Тенденции в структурном построении ОС

Монолитная структура оперативных систем. Модель клиент-сервер и микроядра, их коммерческие версии. Объектно-ориентированный подход к возможностям расширения систем. Средства технологии OLE, их недостатки. Стандарт OpenDoc. Множественные прикладные среды.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 05.02.2009
Размер файла 282,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Неизменность протокола - это другая особенность RPC DCE OSF. Этот протокол четко определен и не может изменяться пользователем (в данном случае разработчиком сетевых приложений). Такая неизменность, гарантируемая ядром, является важным свойством в гетерогенных средах, требующих согласованной работы. В отличие от OSF, некоторые другие разработчики средств RPC полагают, что гибкость и возможность приспосабливать эти средства к потребностям пользователей являются более важными.

Средства RPC DCE OSF поддерживают ряд транспортных протоколов и позволяют добавлять новые транспортные протоколы, сохраняя при этом свои функциональные свойства.

DCE RPC эффективно используется в других службах DCE: в службах безопасности, каталогов и времени, в распределенной файловой системе. DCE RPC интегрируется с системой идентификации для обеспечения защиты доступа и с нитями клиента и сервера для того, чтобы, сохраняя синхронный характер выполнения вызова, обеспечить параллелизм. Способность RPC посылать и получать потоки типизированных данных неопределенной длины используется в распределенной файловой системе.

Распределенная служба каталогов

Задачей службы каталогов в распределенной сети является поиск сетевых объектов, то есть пользователей, ресурсов, данных или приложений. Служба каталогов (или иначе, имен) должна отобразить большое количество системных объектов (пользователей, организаций, групп, компьютеров, принтеров, файлов, процессов, сервисов) на множество понятных пользователю имен. Эта проблема сложна даже для гомогенных сетей, так как персонал и оборудование перемещается, изменяет свои имена, местонахождение и т.д. В гетерогенных глобальных сетях служба каталогов становится намного более сложной, из-за необходимости синхронизации различных баз данных каталогов. Более того, при появлении в сети распределенных приложений служба каталогов должна начать отслеживание всех таких объектов и всех их компонентов.

Хорошая служба каталогов делает использование распределенного окружения прозрачным для пользователя. Пользователям не нужно знать расположение удаленного принтера, файла или приложения.

OSF определяет двухярусную архитектуру для службы каталогов для целей адресации межячеечного и глобального взаимодействия. Ячейка (cell) - это фундаментальная организационная единица для систем в DCE OSF. Ячейки могут иметь социальные, политические или организационные границы. Ячейки состоят из компьютеров, которые должны часто взаимодействовать друг с другом - это могут быть, например, рабочие группы, отделы, или отделения компаний. В общем случае компьютеры в ячейке географически близки. Размер ячеек изменяется от 2 до 1000 компьютеров, хотя OSF считает наиболее приемлемым диапазон от десятков до сотен компьютеров.

Некоторые производители и пользователи агитируют за реализацию X.500 как общей службы каталогов на всех уровнях. Но OSF полагает, что использование X.500 на уровне рабочей группы (то есть ячейки) было бы слишком громоздким из-за требований к программному обеспечению по производительности - особенно, когда более гибкие средства службы каталогов уровня ячейки уже существуют на рынке.

Служба каталогов DCE состоит из 4-х элементов:

CDS (Cell Directory Service) - служба каталогов ячейки. Ячейка сети - это группа систем, администрируемых как единое целое. CDS оптимизируется для локального доступа. Большинство запросов к службе каталогов относятся к ресурсам той же ячейки. Каждая ячейка сети нуждается по крайней мере в одной CDS.

GDA (Global Directory Agent) - агент глобального каталога. GDA - это шлюз имен, который соединяет домен DCE с другими административными доменами посредством глобальной службы каталогов X.500 и DNS (domain name service - сервис имен домена). GDA передает запрос на имя, которое он не смог найти в локальной ячейке, службе каталогов другой ячейки, или глобальной службе каталогов (в зависимости от места хранения имени). Для того, чтобы отыскать имя, клиент делает запрос к локальному агенту GDA. Затем GDA передает запрос на междоменное имя службе X.500. Эта служба возвращает ответ GDA, который в свою очередь передает его клиенту. OSF GDA может быть совместим с любой схемой глобального именования.

GDS (Global Directory Service) - глобальная служба каталогов. Основанная на стандарте X.500, GDS работает на самом верхнем уровне иерархии и обеспечивает связь множества ячеек в множестве организаций.

