Операційні системи

Основні поняття та визначення концепцій операційних систем. Керування процесами і потоками та їх планування, базові поняття. Види міжпроцесової взаємодії. Основні вимоги до керування оперативною пам`яттю. Логічна та фізична організація файлових систем.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык украинский
Дата добавления 02.10.2011
Размер файла 133,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Розмір лінійної адреси, з якою працює система, становить 32 біти. З них 10 біт відповідають адресі в каталозі сторінок, ще 10 -- це індекс елемента в таблиці, останні 12 біт адресують конкретний байт сторінки (і є зсувом).

Розмір елемента таблиці сторінок теж становить 32 біти. Перші 20 біт адресують конкретний фрейм (і використовуються разом із останніми 12 біт лінійної адреси), а інші 12 біт описують атрибути сторінки (захист, стан сторінки в пам'яті, який файл підкачування використовує). Якщо сторінка не перебуває у пам'яті, то в перших 20 біт зберігають зсув у файлі підкачування.

3.Лінійний адресний простір процесу поділяється на дві частини: перші 2 Гбайт адрес доступні для процесу в режимі користувача і є його захищеним адресним простором; інші 2 Гбайт адрес доступні тільки в режимі ядра і відображають системний адресний простір.

Зазначимо, що таке співвідношення між адресним простором процесу і ядра відрізняється від прийнятого в Linux (3 Гбайт для процесу, 1 Гбайт для ядра).

Деякі версії Windows ХР дають можливість задати співвідношення 3 Гбайт/1 Гбайт під час завантаження системи.

4.В адресному просторі процесу можна виділити такі ділянки:

§ перші 64 Кбайт (починаючи з нульової адреси) -- це спеціальна ділянка, доступ до якої завжди спричиняє помилки;

§ усю пам'ять між першими 64 Кбайт і останніми 136 Кбайт (майже 2 Гбайт) може використовувати процес під час свого виконання;

§ далі розташовані два блоки по 4 Кбайт: блоки оточення потоку (ТЕВ) і процесу (РЕВ) (див. розділ 3);

§ наступні 4 Кбайт -- ділянка пам'яті, куди відображаються різні системні дані (системний час, значення лічильника системних годин, номер версії системи), тому для доступу до них процесу не потрібно перемикатися в режим ядра;

§ останні 64 Кбайт використовують для запобігання спробам доступу за межі адресного простору процесу (спроба доступу до цієї пам'яті дасть помилку).

Системний адресний простір містить велику кількість різних ділянок. Найважливіші з них такі:

§ Перші 512 Мбайт системного адресного простору використовують для завантаження ядра системи.

§ 4 Мбайт пам'яті виділяють під каталог сторінок і таблиці сторінок процесу.

§ Спеціальну ділянку пам'яті розміром 4 Мбайт, яку називають гіперпростором (hyperspace), використовують для відображення різних структур даних, специфічних для процесу, на системний адресний простір (наприклад, вона містить список сторінок робочого набору процесу).

§ 512 Мбайт виділяють під системний кеш.

§ У системний адресний простір відображаються спеціальні ділянки пам'яті - вивантажуваний пул і невивантажуваний пул, які розглянемо в розділі 10.

§ Приблизно 4 Мбайт у самому кінці системного адресного простору виділяють під структури даних, необхідні для створення аварійного образу пам'яті, а також для структур даних HAL.

5.Керування пам'яттю є однією з найскладніших задач, які стоять перед операційною системою. Щоб нестача пам'яті не заважала роботі користувача, потрібно розв'язувати задачу координації різних видів пам'яті. Можна використовувати повільнішу пам'ять для збільшення розміру швидшої (на цьому ґрунтується технологія віртуальної пам'яті), а також швидшу - для прискорення доступу до повільнішої (на цьому ґрунтується кешування).

§ Технологія віртуальної пам'яті передбачає введення додаткових перетворень між логічними адресами, які використовують програми, та фізичними, що їх розуміє мікросхема пам'яті. На основі таких перетворень може бути реалізований захист пам'яті; крім того, вони дають змогу процесу розміщатися у фізичній пам'яті не неперервно і не повністю (ті його частини, які в цей момент часу не потрібні, можуть бути збережені на жорсткому диску). Ця технологія спирається на той факт, що тільки частина адрес процесу використовується в конкретний момент часу, тому коли зберігати в основній пам'яті тільки її, продуктивність процесу залишиться прийнятною.

