящий через неё и падающий на приемник, а также вырабатываемый сигнал изменяются по синусоидальному закону, причем фаза сигнала зависит от положения изображения цели на пленке растра.

Для того, чтобы зафиксировать начало отсчета фазы, используются различные синхроконтакты и генераторы опорных напряжений (ГОН), которые вырабатывают электрические сигналы, момент появления или фаза которых жестко связана с положением пленки растра и не зависит от положения изображения источника излучения (обведен на рис.77 пунктиром).

Для измерения разности фаз сигнала Uс и опорного напряжения, т.е. декодирования информации о положении цели в поле зрения, используются фазовые детекторы, которые для фиксированного значения фазы называются синхронными детекторами.Принцип действия фазового детектора состоит в том, что сигнал переменного тока, подлежащий выпрямлению поступает на нагрузку через сопротивление, величина которого с помощью опорного напряжения изменяется во времени синхронно с чатотой изменения сигнала. В простейшем случае (рис.78). В качестве переменного сигнала можно применить контакт, включенный последовательно с нагрузкой и управляемый от ГОН.

17.5 Амплитудно-частотная модуляция

Амплитудно-частотный РА модулирует излучение так, что изменение частоты модулированного сигнала определяет знак угла рассогласования, а изменение амплитуды модулированного сигнала определяет величину угла рассогласования. Принцип работы подобных устройств поясняют рис. 79-82.

17.6 Импульсно-частотная модуляция

Импульсно-частотный РА модулирует излучение цели так, что изменение частоты модулированного сигнала определяет знак угла рассогласования, а изменение длительности модуляции потока излучения с той или иной частотой определяет величину угла рассогласования.

РА в данном случае линия раздела серий полос различной частоты представляет собой спираль Архимеда (рис.83).

В заключении раздела на рис.84-89 представлены ряд других РА, обеспечивающих кроме перечисленных функций амплитудно-фазовую, частотно-время-импульсную и широтно-импульсную модуляции.

18. Технические основы систем лазерного зондирования

Одну из мощных современных возможностей дистанционного изучения (количественного контроля) атмосферы и её составляющих обеспечивают лидары - лазерные локационные системы.

Задача лидарного зондирования в приближении однократного рассеяния связана с решением уравнения (уравнения лазерного зондирования).

, (55)

где P(z,) - мощность принимаемого сигнала;

Po() - мощность зондирующего импульса;

- объемный коэффициент обратного рассеяния;

z = сu/2 - пространственное разрешение, зависящее от длительности импульса u и скорости света с;

(z,) - объемный коэффициент ослабления излучения;

А - константа прибора, определяемая площадью приемной системы и пропусканием её элементов;

G(z) функция геометрического фактора лидара.

Функция G(z) определяется процессом виньетирования приемной системой лидара сигнала обратного рассеяния, она может быть расчитана (см. рис. ), если заданы диаметр приемного телескопа D0, поперечный размер зондирующего пучка излучения 0 и его углвая расходимость Qn, фокусное расстояние приемного телескопа и расстояния B и угла между оптическими осями передатчика и приемника лидара, форма и положение полевой диафрагмы приемной системы, например, её расстояние от фокальнойплоскости z0. Меняя z0 можно в значительной степени варьировать динамическим диапазоном лидарного сигнала.

Представленный вариант зондирования может быть расширен за счет много волновой локации или т.н. многочастотного лазерного зондирования. В этом случае удается за счет применения методов решения "обратных задач" трансформировать высотные профили (z,) в спектры размеров аэрозолей N(r,z) на соответствующей высоте z.

Применение двухчастотного зондирования используется для определения концентрации газов в атмосфере, например, её влажности.

Лазерное зондирование влажности a(z) осуществляется лидарным методом дифференциального поглощения, основанном на сравнении двух сигналов, один из которых соответствует длине волны n, совпадающей с линией поглощения паров воды, второй - близкорасположенной длине волны o вне области поглощения.

Причем:

(56)

где k0(z),k(z) - профили коэффициентов поглощения на длинах волн 1,0;

z пространственное разрешение по трассе зондирования;

P0(z) и P1(z) - профили регистрируемых отраженных сигналов на соответствующих длинах волн, приведенные к одному уровню энергии зондирующего импульса. Эти сигналы описываются уравнением (55).

