Начертательная геометрия

Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 21.04.2015
Размер файла 5,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задача, когда сферу пересекает плоскость общего положения, например заданная двумя пересекающимися прямыми б(h?f) решается следующим образом:

Рисунок 8.20. Пересечение сферы плоскостью общего положения

1. Произведем замену плоскостей проекций таким образом, чтобы плоскость б стала проецирующей, т.е. переведем плоскость общего положения в частное. h - горизонталь, f- фронталь, чтобы перевести плоскость б в положение проецирующей плоскости необходимо выбрать новую плоскость проекций, либо перпендикулярно горизонтальной проекции горизонтали h1, либо перпендикулярно фронтальной проекции фронталь - f2 (рис.8.20).

2. Дальнейшее решение аналогично предыдущей задаче.

Рассмотрим еще один способ решения позиционной задачи по определению линии, пересечения поверхности вращения и плоскости общего положения, заданной двумя пересекающимися прямыми б(h?f).

Сечение поверхности Ф плоскостью б(h?f) и проекции этого сечения на плоскость, перпендикулярную оси i, являются кривыми, имеющими ось симметрии. Для доказательства этого утверждения проведем вспомогательную плоскость в, перпендикулярную оси i. Вспомогательная плоскость пересечет заданную поверхность по параллели p, фронтальная проекция которой p2, совпадает со следом плоскости в2, а горизонтальная проекция p1- является окружностью. Линией пересечения вспомогательной плоскости с заданной плоскостью б(h?f) является горизонталь h1.

Параллель p и горизонталь h1, находясь в одной плоскости в, пересекаются в точках 1 и 2, которые принадлежат искомой линии. Полученные точки симметричны друг другу относительно плоскости у, перпендикулярной хорде 1-2 и проходящей через ее середину. Заметим, что плоскость у, являясь множеством точек, равноудаленных от концов хорды 1 - 2, пройдет через ось i поверхности вращения, все точки которой также равноудалены от точек 1 и 2.

Очевидно, что для любой другой пары точек, расположенных на концах хорд других окружностей (но параллельных хорде 1-2), плоскость у будет также являться плоскостью симметрии. Следовательно, кривая сечения поверхности вращения плоскостью б представляет собой кривую симметричную, осью симметрии которой служит линия пересечения плоскостей б и у - прямая, пересекающая поверхность в точках 3 и 4 (линия наибольшего ската плоскости б проходящая через ось поверхности вращения).

Таким образом, используя вспомогательные горизонтальные секущие плоскости можно получить необходимое множество точек для построения линии пересечения плоскости б и поверхности Ф, которой является эллипс. Поэтому для более точного построения необходимо учитывать точки, определяющие положение осей эллипса (3,4,5 и 6)

Однако, если не учитывать характерные точки, определяющие границу зоны видимости линии пересечения и высшую и низшую точки этой линии, построение будет неточным.

Точки, определяющие зону видимости- 7 и 8, расположены на главном меридиане поверхности. Для построения их, через главный меридиан проведем вспомогательную секущую плоскость г, параллельную фронтальной плоскости проекций. Плоскость г пересекает плоскость б по фронтали f1, которая, в свою очередь, находясь в одной плоскости с главным меридианом, пересекается с ним в искомых точках 7 и 8.

Высшая и низшая точки сечения - 3 и 4 находятся на линии наибольшего ската плоскости б, проходящей через ось поверхности Ф т.е. на прямой s. Эту прямую и меридиан поверхности, плоскость которого совпадает с прямой s, повернем вокруг оси i до положения s1, когда прямая s и плоскость меридиана окажутся параллельными П2. Отметим при этом, что точка К пересечения прямой s и осью i остается неподвижной, а вращаемый меридиан в итоге совместится с главным меридианом- очерком фронтальной проекции поверхности вращения. Отметим точки пересечения фронтальной проекции главного меридиана и повернутой прямой. Возвращая обратным поворотом прямую s с найденными точками в исходное положение, находим положение точек 3 и 4.

Соединив, полученные точки кривой с учетом видимости получим линию пересечения плоскости б с поверхностью Ф.

Конические сечения

Рисунок 8.22. Конические сечения

В зависимости от положения секущей плоскости линиями сечения конической поверхности могут быть (рис.8.22): эллипс, парабола, гипербола, а в частных случаях: окружность, прямая, две пересекающиеся прямые и точка.

Если плоскость Ф пересекает все образующие поверхности конуса вращения, т.е. если ц>б, то линией сечения является эллипс. В этом случае секущая плоскость не параллельна ни одной из образующих поверхности конуса.

В частном случае (ц=900) такая плоскость пересекает поверхность конуса по окружности ; и сечение вырождается в точку, если плоскость проходит через вершину конуса.