§ Базовими підходами до реалізації віртуальної пам'яті є сегментація і сторінкова організація. Обидва ці підходи дають можливість розглядати логічний адресний простір процесу як сукупність окремих блоків, кожен з яких може бути відображений на основну пам'ять або на диск. Головна відмінність полягає в тому, що у випадку сегментації блоки мають змінну довжину, а у разі сторінкової організації -- постійну. Сьогодні часто трапляється комбінація цих двох підходів (сторінково-сегментна організація пам'яті).

§ У разі сторінкової організації пам'яті логічна адреса містить номер у спеціальній структурі даних - таблиці сторінок, а також зсув відносно початку сторінки. Розділення адреси на частини відбувається апаратно. Елемент таблиці сторінок містить адресу початку блоку фізичної пам'яті, у який відображається сторінка (такий блок називають фреймом) і права доступу. Він може також відповідати сторінці, відображеній на диск. Таблиці сторінок можуть містити кілька рівнів. Таблицю верхнього рівня називають каталогом сторінок. Кожний процес має свій набір таких таблиць. Для прискорення доступу останні використані елементи таблиць сторінок кешуються в асоціативній пам'яті.

Розділ 5. Логічна та фізична організація файлових систем

Лекція №1. Тема: Організація інформації у файловій системі

План:

1. Поняття файла і файлової системи

2. Організація інформації розділами та каталогами у файловій системі

3. Зв'язок розділів і структури каталогів

4. Зв'язки між іменами файлів

5. Атрибути файлів

6. Операції над файлами і каталогами

1.Файл - це набір даних, до якого можна звертатися за іменем. Файли організовані у файлові системи. З погляду користувача файл є мінімальним обсягом даних файлової системи, з яким можна працювати незалежно. Наприклад, користувач не може зберегти дані на зовнішньому носії, не звернувшися при цьому до файла. Розглянемо особливості використання файлів.

§ Файли є найпоширенішим засобом зберігання інформації в енергонезалежній пам'яті. Така пам'ять надійніша, й інформація на ній може зберігатися так довго, як це необхідно. Зазначимо, що більшість збоїв у роботі ОС не руйнує інформації, що зберігається у файлах на диску. Для забезпечення збереження даних підвищеної цінності вживають додаткових заходів (гаряче резервування, резервне копіювання тощо).

§ Файли забезпечують найпростіший варіант спільного використання даних різними застосуваннями. Це пов'язано з тим, що файли відокремлені від програм, які їх використовують: будь-яка програма, якій відоме ім'я файла, може отримати доступ до його вмісту. Якщо одна програма запише у файл, а інша його потім прочитає, то ці дві програми виконають обмін даними.

Файлова система - це підсистема ОС, що підтримує організований набір файлів, здебільшого у конкретній ділянці дискового простору (логічну структуру); низькорівневі структури даних, використовувані для організації цього простору у вигляді набору файлів (фізичну структуру); програмний інтерфейс файлової системи (набір системних викликів, що реалізують операції над файлами).

Файлова система надає прикладним програмам абстракцію файла. Прикладні програми не мають інформації про те, як організовані дані файла, як знаходять відповідність між ім'ям файла і його даними, як пересилають дані із диска у пам'ять тощо - усі ці операції забезпечує файлова система.

Важливо зазначити, що файлові системи можуть надавати інтерфейс доступу не тільки до диска, але й до інших пристроїв. Є навіть файлові системи, які не зберігають інформацію, а генерують її динамічно за запитом. Втім, для прикладних програм усі такі системи мають однаковий вигляд.

До головних задач файлової системи можна віднести: організацію її логічної структури та її відображення на фізичну організацію розміщення даних на диску; підтримку програмного інтерфейсу файлової системи; забезпечення стійкості проти збоїв; забезпечення розподілу файлових ресурсів за умов багатозадачності та захисту даних від несанкціонованого доступу.

Типи файлів

Раніше ОС підтримували файли різної спеціалізованої структури. Сьогодні є тенденція взагалі не контролювати на рівні ОС структуру файла, відображаючи кожен файл простою послідовністю байтів. У цьому разі застосування, які працюють із файлами, самі визначають їхній формат.

Такий спрощений підхід справедливий не для всіх файлів. Є спеціальні файли, що їх операційна система інтерпретує особливим чином. Структуру таких файлів ОС підтримує відповідно до тих задач, які з їхньою допомогою розв'язуються.