XDS (X/Open Directory Service) - обеспечивает поддержку X/Open API функций службы каталогов и позволяет разработчикам писать приложения, независимые от нижележащих уровней архитектуры службы каталогов. XDS-совместимые приложения будут работать одинаковым образом со службами каталогов DCE и X.500.

Распределенная служба безопасности

Имеется две больших группы функций службы безопасности: идентификация и авторизация. Идентификация проверяет идентичность объекта (например, пользователя или сервиса). Авторизация (или управление доступом) назначает привилегии объекту, такие как доступ к файлу.

Авторизация - это только часть решения. В распределенной сетевой среде обязательно должна работать глобальная служба идентификации, так как рабочей станции нельзя доверить функции идентификации себя или своего пользователя. Служба идентификации представляет собой механизм передачи третьей стороне функций проверки идентичности пользователя.

Служба безопасности OSF DCE базируется на системе идентификации Kerberos, разработанной в 80-е годы и расширенной за счет добавления элементов безопасности. Kerberos использует шифрование, основанное на личных ключах, для обеспечения трех уровней защиты. Самый нижний уровень требует, чтобы пользователь идентифицировался только при установлении начального соединения, предполагая, что дальнейшая последовательность сетевых сообщений исходит от идентифицированного пользователя. Следующий уровень требует идентификацию для каждого сетевого сообщения. На последнем уровне все сообщения не только идентифицируются, но и шифруются.

Система безопасности не должна сильно усложнять жизнь конечного пользователя в сети, то есть он не должен запоминать десятки паролей и кодов.

Весьма полезным сетевым средством для целей безопасности является служба прав доступа или, другими словами, авторизация. Служба авторизации OSF базируется на POSIX-совместимых списках прав доступа - ACL.

В то время как система Kerberos основана на личных ключах, в настоящее время широкое распространение получили методы, основанные на публичных ключах (например, метод RSA). OSF собирается сделать DCE-приложения переносимыми из Kerberos в RSA.

Распределенная файловая система DFS OSF

Распределенная файловая система DFS OSF предназначена для обеспечения прозрачного доступа к любому файлу, расположенному в любом узле сети. Главная концепция такой распределенной файловой системы - это простота ее использования.

Распределенная файловая система должна иметь единое пространство имен. Файл должен иметь одинаковое имя независимо от того, где он расположен. Другими желательными свойствами являются интегрированная безопасность, согласованность и доступность данных, надежность и восстанавливаемость, производительность и масштабируемость до очень больших конфигураций без уменьшения производительности и независимое от места расположения управление и администрирование.

Распределенная файловая система DFS OSF базируется на известной файловой системе AFS (The Andrew File System).

Файловая система AFS

AFS была разработана в университете Карнеги-Меллона и названа в честь спонсоров-основателей университета Andrew Carnegie и Andrew Mellon. Эта система, созданная для студентов университета, не является прозрачной системой, в которой все ресурсы динамически назначаются всем пользователям при возникновении потребностей. Несмотря на это, файловая система была спроектирована так, чтобы обеспечить прозрачность доступа каждому пользователю, независимо от того, какой рабочей станцией он пользуется.

Особенностью этой файловой системы является возможность работы с большим (до 10 000) числом рабочих станций.

Рис. 4.5. Конфигурация системы, используемая AFS в университете Карнеги-Меллона

Конфигурация системы показана на рисунке 4.5. Она состоит из кластеров, каждый из которых включает файловый сервер и несколько десятков рабочих станций. Идея состоит в том, чтобы распределить большую часть трафика в пределах отдельных кластеров и тем самым уменьшить загрузку позвоночника сети.

Так как студенты могли входить в систему и в университете, и в общежитии, то иногда они оказывались далеко от сервера, который содержал их файлы. Несмотря на это, пользователь должен иметь возможность работать на произвольно выбранной рабочей станции, как на своем персональном компьютере.

Физически нет разницы между машиной клиента и сервера, и все они выполняют одну и ту же ОС BSD UNIX с его большим монолитным ядром. Однако над ядром выполняются совершенно различные программы серверов и клиентов. На клиент-машинах выполняются менеджеры окон, редакторы и другое стандартное программное обеспечение системы UNIX. Каждый клиент имеет также часть кода - venus, которая управляет интерфейсом между клиентом и серверной частью системы, называемой vice. Вначале venus выполнялся в пользовательском режиме, но позже он был перемещен в ядро для повышения производительности. Venus работает также в качестве менеджера кэша. В дальнейшем мы будем называть venus просто клиентом, а vice - сервером.