Если плоскость Ф параллельна одной образующей поверхности конуса, т.е. ц=б, то линией пересечения является парабола. В частном случае (плоскость является касательной к поверхности конуса) сечение вырождается в прямую.

Если плоскость Ф параллельна двум образующим поверхности конуса (в частном случае параллельна оси конуса), т.е. ц<б, то линией сечения является гипербола. В случае прохождения плоскости через вершину конической поверхности фигурой сечения могут быть сами образующие, т.е. гипербола вырождается в две пересекающие прямые.

Лекция №8-3. Метод вспомогательных секущих плоскостей. Метод вспомогательных секущих сфер. Частные случаи пересечения поверхностей второго порядка

Пересечение линии с поверхностью

В общем случае для графического определения точек пересечения линии с поверхностью необходимо выполнить ряд геометрических построений, описываемых следующим алгоритмом:

1. Заключаем линию l в некоторую вспомогательную поверхность Д;

1. Строим линию m пересечения данной поверхности Ф и вспомогательной поверхности Д;

2. Определяем искомую точку К пересечения линии l и m (точка может быть не единственная).

В качестве вспомогательной поверхности целесообразно использовать проецирующую цилиндрическую поверхность, направляющей которой должна служить заданная линия, а -прямолинейными образующими - проецирующие прямые.

Пример: Определить точки пересечения прямой линии с поверхностью конуса вращения и определить видимость прямой по отношению к конусу.

Если в качестве вспомогательной секущей плоскости можно выбрать горизонтально проецирующую или фронтально проецирующую плоскости, то в сечении получатся соответственно гипербола или эллипс. Построение кривых линий значительно усложняет задачу.

Рисунок 8.30. Пересечение прямой линии с конусом (вспомогательная секущая плоскость-плоскость общего положения)

Поэтому в качестве вспомогательной секущей плоскости целесообразно выбрать такую плоскость, которая бы включала прямую l и пересекала конус по образующим (рис.8.30). Очевидно, что такая плоскость определяется прямой l и точкой S- вершиной конуса. Пусть основание конуса лежит в горизонтальной плоскости проекций, тогда линия пересечения вспомогательной секущей плоскости и горизонтальной плоскости проекций ВС пересекает основание конуса в точках D и F. Таким образом в сечении конуса вспомогательной секущей плоскостью получится треугольник DFS. Так как полученный треугольник и прямая l лежат в одной плоскости, точки их пересечения К и Ми есть точки пересечения прямой с конусом.

Взаимное пересечение поверхностей

Линией пересечения двух поверхностей является множество точек, общих для данных поверхностей. Из этого множества выделяют характерные (опорные, или главные) точки, с которых следует начинать построение этой линии. Они позволяют увидеть, в каких границах можно изменять положение вспомогательных секущих поверхностей для определения остальных точек.

К таким точкам относятся: экстремальные точки- верхняя и нижняя точки относительно той или иной плоскости проекций; точки, расположенные на очерковых образующих некоторых поверхностей точки границы зоны видимости и т.д.

Следует имеет в виду, что линия пересечения двух поверхностей в проекциях всегда располагается в пределах контура наложения проекций двух пересекающихся поверхностей.

Иногда целесообразно воспользоваться преобразованием чертежа, чтобы представить пересекающиеся поверхности (или одну из них) в частном положении.

Для определения этих точек часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.

Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.

Из общей схемы построения линии пересечения поверхностей выделяют два основных метода - метод секущих плоскостей и метод секущих сфер.

В общем случае решение задачи по построении линии пересечения двух поверхностей может быть сведено к рассмотренным ранее задачам по определению:

1. Точек пересечения линии с поверхностью;

2. Линии пересечения плоскости и поверхности;

3. Комбинации первой и второй задачи.

Метод вспомогательных секущих плоскостей.

Вспомогательные секущие плоскости чаще всего выбирают проецирующими и параллельными одной из плоскостей проекций - плоскостями уровня.

Этот способ рекомендуется применять, если сечения заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:

1. Если образующие (окружности) расположены в общих плоскостях уровня;

2. Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической;

3. Линейчатые каркасы заданных поверхностей принадлежат общим плоскостям уровня или пучкам плоскостей общего положения.

Пример 1: Рассмотрим построение линии пересечения треугольной призмы с конусом (рис.8.31) . Пусть ось вращения конуса перпендикулярна плоскости П1, а грани призмы перпендикулярны плоскости П2.

В этом случае призму можно рассматривать, как три плоскости б, в, г, проходящие через ее грани, а задача сводится к нахождению линий пересечения этих плоскостей с конусом. При этом в соответствии с характерными сечениями конуса известно, что плоскость б пересекает конус по окружности параллельной П1, в- по гиперболе параллельной П3, а г- по эллипсу.