Ще однією категорією файлів є виконувані файли. Хоч їх звичайно не розглядають разом зі спеціальними файлами, вони мають жорстко заданий формат, який розпізнає операційна система. Часто буває так, що ОС може працювати із виконуваними файлами різних форматів.

Ще одним варіантом класифікації є поділ на файли із прямим і послідовним доступом. Файли із прямим доступом дають змогу вільно переходити до будь-якої позиції у файлі, використовуючи для цього поняття покажчика поточної позиції файла (seek pointer), що може переміщатися у будь-якому напрямку за допомогою відповідних системних викликів. Файли із послідовним доступом можуть бути зчитані тільки послідовно, із початку в кінець. Сучасні ОС звичайно розглядають усі файли як файли із прямим доступом.

Імена файлів

Важливою складовою роботи із файлами є організація доступу до них за іменем.

Різні системи висувають різні вимоги до імен файлів. Так, у деяких системах імена є чутливими до регістра (myfile.txt і MYFILE.TXT будуть різними іменами), а в інших - ні.

Операційна система може розрізняти окремі частини імені файла. Кілька останніх символів імені, відокремлених від інших символів крапкою, у деяких системах називають розширенням файла, яке може характеризувати його тип. В інших системах обов'язкове розширення не виділяють, при цьому деякі програми можуть, однак, розпізнавати потрібні їм файли за розширеннями (наприклад, компілятор С може розраховувати на те, що вихідні файли програм матимуть розширення .с).

Важливою характеристикою файлової системи є максимальна довжина імені файла. У минулому багато ОС різним чином обмежували довжину імен файлів. Широко відоме було обмеження на 8 символів у імені файла і 3 - у розширенні, присутнє у файловій системі FAT до появи Windows 95. Сьогодні стандартним значенням максимальної довжини імені файла є 255 символів.

2.Кожний розділ може мати свою файлову систему (і, можливо, використовуватися різними ОС). Для поділу дискового простору на розділи використовують спеціальну утиліту, яку часто називають fdisk.

Для генерації файлової системи на розділі потрібно використати операцію високорівневого форматування диска. У деяких ОС під томом (volume) розуміють розділ із встановленою на ньому файловою системою.

Реалізація розділів дає змогу відокремити логічне відображення дискового простору від фізичного і підвищує гнучкість використання файлових систем.

Каталоги

Розділи є основою організації великих обсягів дискового простору для розгортання файлових систем. Для організації файлів у рамках розділу зі встановленою файловою системою було запропоновано поняття файлового каталогу (file directory) або просто каталогу.

Каталог - це об'єкт (найчастіше реалізований як спеціальний файл), що містить інформацію про набір файлів. Про такі файли кажуть, що вони містяться в каталозі. Файли заносяться в каталоги користувачами на підставі їхніх власних критеріїв, деякі каталоги можуть містити дані, потрібні операційній системі, або її програмний код.

Каталог можна уявити собі як символьну таблицю, що реалізує відображення імен файлів у елементи каталогу (зазвичай в таких елементах зберігають низько-рівневу інформацію про файли). Подивимося, як може бути реалізоване таке відображення.

Деревоподібна структура каталогів

Базовою ідеєю організації даних за допомогою каталогів є те, що вони можуть містити інші каталоги. Вкладені каталоги називають підкаталогами (subdirectories). Таким чином формують дерево каталогів. Перший каталог, створений у файловій системі, встановленій у розділі (корінь дерева каталогів), називають кореневим каталогом (root directory).

Поняття шляху

Розглянемо, яким чином формують ім'я файла з урахуванням багаторівневої структури каталогів.

Для файла, розташованого всередині каталогу недостатньо його імені для однозначного визначення, де він перебуває - в іншому каталозі може бути файл із тим самим ім'ям. Тепер для визначення місцезнаходження файла потрібно додавати до його імені список каталогів, де він перебуває. Такий список називають шляхом (path). Каталоги у шляху перераховують зліва направо - від меншої глибини вкладеності до більшої. Роздільник каталогів у шляху відрізняється для різних систем: в UNIX прийнято використовувати прямий слеш «/», а у Windows-системах - зворотний «\».

Абсолютний і відносний шляхи

Є два шляхи до файла: абсолютний і відносний. Абсолютний (або повний) повністю й однозначно визначає місце розташування файла. Такий шлях обов'язково має містити кореневий каталог. Ось приклад абсолютного шляху для UNIX-систем: /usr/local/bin/myfile.

