Представление знаний

Рассмотрение понятия, принципов и методов представления знаний. Описание функциональных возможностей первой программы по обучению искусственного интеллекта - STRIPS. Правила формулировки подцелей в системе MYGIN. Оценка качества моделей экспертных систем.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 26.08.2010
Размер файла 548,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· База знаний системы, включающая около 400 правил, все-таки недостаточна для реального внедрения в практику лечения больных инфекционными болезнями.

· Внедрение системы требует приобретения достаточно дорогой вычислительной машины, что не могло себе позволить в те времена большинство лечебных учреждений.

· Врачи-практики не испытывают никакого желания работать за терминалом компьютера, что совершенно необходимо для применения на практике экспертной системы. К тому же существующий в 1976 году интерфейс с пользователем в той версии системы MYCIN не был тщательно продуман.

Система MYCIN при всей ее практической направленности была и осталась все-таки экспериментальной исследовательской системой, не рассчитанной на коммерческое применение. Тем не менее на ее основе были созданы другие экспертные диагностические системы, которые реально использовались в лечебной практике

В этой книге мы часто будем сталкиваться с оценкой качества отдельных моделей экспертных систем, и вы увидите, что выработать какой-то общий подход к такой оценке, не принимая во внимание специфику области применения, не удается. Однако можно выделить ряд предварительных условий, которые необходимо соблюдать для адекватной оценки качества экспертной системы любого назначения (этот вопрос обсуждается в сборнике под редакцией Хейеса-Рота [Hayes-Roth et al, 1983, Chapter 8]).

· Должны существовать определенные объективные критерии правильности ответа, формируемого экспертной системой. В некоторых областях, например финансовых инвестиций, может не существовать иных критериев, кроме как оценивание сторонними специалистами вывода, сделанного системой, или выполнение рекомендаций на практике и анализ последующих результатов. Сложность первого способа состоит в том, что эксперт может не согласиться с самой постановкой проблемы в конкретном случае (особенно, если мы имеем дело со сложным случаем). Что же касается второго способа, то за оценку придется заплатить слишком дорого, если практическое воплощение рекомендации приведет к неожиданным последствиям.

· Должна соблюдаться определенная процедура проведения эксперимента. Вместо того чтобы просить эксперта оценить качество ответа, предложенного компьютером, лучше предложить ему несколько вариантов решений, одни из которых предложены специалистами в этой предметной области, а другие -- экспертной системой, причем эксперт не должен знать, есть ли среди предложенных вариантов "машинные". Именно так проводилась описанная выше процедура оценки качества системы MYCIN. При этом эксперт избавлен от возможно и неосознаваемой психологической "тенденциозности" в оценке того, что предлагается компьютером.

· Оценка должна протекать безболезненно для эксперта либо ее вообще нет смысла проводить. Если оценка сопряжена с какими-либо неприятными для эксперта последствиями, то рассчитывать на его объективность, конечно же, нельзя. Нельзя проводить оценку, если существуют очень жесткие требования к времени ее выполнения и используемым при этом ресурсам. Вполне может оказаться так, что процесс оценки качества системы займет больше времени, чем ее разработка.

Читателю также должно быть ясно, что роль разных экспертных систем в той или иной предметной области может быть совершенно различной, соответственно различными должны быть и требования к ее производительности. Многие экспертные системы выполняют роль советчика и предоставляют пользователю набор возможных вариантов решения проблемы. В таком случае от системы требуется в основном сформировать как можно более "емкий" перечень вариантов решения проблемы при заданных ограничениях, причем система должна уложиться в разумное время. Другие системы предназначены для формирования законченного решения проблемы, которое пользователь может принять или отвергнуть. Учитывая, что последнее слово все-таки остается не за компьютером, а за человеком, система может быть признана вполне работоспособной и в том случае, если не все 100% предлагаемых ею решений правильны, но она должна быть способна достаточно живо реагировать на запросы.

Сравнение MYCIN и STRIPS

Возвращаясь вновь к системе STRIPS, отметим, что, как показывает опыт работы с этой программой, она способна решать только самые простенькие проблемы. Сложности появляются при самых разных обстоятельствах. Вот только два примера.

· Иногда оказывается, что прогресс в движении к заданной цели требует, чтобы окружающая среда была не более упорядоченной, а более неорганизованной (в смысле применения оценочной функции).

· Если у системы появляется несколько целей, они начинают накладываться друг на друга и прогресс в движении к одной цели приводит к отдалению от другой.

Отчетливо видно, что модель мира в системе STRIPS оказалась "бедной на знания", т.е. она содержит очень мало специфических знаний о помещениях и объектах, которые должны перетаскивать роботы, например о весе и габаритах объектов и размерах дверных проемов в стенах. Для перемещения объектов используются только те эвристики, которые содержатся в таблице операторов. Например, отсутствуют эвристики, позволяющие избежать маршрутов движения через слишком узкие проемы, комбинировать перемещаемые объекты с учетом грузоподъемности робота. Отсутствует также подготовительная фаза, на которой можно было бы сгруппировать объекты, перемещаемые по близким маршрутам.

Более широкие возможности системы MYCIN в решении проблем проистекают от двух факторов: большой набор правил, которые используются для формирования гипотез и способов подтверждения их истинности, и большая база данных, в которой хранится информация о микроорганизмах, медикаментах и лабораторных тестах. В то же время механизм управления применением правил в MYCIN несколько проще, чем в STRIPTS. Основное различие между двумя программами состоит не в отличиях между областями применения, а в способности использовать декларативные знания в своей области.