Лидар дифференциального поглощения представляет собой сложный оптико-электронный комплекс. О его принципиальной схеме можно судить по рис.98.

Рис.10

Источники излучения лазер 1 (694,383 нм) и лазер 2 ( =1 см-1) генерирует импульсы со сдвигом во времени ~200 относительно друг друга. Часть излучения, для контроля, уровня энергии направляется к ФЭУ(1,2) . (k1,2 - коллимторы). В аппаратуре, показанной на рис.98, применены в приемной системе два ФЭУ(3,4) для уменьшения динамического диапазона сигнала (возможная альтернатива - применение т.н. динодного съема сигналов при одном ФЭУ).

Для защиты фотокатода ФЭУ4 от мощной засветки, поступающей от близлежащего участка пространства применен блок управления модулятором (БУМ). Метод дифференциального поглощения (МДП), как отмечалось применим для определения концентрации различных газов (NO2, SO2, O3, NH3, CO2). Используется УФ, видимая и ИК области спектра. В последнем случае нашли применение в виде промышленных разработок трассовые лазерные измерители концентрации, которые обладают большей точностью и помехоустойчивостью. Вариант конструктивного исполнения приемопередающего блока лидара показан на рис.99. На рис.100 приведена схма , поясняющая режим работы лидара при контроле состояния атмосферы при рудных разработках. Наряду с МДП все шире применяются лазерные локаторы - спектрометры, использующие явление комбинационного рассеяния и флуоресценции. Принцип действия этих приборов заключается в следующем. Все элементы окружающей среды при облучении коротковолновым (УФ) излучением способны генерировать возбужденное (флуоресцентное) излучение на характерных для данного вещества частотах. Поэтому в приборе на рис. 99 в кчестве источника первичного излучения использован лазер на красителе, обладающий достаточно широкой областью генерируемого спектра ( в качестве источника накачки применялся эксимерный лазер). Излучение лазера на красителе направляется на исследуемый элемент окружающей среды. Излучение флуоресценции воспринимается приемным оьъективом, разлагается компактным монохроматором для выделения интересующего участка длин волн . Величина сигнала I() и будет искомой количественной характеристикой контролируемого участка.

18.1 Применение технологии флуоресцентного анализа в других практических задачах

В последне время происходит бурное развитие флуоресцентных методов анализа и создаются новые приборы, работающие на принципе измерения флуоресценции образцов в различных агрегатных состояниях. Второе рождение этого направления связано с появлением новой элементной базы (лазеры, высокочувствительные приемники излучения для ультрафиолетовой и видимой области спектра), что привело к существенному повышению чувствительности флуоресцентного метода и достижению рекордных значений минимально определяемых концентраций не регистрируемых другими методами анализа. Принципиальные изменения в структуру построения флуоресцентных приборов внесло также появление многоэлементных фотоприемников, что позволило исключить сканирующие устройства из приборов, тем самым упростить их конструкцию и значительно уменьшить их габариты.

Расширение области применения флуоресцентных приборов стимулируют исследования спектров флуоресценции многих объектов и веществ. Например показана высокая эффективность их применения в диагностике качества нефтепродуктов, определения состояния живой ткани в процессе операции или при оценке неизвестного медикоментозного вмешательства в организм человека, так как было показано, что УФ флуоресценция клеток реагирует на малейшие нарушения их функционального состояния, причем зачастую динамику интенсивности излучения удается зарегистрировать даже тогда, когда никакие другие методы не улавливают каких-либо функциональных и структурных изменений в тканях.

В частности, в Казани проведены исследования по изучению спектров люминесценции органов желудочно-кишечного тракта в норме и в экспериментальном илеусе и в практике РКБ освоен новый метод диагностики воспалительных заболеваний органов желудочно-кишечного тракта.

