презентация  Нейронные сети

Сеть встречного распространения. Первый слой Кохонена. Выход слоя Гроссберга. Обучение сети встречного распространения. Осуществление интерполяции кодов. Послойность сети и матричное умножение. Градиент квадратичной формы, начальная точка и длина шага.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

                                                                    
 ad88888ba    ad888888b,     ,a8888a,     8888888888    ad88888ba   
d8"     "8b  d8"     "88   ,8P"'  `"Y8,   88           d8"     "8b  
Y8a     a8P          a8P  ,8P        Y8,  88  ____     Y8a     a8P  
 "Y8aaa8P"        aad8"   88          88  88a8PPPP8b,   "Y8aaa8P"   
 ,d8"""8b,        ""Y8,   88          88  PP"     `8b   ,d8"""8b,   
d8"     "8b          "8b  `8b        d8'           d8  d8"     "8b  
Y8a     a8P  Y8,     a88   `8ba,  ,ad8'   Y8a     a8P  Y8a     a8P  
 "Y88888P"    "Y888888P'     "Y8888P"      "Y88888P"    "Y88888P"   
                                                                    
                                                                    

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид презентация
Язык русский
Дата добавления 16.10.2013
Размер файла 130,2 K

Подобные документы

  • Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.

    контрольная работа [1,4 M], добавлен 28.01.2011

  • Искусственные нейронные сети, строящиеся по принципам организации и функционирования их биологических аналогов. Элементарный преобразователь в сетях. Экспериментальный автопилотируемый гиперзвуковой самолет-разведчик LoFLYTE, использующий нейронные сети.

    презентация [1,3 M], добавлен 23.09.2015

  • Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.

    дипломная работа [2,7 M], добавлен 18.02.2017

  • Искусственные нейронные сети как вид математических моделей, построенных по принципу организации и функционирования сетей нервных клеток мозга. Виды сетей: полносвязные, многослойные. Классификация и аппроксимация. Алгоритм обратного распространения.

    реферат [270,4 K], добавлен 07.03.2009

  • Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.

    лабораторная работа [36,1 K], добавлен 05.10.2010

  • Основы нейрокомпьютерных систем. Искусственные нейронные сети, их применение в системах управления. Алгоритм обратного распространения. Нейронные сети Хопфилда, Хэмминга. Современные направления развития нейрокомпьютерных технологий в России и за рубежом.

    дипломная работа [962,4 K], добавлен 23.06.2012

  • Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.

    дипломная работа [2,6 M], добавлен 23.09.2013

  • Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.

    реферат [162,9 K], добавлен 30.09.2013

  • Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.

    дипломная работа [2,3 M], добавлен 13.10.2015

  • Базовые архитектуры компьютеров: последовательная обработка символов по заданной программе и параллельное распознавание образов по обучающим примерам. Искусственные нейронные сети. Прототип для создания нейрона. Поведение искусственной нейронной сети.

    контрольная работа [229,5 K], добавлен 28.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.