Пространство имен, видимое пользовательскими программами, выглядит как традиционное дерево в ОС UNIX с добавленным к нему каталогом /cmu (рисунок 4.5). Содержимое каталога /cmu поддерживается AFS посредством vice-серверов и идентично на всех рабочих станциях. Другие каталоги и файлы исключительно локальны и не разделяются. Возможности разделяемой файловой системы предоставляются путем монтирования к каталогу /cmu. Файл, который UNIX ожидает найти в верхней части файловой системы, может быть перемещен символьной связью из разделяемой файловой системы (например, /bin/sh может быть символьно связан с /cmu/bin/sh).

В основе AFS лежит стремление делать для каждого пользователя как можно больше на его рабочей станции и как можно меньше взаимодействовать с остальной системой. При открытии удаленного файла весь файл (или его значительная часть, если он очень большой) загружается на диск рабочей станции и кэшируется там, причем процесс, который сделал вызов OPEN, даже не знает об этом. По этой причине каждая рабочая станция имеет диск.

После загрузки файла на локальный диск он помещается в локальный каталог /cash, так что он выглядит для ОС как нормальный файл. Дескриптор файла, возвращаемый системным вызовом OPEN, соответствует именно этому файлу, так что вызовы READ и WRITE работают обычным путем, без участия клиента и сервера. Другими словами, хотя системный вызов OPEN значительно изменен, реализация READ и WRITE не изменилась.

Безопасность - это главный вопрос в системе с 10 000 пользователей. Так как пользователи вольны перегружать свои рабочие станции, когда захотят и могут выполнять на них модифицированные версии ОС, то главный принцип сервера - не доверять клиентским рабочим станциям. Все сообщения между рабочими станциями шифруются на уровне аппаратуры.

Защита выполнена несколько необычным путем. Каталоги защищаются списками прав доступа (ACL), но файлы имеют обычные биты RWX UNIX'а. Разработчики системы предпочитают механизм ACL, но так как многие UNIX-программы работают с битами RWX, то они оставлены для совместимости. Списки прав доступа могут содержать и отсутствие прав, так что можно, например, потребовать, чтобы доступ к файлу был разрешен для всех, кроме одного конкретного человека.

Диски рабочих станций используются только для временных файлов, кэширования удаленных файлов и хранения страниц виртуальной памяти, но не для постоянной информации. Это существенно упрощает управление системой, в этом случае нужно управлять и архивировать только файлы серверов, а рабочие станции не требуют никаких забот. Концептуально они могут начинать каждый рабочий день с чистого листа.

AFS сконструирована для расширения до масштабов национальной файловой системы. Система, показанная на рисунке, на самом деле представляет собой отдельную ячейку (cell). Каждая ячейка - это административная единица, такая как отдел или компания. Ячейки могут быть соединены друг с другом с помощью монтирования, так что дерево разделяемых файлов может покрывать многие города.

В дополнение к концепциям файла, каталога и ячейки AFS поддерживает еще одно важное понятие - том. Том - это собрание каталогов, которые управляются вместе. Обычно все файлы какого-либо пользователя составляют том. Таким образом поддерево, входящее в /usr/john, может быть одним томом, поддерево, входящее в /usr/mary, может быть другим томом. Фактически, каждая ячейка представляет собой ничто иное, как набор томов, соединенных вместе некоторым, подходящим с точки зрения монтирования, образом. Большинство томов содержат пользовательские файлы, некоторые другие используются для двоичных выполняемых файлов и другой системной информации. Тома могут иметь признак "только для чтения".

Семантика, предлагаемая AFS, близка к сессионной семантике. Когда файл открывается, он берется у подходящего сервера и помещается в каталог /cash на локальном диске на рабочей станции. Все операции чтения-записи работают с кэшированной копией. При закрытии файла он выгружается назад на сервер. Следствием этой модели является то, что когда процесс открывает уже открытый файл, то версия, которую он видит, зависит от того, где находится процесс. Процесс на той же рабочей станции видит копию в каталоге /cash, при этом выполняется вся семантика UNIX.