Для флуоресцентной диагностики в медицине используется прибор , схема которого приведена на рис.101. Прибор имеет оригинальную оптическую схему с использованием многоэлементного фотоприемника и импульсного азотного лазера. Для удобства работы излучение лазера и излучение флуоресценции направляется по двум кварцевым одножильным световодам, сформированным в кабель-зонд с устройством для ввода его в анализируемую среду. Излучение лазера через согласующую оптику подается на вход световода, по которому производится облучение исследуемого объекта. Излучение флуоресценции со световода подается на входную щель полихроматора, относитеьное отверстие которого согласовано с апертурным углом кварцевой жилы и составляет величину1:4. Необходимая обратная линейная дисперсия 0,030 мкм/мм при данной светосиле и размере фотоприемника достигается применением вогнутой дифракционной решетки (300 штр/мм) с радиусом кривизны 100 мм. При этом спектральное разрешение прибора при ширине щели 0,1 мм составляет ~ 3 нм. В плоскости спекттра полихроматора установлен многоэлементный фотоприемник - фотодиодная линейка, имеющая 500 светочувствительных площадок размерами 26х500 мкм. Выходной сигнал с приемника излучения усиливается в предварительном усилителе и поступает на схему двойной коррелированной выборки (ДВК), которая предназначена для уменьшения шума фотоприемника.

С ДВК аналоговый сигнал поступает в АЦП, где преобразуется в цифровую форму и вводится в микроЭВМ с помощью устройства ввода и управления (УВиУ). По командам с микроЭВМ устройство ввода и управления формирует диаграмму управляющих напряжений для фотоприемника посредством схемы формирования уровней (СФУ). Кроме того, с УвиУ производится управление электромеханическим затвором (ЭМЗ), установленным перед входной щелью полихроматора.

Графическое и цифровое представление сигнала отображается на мониторе. Программа управления и обработки информации записана на магнитном носителе и вводится в микроЭВМ через устройство УВХЛ (магнитофон). При необходимости работы прибора длительное время в жесткой программе, программа записывается в ПЗУ.

Возвращаясь к проблеме контроля нефтепродуктов, можно показать, что они также флуоресцируют при возбуждении их излучением лазера, а значит для их определения можно использовать вышеописанный прибор для медицины. Вместе с тем, эксперименты показывают, что для работы с нефтепродуктами, растворенными в воде (одна из задач экологического контроля!) чувствительность описанного прибора недостаточна, чтобы работать с реальными образцами без их обогащения. Для повышения чувствительности прибора в полихроматор может быть введен дополнительно усилитель яркости - электронно - оптический преобразователь (ЭОП), с которым стыкуется многоэлементный приемник. Предложенная схема позволила повысить чувствительность прибора на три порядка.

18.2 Источник фемтосекундного импульсного излучения в аимосфере

Солнце, звезды, луна, находящиеся вне атмосферы - важные источникм излучения, используемые при определении характеристик атмосферы Земли. Однако эти источники освещения не позволяют вести наблюдения на любой нужной высоте, там где это необходимо. Поэтому долгое время мечтой ученых геофизиков-метеорологов было создание источника излучения на определенной высоте. В Германии и США проведены эксперименты с фемтосекундными лазерными импульсами (< 10-14с) большой мощности, которые посылались в атмосферу в вертикальном направлении. При этом на месте прохождения импульса наблюдалось явление генерации белого света. . Реализованный опыт позволяет вплотную приблизиться к мечте о беспроводном источнике белого света в небе, открывающим новые многообещающие перспективы в области исследования атмосферы.

Генерация белого света в газах при фокусировании излучения ультракоротких импульсов лазеров с энергией в импульсе Твт (>1012 вт) -известное явление. В ходе последних экспериментов показано, что при использовании современных лазеров, работающих в фемтосекундном режиме, сфокусированные импульсы лазерного излучателяобеспечивают интенсивный белый свет в газе или воздухе и генерируют устойчивые световые полосы с размерами 10 м.

Экспериментальная установка показана на рис.102.

Излучающая часть установки включает: лазерную систему, работающую в фемтосекундном импульсном режиме, устройство сжатия импульсов, оптику фокусировки луча и управления им. Лазерные импульсы максимальной мощностью ~ 2,2 Твт наводились из лаборатории и направлялись в вертикальном направлении. Эти импульсы либо в незначительной степени фокусировались с помощью собирающей линзы, либо направлялись без использования оптики. В последнем случае луч быстро исчезал вследствии самофокусировки. Однако в любом случае профиль распределения интенсивности луча был неустойчив и разделялся вследствие самофокусировкина многочисленные нити, в которых происходит генерация (квази) непрерывного излучения.