Якщо застосування використовує тільки абсолютні шляхи, йому зазвичай бракує гнучкості. Наприклад, у разі перенесення в інший каталог потрібно буде вручну відредагувати всі шляхи, замінивши їх новими.

Відносний - шлях, відлічуваний від деякого місця в ієрархії каталогів. Щоб його організувати, потрібно визначитися із точкою відліку, для чого використовують поняття поточного каталогу. Такий каталог задають для кожного процесу, і він може бути змінений у будь-який момент командою cd або системним викликом chdiг ( ). Відносний шлях може відлічуватися від поточного каталогу і звичайно кореневий каталог не включає. Прикладом відносного шляху до файла /usr/ local /bin/myfile (за умови, що поточним каталогом є /usr/local) буде bin/myfile, а в ситуації, коли поточним є каталог файла (/usr/local/bin), відносним шляхом буде просто ім'я файла: myfile.

Для спрощення побудови відносного шляху кожний каталог містить два спеціальні елементи:

§ «.»- посилання на поточний каталог

§ «..» - посилання на каталог рівнем вище-батьківський.

З урахуванням цих елементів можуть бути задані такі відносні шляхи, як ../../bin/myfile (за умови, що поточний каталог - /usr/local/lib/mylib) або ./myfile (вказує на елемент у поточному каталозі).

Застосування, що обмежується тільки відносними шляхами під час доступу до файлів (особливо, якщо вони не виходять за межі каталогу цього застосування), може бути без змін перенесене в інший каталог тієї самої структури.

Є й інші можливості полегшити задання шляхів доступу до файлів у каталогах. Одним із найпоширеніших способів є використання змінної оточення PATH, що містить список часто використовуваних каталогів. У разі доступу до файла за іменем його пошук спочатку виконуватиметься в каталогах, заданих за допомогою PATH.

3.Залишилося з'ясувати важливе питання про взаємозв'язок розділів і структури каталогів файлових систем. Розрізняють два основні підходи до реалізації такого взаємозв'язку, які істотно відрізняються один від одного.

Єдине дерево каталогів. Монтування файлових систем

Перший підхід в основному використовується у файловій системі UNIX і полягає в тому, що розділи зі встановленими на них файловими системами об'єднуються в єдиному дереві каталогів ОС.

Стандартну організацію каталогів UNIX зображують у вигляді дерева з одним коренем - кореневим каталогом, який позначають «/». Файлову систему, на якій перебуває кореневий каталог, називають завантажувальною або кореневою. У більшості реалізацій вона має містити файл із ядром ОС.

Додаткові файлові системи об'єднуються із кореневою за допомогою операції монтування (mount). Під час монтування вибраний каталог однієї файлової системи стає кореневим каталогом іншої. Каталог, призначений для монтування файлової системи, називають точкою монтування (mount point). Весь вміст файлової системи, приєднаної за допомогою монтування, виглядає для користувачів системи як набір підкаталогів точки монтування.

У цьому разі на диску є два розділи. На кожному з них встановлена файлова система (типи файлових систем можуть бути різними - це не є обмеженням; у каталозі системи одного типу можна змонтувати систему іншого типу за умови, що цей тип підтримує ОС). На рисунку точкою монтування ми вибрали каталог /usr першої файлової системи. Для користувача системи практично не помітно, що насправді каталог / і каталог /usr відповідають різним файловим системам. Відмінності можуть виявлятися, наприклад, під час спроби перенесення файла: виконання звичайної операції перенесення (mv у UNIX) між файловими системами не дозволяється.

Розглянемо деякі наслідки застосування єдиного каталогу для організації файлової системи.

§ Будь-який файл може бути адресований побудовою відносного шляху від будь-якого каталогу.

§ Від користувача прихована структура розділів жорсткого диска, яка йому у більшості випадків не потрібна.

§ Адміністрування системи спрощується. Наприклад, якщо додамо ще один диск і захочемо перенести на нього каталог /home, достатньо буде виконати кілька простих дій: відформатувати цей диск, задавши на ньому один розділ; змонтувати цей розділ у довільному місці; перенести на нього каталог /home (стерши весь його вміст на вихідному диску); заново змонтувати цей розділ у каталозі /home кореневої файлової системи.