В то же время процесс на другой рабочей станции продолжает видеть исходную версию файла на сервере. Только после того, как файл будет закрыт и отослан обратно на сервер, последующая операция открытия увидит новую версию. После того, как файл закрывается, он остается в кэше, на случай, если он скоро будет снова открыт. Как мы видели ранее, повторное открытие файла, который находится в кэше, порождает проблему: "Как клиент узнает, последняя ли это версия файла?" В первой версии AFS эта проблема решалась прямым запросом клиента к серверу. К сожалению эти запросы создавали большой трафик и впоследствии алгоритм был изменен. В новом алгоритме, когда клиент загружает файл в свой кэш, то он сообщает серверу, что его интересуют все операции открытия этого файла процессами на других рабочих станциях. В этом случае сервер создает таблицу, отмечающую местонахождение этого кэшированного файла. Если другой процесс где-либо в системе открывает этот файл, то сервер посылает сообщение клиенту, чтобы тот отметил этот вход кэша как недействительный. Если этот файл в настоящее время используется, то использующие его процессы могут продолжать делать это. Однако, если другой процесс пытается открыть его заново, то клиент должен свериться с сервером, действителен ли все еще этот вход в кэше, а если нет, то получить новую копию. Если рабочая станция терпит крах, а затем перезагружается, то все файлы в кэше отмечаются как недействительные.

Блокировка файла поддерживается с помощью системного вызова UNIX FLOCK. Если блокировка не снимается в течение 30 минут, то она снимается по тайм-ауту. Тома, предназначенные только для чтения, такие как системные двоичные файлы, реплицируются, а пользовательские файлы - нет.

Хотя прикладные программы видят традиционное пространство имен UNIX, внутренняя организация сервера и клиента использует совершенно другую схему имен. Они используют двухуровневую схему именования, при которой каталог содержит структуры, называемые fids (file identifiers), вместо традиционных номеров i-узлов.

Fid состоит из трех 32-х битных полей. Первое поле - это номер тома, который однозначно определяет отдельный том в системе. Это поле говорит, на каком томе находится файл. Второе поле называется vnode, это индекс в системных таблицах определенного тома. Оно определяет конкретный файл в данном томе. Третье поле - это уникальный номер, который используется для обеспечения повторного использования vnode. Если файл удаляется, то его vnode может быть повторно использован, но с другим значением уникального номера, для того, чтобы обнаружить и отвергнуть все старые fids.

Протокол между сервером и клиентом использует fid для идентификации файла. Когда fid поступает в сервер, по значению номера тома производится поиск в базе данных, управляемой всеми серверами, чтобы обнаружить нужный сервер. Тома могут перемещаться между серверами, но не части томов, так что эта база данных требует периодического обновления, но перемещения томов случается редко, так что трафик обновления невелик. Перемещение тома является неделимым - сначала на сервере назначения делается копия тома, а затем удаляется оригинал. Этот механизм также используется для репликации томов только для чтения за исключением того, что исходный том не удаляется после его копирования. Этот же алгоритм используется для резервного копирования. Когда делается копия, то она помещается в файловую систему как том только для чтения. В течение последующих 24 часов процесс скопирует этот том на ленту. Дополнительное преимущество этого метода - пользователь, который случайно удалил файл, все еще имеет доступ ко вчерашней копии.

Теперь рассмотрим общий механизм доступа к файлам в AFS. Когда приложение выполняет системный вызов OPEN, то он перехватывается оболочкой клиента, которая первым делом проверяет, не начинается ли имя файла с /cmu. Если нет, то файл локальный, и обрабатывается обычным способом. Если да, то файл разделяемый. Производится грамматический разбор имени, покомпонентно находится fid. По fid проверяется кэш, и здесь имеется три возможности:

Файл находится в кэше, и он достоверен.

Файл находится в кэше, и он не достоверен.

Файл не находится в кэше.

В первом случае используется кэшированный файл. Во втором случае клиент запрашивает сервер, изменялся ли файл после его загрузки. Файл может быть недостоверным, если рабочая станция недавно перезагружалась или же некоторый другой процесс открыл файл для записи, но это не означает, что файл уже модифицирован, и его новая копия записана на сервер. Если файл не изменялся, то используется кэшированный файл. Если он изменялся, то используется новая копия. В третьем случае файл также просто загружается с сервера. Во всех трех случаях конечным результатом будет то, что копия файла будет на локальном диске в каталоге /cash, отмеченная как достоверная.