Пионеры в области экспертных систем очень быстро пришли к выводу, что лучше передать программе фактические сведения о специфике предметной области и правила разного уровня абстракции, а затем применять довольно простые правила влияния, чем передать системе информацию о более общих законах, действующих в этой предметной области, и обобщенные алгоритмы целенаправленного логического вывода. Человек-эксперт предпочитает действовать исходя из общих законов только в особо трудных, необычных ситуациях, а в большинстве других использует уже апробированные, знакомые ему решения.

Мы также отметили, что одна из особенностей экспертных систем, отличающих их от обычных программ, состоит в широком использовании эвристик, которые помогают минимизировать количество шагов поиска при решении проблемы. Такой ускоренный путь решения проблем воспроизводит и механизм мышления человека-эксперта, который применяет базовые принципы только в редких случаях, а в большинстве ситуаций вполне удовлетворяется решениями из накопленного опыта. В результате цепочка рассуждений оказывается довольно короткой и крайне специфичной для каждой конкретной ситуации.

Использование эвристик также означает, что процесс рассуждений в экспертной системе не всегда может быть "озвучен", т.е. не всегда образует цепочку логической дедукции. Инженер по знаниям должен не только решить, как структурировать знания в базе знаний экспертной системы, но и как использовать эти знания в процессе построения заключения. Структура машины логического вывода обычно определяется как используемым представлением знаний, так и механизмом применения этих знаний. Например, на любой стадии решения проблемы может сложиться ситуация, когда возможно применение более чем одного правила (элемента знаний). Более того, эти правила могут взаимно не согласовываться или даже быть противоречивыми. Так, в систему планирования маршрута разносчика посылок могут быть заложены эвристические правила, одно из которых гласит:

"Первыми разнести посылки тем адресатам, которые расположены наиболее близко", а второе:

"Избегать выезда в предместья во время напряженного трафика".

Если окажется, что довольно много адресатов компактно расположены в предместье, а расписание разноски составлено так, что посылки нужно доставить как раз тогда, когда на дорогах массовое движение, то эти два правила противоречат друг другу. Машина логического вывода должна быть спроектирована так, чтобы справляться с подобными противоречиями.

Довольно распространено мнение, что способ, основанный на эвристиках, может привести к ошибочному заключению, да и сами эвристики зачастую противоречивы. Тем не менее эвристики широко используются в экспертных системах, поскольку во многих областях их применения просто не существует надежных алгоритмов общего вида для поиска решения, либо такие алгоритмы требуют огромных вычислительных ресурсов в виду комбинаторного взрыва, т.е. экспоненциального роста сложности поиска при линейном росте размерности задачи. Отсюда ясно, почему при построении экспертных систем такое большое внимание уделяется средствам представления узкоспециальных знаний в конкретной предметной области, большинство из которых являются эвристиками.


Подобные документы

  • Проблема представления знаний в компьютерных системах – одна из основных проблем в области искусственного интеллекта. Исследование различных моделей представления знаний. Определения их понятия. Разработка операции над знаниями в логической модели.

    курсовая работа [51,9 K], добавлен 18.02.2011

  • Понятие искусственного интеллекта в робототехнике и мехатронике. Структура и функции интеллектуальной системы управления. Классификация и типы знаний, представление их с помощью логики предикатов. Суть семантических сетей, фреймовое представление знаний.

    курс лекций [1,1 M], добавлен 14.01.2011

  • Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?

    реферат [49,0 K], добавлен 19.05.2006

  • Определения знаний и приобретения знаний человеком. Виды знаний и способы их представления. Приобретение и извлечение знаний. Визуальное проектирование баз знаний как инструмент обучения. Программное обеспечение для проведения лабораторных работ.

    дипломная работа [960,9 K], добавлен 12.12.2008

  • Классы и группы моделей представления знаний. Состав продукционной системы. Классификация моделей представления знаний. Программные средства для реализации семантических сетей. Участок сети причинно-следственных связей. Достоинства продукционной модели.

    презентация [380,4 K], добавлен 14.08.2013

  • Понятия, классификация и структура экспертных систем. Базы знаний и модели представления знаний. Механизмы логического вывода. Инструментальные средства проектирования и разработки экспертных систем. Предметная область ЭС "Выбор мобильного телефона".

    курсовая работа [2,2 M], добавлен 05.11.2014

  • Решение прикладных задач с использованием искусственного интеллекта. Преимущества и недостатки экспертных систем по сравнению с использованием специалистов, области их применения. Представление знаний и моделирование отношений семантическими сетями.

    реферат [260,9 K], добавлен 25.06.2015

  • Разработка базы знаний и её тестирование с помощью оболочки экспертных систем Little Helper. Оценка технических характеристик телевизора, ценового фактора. Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике.

    курсовая работа [1,0 M], добавлен 19.09.2012

  • Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.

    курсовая работа [41,3 K], добавлен 29.08.2013

  • Сущность данных и информации. Особенности представления знаний внутри ИС. Изучение моделей представления знаний: продукционная, логическая, сетевая, формальные грамматики, фреймовые модели, комбинаторные, ленемы. Нейронные сети, генетические алгоритмы.

    реферат [203,3 K], добавлен 19.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.