Внаслідок цих дій всі застосування, які використовують каталог /home, працюватимуть у колишньому режимі; на їхню роботу не вплине той факт, що каталог тепер відповідає новій файловій системі, a /home став точкою монтування.

Літерні позначення розділів

Другий підхід, що в основному поширений в лініях Consumer Windows і Windows ХР, припускає, що кожний розділ зі встановленою файловою системою є видимим для користувача і позначений буквою латинського алфавіту. Такий розділ звичайно називають томом. Позначення томів нам знайомі -- цеС:, D: тощо.

Особливості такої реалізації наведені нижче.

§ Вміст кожного розділу не пов'язаний з іншими розділами; відносний шлях можна побудувати тільки за умови, що поточний каталог перебуває на тому самому томі, що і файл.

§ Структура логічних розділів видима для користувача.

§ Перенос каталогу на новий розділ призводить до того, що шлях до цього каталогу зміниться (оскільки такий шлях завжди включає літерне позначення тому). У підсумку програмне забезпечення, яке використовує цей шлях, може перестати працювати.

§ У разі необхідності додавання або вилучення дискового пристрою у системах лінії Consumer Windows користувач не може впливати на те, які літери система присвоює розділам (фактично це залежить від порядку підключення апаратних пристроїв); у системах лінії Windows ХР користувач може вільно змінювати літерні позначення під час роботи системи.

Зазначимо, що нині в ОС лінії Windows ХР реалізована підтримка монтування (для файлової системи NTFS), що вирішує більшість перелічених проблем. Ця підтримка вперше з'явилась у Windows 2000 .

4.Структура каталогів файлової системи не завжди є деревом. Багато файлових систем дає змогу задавати кілька імен для одного й того самого файла. Такі імена називають зв'язками (links). Розрізняють жорсткі та символічні зв'язки.

Жорсткі зв'язки

Ім'я файла не завжди однозначно пов'язане з його даними. За підтримки жорстких зв'язків (hard links) для файла допускається кілька імен. Усі жорсткі зв'язки визначають одні й ті самі дані на диску, для користувача вони не відрізняються: не можна визначити, які з них були створені раніше, а які - пізніше.

Підтримка жорстких зв'язків у POSIX

Для створення жорстких зв'язків у POSIX призначений системний виклик link().Першим параметром він приймає ім'я вихідного файла, другим -- ім'я жорсткого зв'язку, що буде створений:

Зазначимо, що стандартні засоби вилучення даних за наявності жорстких зв'язків працюватимуть саме з ними, а не безпосередньо із файлами. Замість системного виклику вилучення файла використовують виклик вилучення зв'язку (який зазвичай називають unlink ( ), що вилучатиме один жорсткий зв'язок для заданого файла. Якщо після цього зв'язків у файла більше не залишається, його дані також вилучаються.

Підтримка жорстких зв'язків у Windows ХР

Жорсткі зв'язки здебільшого реалізовані в UNIX-сумісних системах, їх підтримують також у системах лінії Windows ХР для файлової системи NTFS . Для створення жорсткого зв'язку в цій системі необхідно використати функцію Create-HardLink ( ), ім'я зв'язку задають першим параметром, ім'я файла - другим, а третій дорівнює нулю:

CreateHardLink("myfile_hardlink.txt". "myfile.txt". 0);

Для вилучення жорстких зв'язків у Win32 АРІ використовують функцію

DeleteFile( ):

DeleteFi1е("myfіle_hardlіnk.txt");

Зазначимо, що для файлових систем, які не підтримують жорстких зв'язків, виклик DeleteFile( ) завжди спричиняє вилучення файла.

Жорсткі зв'язки мають певні недоліки, які обмежують їх застосування:

§ не можуть бути задані для каталогів;

§ усі жорсткі зв'язки одного файла завжди мають перебувати на одному й тому самому розділі жорсткого диска (в одній файловій системі);

§ вилучення жорсткого зв'язку потенційно може спричинити втрати даних файла.

Символічні зв'язки

Символічний зв'язок (symbolic link) - зв'язок, фізично відокремлений від даних, на які вказує. Фактично, це спеціальний файл, що містить ім'я файла, на який вказує.

Наведемо властивості символічних зв'язків.

§ Через такий зв'язок здійснюють доступ до вихідного файла.

§ При вилученні зв'язку, вихідний файл не зникне.