Вызовы приложения READ и WRITE не перехватываются оболочкой клиента, они обрабатываются обычным способом. Вызовы CLOSE перехватываются оболочкой клиента, которая проверяет, был ли модифицирован файл, и, если да, то переписывает его на сервер, который управляет данным томом.

Помимо кэширования файлов, оболочка клиента также управляет кэшем, который отображает имена файлов в идентификаторы файлов fid. Это ускоряет проверку, находится ли имя в кэше. Проблема возникает, когда файл был удален и заменен другим файлом. Однако этот новый файл будет иметь другое значение поля "уникальный номер", так что fid будет выявлен как недостоверный. При этом клиент удалит вход (pass, fid) и начнет грамматический разбор имени с самого начала. Если дисковый кэш переполняется, то клиент удаляет файлы в соответствии с алгоритмом LRU.

Vice работает на каждом сервере как отдельная многонитевая программа. Каждая нить обрабатывает один запрос. Протокол между сервером и клиентом использует RPC и построен непосредственно на API. В нем есть команды для перемещения файлов в обоих направлениях, блокирования файлов, управления каталогами и некоторые другие. Vice хранит свои таблицы в виртуальной памяти, так что они могут быть произвольной величины.

Так как клиент идентифицирует файлы по их идентификаторам fid, то у сервера возникает следующая проблема: как обеспечить доступ к UNIX-файлу, зная его vnode, но не зная его полное имя. Для решения этой проблемы в AFS в UNIX добавлен новый системный вызов, позволяющий обеспечить доступ к файлам по их индексам vnode.

Реализация DFS на базе AFS дает прекрасный пример того, как работают вместе различные компоненты DCE. DFS работает на каждом узле сети совместно со службой каталогов DCE, обеспечивая единое пространство имен для всех файлов, хранящихся в DFS. DFS использует списки ACL системы безопасности DCE для управления доступом к отдельным файлам. Потоковые функции RPC позволяют DFS передавать через глобальные сети большие объемы данных за одну операцию.

Распределенная служба времени

В распределенных сетевых системах необходимо иметь службу согласования времени. Многие распределенные службы, такие как распределенная файловая система и служба идентификации, используют сравнение дат, сгенерированных на различных компьютерах. Чтобы сравнение имело смысл, пакет DCE должен обеспечивать согласованные временные отметки.

Сервер времени OSF DCE - это система, которая поставляет время другим системам в целях синхронизации. Любая система, не содержащая сервера времени, называется клерком (clerk). Распределенная служба времени использует три типа серверов для координации сетевого времени. Локальный сервер синхронизируется с другими локальными серверами той же локальной сети. Глобальный сервер доступен через расширенную локальную или глобальную сети. Курьер (courier) - это специальный локальный сервер, который периодически сверяет время с глобальными серверами. Через периодические интервалы времени серверы синхронизируются друг с другом с помощью протокола DTS OSF. Этот протокол может взаимодействовать с протоколом синхронизации времени NTP сетей Internet.

Многие фирмы-потребители программного обеспечения уже используют или собираются использовать средства DCE, поэтому ведущие фирмы-производители программного обеспечения, такие как IBM, DEC и Hewlett-Packard, заняты сейчас реализацией и поставкой различных элементов и расширений этой технологии.

Одной из главных особенностей и достоинств пакета DCE OSF является тесная взаимосвязь всех его компонентов. Это свойство пакета иногда становится его недостатком. Так, очень трудно работать в комбинированном окружении, когда одни приложения используют базис DCE, а другие - нет. В версии 1.1 совместимость служб пакета с аналогичными средствами других производителей улучшена. Например, служба Kerberos DCE в текущей версии несовместима с реализацией Kerberos MIT из-за того, что Kerberos DCE работает на базе средств RPC DCE, а Kerberos MIT - нет. OSF обещает полную совместимость с Kerberos MIT в версии 1.1. Имеются и положительные примеры совместимости пакета DCE со средствами других производителей, например со средствами Windows NT. Хотя Windows NT и не является платформой DCE, но их совместимость может быть достигнута за счет полной совместимости средств RPC. Поэтому, после достаточно тщательной работы на уровне исходных кодов, разработчики могут создать DCE-сервер, который сможет обслуживать Windows NT-клиентов, и Windows NT-сервер, который работает с DCE-клиентами.

