Основные свойства степенной функции

Краткий экскурс в историю степенной функции. Степенные функции с целым и дробным показателем. Четные положительные показатели. Нечетные отрицательные показатели. Степенные функции с иррациональным показателем. Применение степенной функции человеком.

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 17.05.2018
Размер файла 591,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Области определения и значений функции. Заданная, монотонная, ограниченная и неограниченная, непрерывная и разрывная, четная и нечетная функции. Определение асимптоты. Степенная функция с вещественным показателем. Квадратичная и логарифмическая функции.

    реферат [417,9 K], добавлен 26.03.2013

  • Зависимость переменной у от переменной x. Способы задания функции. Степенная функция с целым отрицательным показателем, с положительным дробным показателем. Положительная несократимая дробь. Прямая пропорциональность и коэффициент пропорциональности.

    реферат [12,5 K], добавлен 24.09.2014

  • Различные трактовки понятия функции в школьном курсе математики. Функция и задание ее аналитическим выражением. Область определения функции и область значений функции. Тесты по теме "Числовые функции. Четные и нечетные функции. Периодические функции".

    дипломная работа [213,1 K], добавлен 07.09.2009

  • Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.

    учебное пособие [876,9 K], добавлен 30.12.2009

  • Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств. Степенные и показательные функции и их свойства. Опыт проведения занятий со школьниками по теме: "Решение показательно-степенных уравнений и неравенств".

    дипломная работа [595,4 K], добавлен 24.11.2007

  • Число как одно из основных понятий математики. Виды чисел, абсолютная и переменная величины. Область определения функции, четные и нечетные функции. Построение графиков функций. Пределы последовательности и пределы функции. Непрерывность функции.

    учебное пособие [895,7 K], добавлен 09.03.2009

  • Классификация основных элементарных функций: степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические. Определение и простейшие свойства линейной и квадратичной функции. Понятие обратной пропорциональной зависимости.

    презентация [1,0 M], добавлен 29.10.2015

  • Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.

    презентация [86,5 K], добавлен 18.09.2013

  • Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

    презентация [332,2 K], добавлен 21.09.2013

  • Способы задавания функции: табличный, графический и аналитический. Область определения и область значений функции, промежутки ее знакопостоянства. Свойства постоянной функции. Множества значений функции y=arctgx. Основные свойства функции y=sinx.

    реферат [799,4 K], добавлен 22.06.2019

  • Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.

    курсовая работа [1,3 M], добавлен 21.05.2019

  • Функциональное уравнение как уравнение, в котором неизвестными являются функции (одна или несколько). Общая характеристика функциональных уравнений, определяющих показательную, логарифмическую и степенную функцию. Свойства их нетривиальных решений.

    контрольная работа [1011,9 K], добавлен 07.10.2011

  • Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.

    реферат [89,3 K], добавлен 08.06.2010

  • Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.

    контрольная работа [420,3 K], добавлен 04.10.2010

  • Функции Бесселя с целым положительным и произвольным значком. Общее представление цилиндрических функций. Функции Бесселя второго и третьего рода. Цилиндрические функции с индексом, равным половине нечетного целого числа. Нули цилиндрических функций.

    курсовая работа [282,8 K], добавлен 03.04.2011

  • Понятие функции как важнейшее понятие математики, ее общие свойства. Особенности обратной функции, ее экстремумы. Наибольшее и наименьшее значение функции, ее периодичность, четность и нечетность. Нуль функции, промежутки знакопостоянства, монотонность.

    презентация [86,8 K], добавлен 18.12.2014

  • Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.

    презентация [98,6 K], добавлен 18.01.2015

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа [253,6 K], добавлен 05.01.2015

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат [70,2 K], добавлен 05.09.2010

  • Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.

    курсовая работа [107,1 K], добавлен 29.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.