§ Якщо вихідний файл перемістити або вилучити, зв'язок розірветься, і доступ через нього стане неможливий, якщо файл потім поновити на тому самому місці, зв'язком знову можна користуватися.

§ Символічні зв'язки можуть вказувати на каталоги і файли, що перебувають на інших файлових системах (на іншому розділі жорсткого диска). Наприклад, якщо створити в поточному каталозі зв'язок system-docs, що вказує на каталог /usr/doc, то перехід у каталог system-docs призведе до переходу в каталог /usr/doc.

Підтримка символічних зв'язків на рівні системних викликів.

Для задания символічного зв'язку у POSIX визначено системний виклик symlіnk (), параметри якого аналогічні до параметрів lіnk ():

symlink ("myfile.txt". "myfile-symlink.txt");

Для отримання шляху до файла або каталогу, на який вказує символічний зв'язок, використовують системний виклик readlink( ).

// РАТНМАХ - константа, що задає максимальну довжину шляху

char filepath[PATH_MAX+l];

readlink("myfile-symlink.txt\ filepath, sizeof(filepath));

//уfilepathбуде шлях до myfile.txt

Символічні зв'язки вперше з'явилися у файлових системах UNIX, у Windows ХР вони підтримуються файловою системою NTFS під назвою точок з'єднання (junction points), але засоби АРІ для їхнього використання не визначені [87].

Размещено на Allbest.ru


Подобные документы

  • Поняття та сутність файлу, структура та принципи організації файлових систем, їх класифікація та різновиди. Головні типи організації файлів в даній системі, їх ознаки, відмінні особливості, порядок та умови практичної реалізації: логічна та фізична.

    презентация [453,9 K], добавлен 06.06.2013

  • Методи використання традиційних файлових систем - набору програм, які виконують для користувачів деякі операції, наприклад, створення звітів. Системи керування баз даних. Основні поняття реляційної моделі даних. Реляційна алгебра і реляційне числення.

    реферат [40,2 K], добавлен 13.06.2010

  • Поняття та функції операційної системи. Види операційних систем та їх характеристика. Напрямки розвитку операційних систем. Розробка алгоритму розв’язку економічної задачі розподілу продукції пекарні та реалізація його за допомогою Microsoft Excel.

    курсовая работа [1,2 M], добавлен 15.06.2016

  • Основні вимоги до операційних систем реального часу, забезпечення передбачуваності або детермінованості поведінки системи в найгірших зовнішніх умовах. Процеси, потоки та завдання, планування та пріоритети, пам'ять, переривання, годинники і таймери.

    реферат [29,4 K], добавлен 21.05.2010

  • Приклади популярних файлових систем, а також їх класифікація. Механізм просторового запису файлів. Система ISO 9660 для оптичних накопичувачів. Режими журналювання. Порівняння файлових систем Windows XP та Linux. Поняття жорсткого посилання в Linux.

    реферат [30,2 K], добавлен 07.06.2014

  • Призначення та основні функції, типи та конструкція операційної системи. Історія розробки та вдосконалення основних операційних систем найбільшими виробниками (Unix, Linux, Apple). Порівняльні характеристики операційних систем. Покоління Windows та NT.

    курсовая работа [1,3 M], добавлен 28.02.2010

  • Приклади файлових систем як способу організації даних, який використовується операційною системою для збереження інформації. Порівняння файлових систем Windows XP та Linux. Основні типи файлів. Жорстке посилання, регістр букв. Файлова система в Windows 8.

    курсовая работа [1,1 M], добавлен 23.08.2014

  • Основні сфери застосування обчислювальної техніки та їх характеристика. Обмеження, притаманні файловим системам. Розділення та ізоляція даних, їх дублювання. Поняття несумісності форматів файлів. Недоліки традиційних файлових систем та їх усунення.

    реферат [25,1 K], добавлен 20.06.2010

  • Аналіз областей застосування та технічних рішень до побудови систем керування маніпуляторами. Виведення рівнянь, які описують маніпулятор як виконавчий об’єкт керування. Зв’язок значень кутів акселерометра з формуванням сигналів управління маніпулятором.

    дипломная работа [2,3 M], добавлен 26.07.2013

  • Інформаційні системи: характеристика, види і властивості. Інформаційно-правова система: поняття та основні елементи. Інформаційні системи цивільної оборони: призначення, вимоги, технічні засоби. Вимоги до збереження інформації при надзвичайних ситуаціях.

    контрольная работа [54,5 K], добавлен 29.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.