Для того, чтобы стать действительно распространенным базисом для создания гетерогенных распределенных вычислительных сред, пакет DCE должен обеспечить поддержку двух ключевых технологий - обработку транзакций и объектно-ориентированный подход. Поддержка транзакций совершенно необходима для многих деловых приложений, когда недопустима любая потеря данных или их несогласованность. Две фирмы - IBM и Transarc - предлагают дополнительные средства, работающие над DCE и обеспечивающие обработку транзакций. Что же касается объектно-ориентированных свойств DCE, то OSF собирается снабдить этот пакет средствами, совместимыми с объектно-ориентированной архитектурой CORBA, и работающими над инфраструктурой DCE. После достаточно тщательной работы на уровне исходных кодов, разработчики могут создать DCE-сервер, который сможет обслуживать Windows NT-клиентов, и Windows NT-сервер, который работает с DCE-клиентами.

Для того, чтобы стать действительно распространенным базисом для создания гетерогенных распределенных вычислительных сред, пакет DCE должен обеспечить поддержку двух ключевых технологий - обработку транзакций и объектно-ориентированный подход. Поддержка транзакций совершенно необходима для многих деловых приложений, когда недопустима любая потеря данных или их несогласованность. Две фирмы - IBM и Transarc - предлагают дополнительные средства, работающие над DCE и обеспечивающие обработку транзакций. Что же касается объектно-ориентированных свойств DCE, то OSF собирается снабдить этот пакет средствами, совместимыми с объектно-ориентированной архитектурой CORBA и работающими над инфраструктурой DCE.


Подобные документы

  • Основные понятия серверов. Модель клиент-сервер. Классификация стандартных серверов. Недостатки файл-серверной системы. Криптографические методы защиты информации. Серверы удаленного доступа. Методы и средства обеспечения безопасности информации.

    контрольная работа [36,3 K], добавлен 13.12.2010

  • Варианты топологии одноранговой вычислительной сети, принцип работы распределенных пиринговых сетей. Использование в крупных сетях модели "клиент-сервер". Характеристика операционных систем с сетевыми функциями, многопроцессорная обработка информации.

    творческая работа [51,8 K], добавлен 26.12.2011

  • Основная цель технологии СОМ (объектная модель компонентов) - обеспечение возможности экспорта объектов. Объектно-ориентированное программирование и его место в программировании. Принципы и применение описаний информационных систем (UML и аналоги).

    курсовая работа [698,3 K], добавлен 09.12.2013

  • Преимущества и недостатки использования двух типов базовых архитектур Клиент-сервер и Интернет/Интранет, их компоненты и экономическая целесообразность. Информационные взаимосвязи компонентов WEB-узла, взаимодействие браузера, сервера и сценария CGI.

    реферат [324,4 K], добавлен 22.06.2011

  • Обзор существующих решений построения систем взаимодействия. Классическая архитектура клиент-сервер. Защита от копирования и распространения материалов тестирования. Задачи ИБ компьютерных систем тестирования и обзор современных способов их реализации.

    курсовая работа [36,9 K], добавлен 26.04.2013

  • C# как объектно-ориентированный язык программирования. Объектно-ориентированный анализ и проектирование системы на языке UML. Сущность программы "Учёт пациентов в регистратуре поликлиники", ее достоинства и недостатки, пошаговая инструкция пользователя.

    курсовая работа [1,5 M], добавлен 17.02.2013

  • Характеристика модели клиент-сервер как технологии взаимодействия в информационной сети. Разработка и описание алгоритмов работы приложений на платформе Win32 в среде Microsoft Visual Studio, использующих для межпроцессного взаимодействия сокеты.

    курсовая работа [544,6 K], добавлен 02.06.2014

  • Проектирование информационной системы на основе архитектуры "файл-сервер", "клиент-сервер", многоуровневой архитектуры, Intranet-системы. Преимущества и недостатки файл-серверного подхода при обеспечении многопользовательского доступа к базе данных.

    лабораторная работа [220,5 K], добавлен 02.02.2015

  • Проектирование объектно-ориентированных моделей реальных систем на примере модели функционирования морского грузового порта. Описание классов и методов. Структура и диаграмма классов. Особенности функционирования программы. Средство разработки и листинг.

    лабораторная работа [99,7 K], добавлен 10.06.2013

  • Разработка приложений на платформе Win32 для исследования взаимодействия между процессами через отображение файла в память. Модель приложений "клиент - сервер". Описание алгоритма работы программы-клиента и программы-сервера. Результаты работы приложений.

    курсовая работа [869,3 K], добавлен 18.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.