Как показывает фотоснимок на рис.102 белый свет виден на небе на большом расстоянии даже невооруженным глазом. В отличие от почти невидимого темно-красного цвета лазерного источника фемтосекундных импульсов, луч кажется желто-белым, причем интенсивность рассеянного света достигает своего максимума на высоте ~ 2 км. Это повышение интенсивности связано с наличием температурного инверсионного слоя, где происходит скопление атмосферных аэрозолей, рассеивающих белый свет.

Описанное явление было использовано при создании установки-лидара, в которой излучающая и приемная системы были разнесены на расстояние 10 м. Лазер изготовлен на титане/сапфире в качестве усиливающей среды и работает на длине волны =790 нм (спектральная ширина - 11 нм, длительность импульса -~ 110 фсек). Максимальная энергия импульса на выходе - 240 миллиджоулей (после сжатия -Твт) при частоте повторения 10 Гц. Диаметр пучка, проходящего через конечную апертуру системы - 60 мм.

Рассеянный обратный свет собирался с помощью телескопа Кассегрена и фокусировался непосредственно на волоконный кабель диаметром 1 мм. Спектральная характеристика принимаемого света анализировалась с помощью оптического многоканального анализатора (ОМА). Основная длина волны лазерного излучения во время этих измерений подавлялась цветными стеклянными фильтрами.


Подобные документы

  • Основы построения оптических систем передачи. Источники оптического излучения. Модуляция излучения источников электромагнитных волн оптического диапазона. Фотоприемные устройства оптических систем передачи. Линейные тракты оптических систем передачи.

    контрольная работа [3,7 M], добавлен 13.08.2010

  • Распространение оптических сигналов. Когерентность светового луча. Анализ источников некогерентного излучения. Энергия лазерного излучения. Тепловые и фотоэлектрические приемники излучения. Волоконно-оптическая сеть. Развитие оптических коммуникаций.

    презентация [1,6 M], добавлен 20.10.2014

  • Исследование технологии построения систем передачи со спектральным уплотнением оптических каналов WDM/DWDM. Характеристика основных принципов работы анализаторов оптического спектра. Организация тестирования параметров линейных сигналов систем WDM/DWDM.

    презентация [1,6 M], добавлен 05.02.2011

  • Измерение оптических характеристик телескопических систем. Измерение увеличения телескопических систем. Измерение увеличения по линейному увеличению. Оценка качества изображения телескопических и микроскопических систем. Определение визуальной разрешающей

    реферат [1,2 M], добавлен 11.12.2008

  • Методы модуляции колебаний оптических частот и их характеристика. Спектр модулированных колебаний. Формы записи оптических сигналов. Оптическое приемное устройство прямого детектирования. Радиоприемное устройство с выходным сигналом на видеочастоте.

    контрольная работа [2,2 M], добавлен 24.08.2015

  • Обзор оптических свойств преобразователей оптического излучения при разных температурах. Изучение возможностей прибора для нагревания кристаллов, собранного на базе ПИД-регулятора ОВЕН ТРМ101. Настройка прибора, разработка инструкции по пользованию им.

    дипломная работа [1,8 M], добавлен 30.06.2014

  • Оптические кабели и разъемы, их конструкции и параметры. Основные разновидности волоконно-оптических кабелей. Классификация приемников оптического излучения. Основные параметры и характеристики полупроводниковых источников оптического излучения.

    курс лекций [6,8 M], добавлен 13.12.2009

  • Особенности применения: автоколлимационной трубы, динаметров, прибора Юдина, апертометра Аббе. Широкоугольные коллиматоры. Параметры гониометра. Ошибки изготовления оптических деталей приборов и их влияние на отклонение параметров оптических систем.

    реферат [3,5 M], добавлен 12.12.2008

  • Использование модуляции для определения требуемых свойств каналов, сокращения избыточности модулированных сигналов, расчета потенциальной помехоустойчивости и электромагнитной совместимости различных систем передачи информации. Виды амплитудной модуляции.

    контрольная работа [767,1 K], добавлен 31.03.2013

  • Модель волоконно-оптической системы передачи. Классификация оптоэлектронных компонентов. Детекторы светового излучения. Оптические разъемы, сростки и пассивные оптические устройства. Определение функциональных параметров, типы и вычисление потерь.

    курсовая работа [2,2 M], добавлен 21.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.