На плоскость П2 линии пересечения от всех плоскостей проецируются в прямые, совпадающие со следами плоскостей б, в, и г.

Для построения проекций этих линий на плоскости П1 и П3 отметим характерные точки на уже имеющейся фронтальной проекции линий пересечения:

Рисунок 8.31. Пересечение конуса и призмы

Точки 12 и 62 - пересечения плоскости г с очерком проекции конуса на плоскость П2 (главным меридианом), эти точки определяют положение большой оси эллипса, кроме того точка 12 -проекция точки вершины гиперболы и одновременно принадлежит конусу (лежит на очерке фронтальной проекции конуса) и ребру призмы (линии пересечения плоскостей б и в), а точка 62- проекция точки, одновременно принадлежащей конусу и ребру призмы (линии пересечения плоскостей б и г); точки 2, 3, 7 и 8 - характерны тем, что их профильные проекции лежат на очерке проекции конуса; 42, 52- точки, лежащие на середине отрезка 1262 (большой оси эллипса) и определяют положение малой оси эллипса; 9,10 - точки одновременно принадлежащие конусу и ребру призмы (образованному пересечением плоскостей б и в).

Рассмотрим последовательность нахождения проекций точек 4 и 5. Через фронтальные проекции этих точек проведем вспомогательную секущую плоскость ц. Эта плоскость пересекает конус по параллели p, а грань призмы по прямой линии m, параллельной ребру. На горизонтальной плоскости проекций пересечение p 1 и m 1 определяют положение точек 41 и 51. Для точного построения кривых линий пересечения поверхностей обозначенных точек не достаточно. После нахождения проекций всех точек их необходимо соединить с учетом видимости.

Пример 2: Пересечение сферы и цилиндра (рис.8.32).В данном примере вспомогательные плоскости уровня могут быть параллельными плоскостям П2 и П1. В первом случае фронтальные плоскости пересекают сферу по окружности, а цилиндр по прямолинейным образующим.

Одна из таких плоскостей б пересекается с поверхностями по дуге окружности a и прямой линии b. Точка 1 пересечения дуги окружности, а и прямой b принадлежат искомой кривой.

Рисунок 8.32. Пересечение полусферы и эллиптического цилиндра

С помощью вспомогательной секущей плоскости ? (плоскости главного фронтального меридиана полусферы) найдены точки 2 и 3, как точки пересечения главного фронтального меридиана полусферы - дуги окружности с с линиями d и g. Плоскость ??- плоскость главного фронтального меридиана цилиндра, пересекает полусферу по дуге окружности - k которая в свою очередь пересекаясь с фронтальным меридианом цилиндра l и m определяет положение точек 4 и 5. Аналогично, с помощью плоскости ? найдены точки 6 и 7.

Точка 8 найдена с помощью фронтально проецирующей плоскости ???параллельной горизонтальной плоскости проекций, которая пересекает полусферу по окружности - экватору h, а цилиндр по окружности основания s.

Характерными точками, в данном случае, являются точки 1- 5 и 8, лежащие на очерках проекций поверхностей. Кроме того, точки 1 и 8 определяют границу зоны видимости кривой на плоскость П1, а точки 4 и 5 - границу зоны видимости на плоскость П2.

Метод вспомогательных секущих сфер.

При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер - концентрических или эксцентрических.

Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями.

Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.8.33) или одна из осей становиться проецирующей прямой, а вторая - линией уровня (рис.34).

Рисунок 8.33. Пересечение поверхностей вращения, оси которых параллельны фронтальной плоскости проекций.

Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.8.33). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям - параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2, b2, c2, d2, n2). Проекции точек 12, 22, 32, 42, 52 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных меридианов определяет крайние точки 7 и 8.

Рисунок 8.34. Пересечение поверхностей вращения, ось одной - горизонтально проецирующая прямая, а второй - горизонталь

Для точного построения линии пересечения поверхностей необходимо найти точки 9 и 10, которые определяют границу зоны видимости линии пересечения поверхностей на горизонтальной проекции. Для этой цели использовалась вспомогательная секущая плоскость ?? которая пересекает поверхность Q по линии m, а поверхность G по образующим, горизонтальные проекции которых пересекаясь определяют положение искомых точек.

Соединив найденные точки 1...10 с учетом видимости получим линию пересечения поверхностей.

Вторым примером использования в качестве вспомогательных поверхностей посредников концентрических сфер рассмотрим при определении линии пересечения поверхностей предложенных на рисунке 8.34. Оси поверхностей вращения G и Q пересекаются в точки А , при этом ось поверхности Q - фронтально проецирующая прямая, а ось поверхности G - горизонталь. Точка А принимается за центр всех вспомогательных концентрических сфер.

Точки 1 и 2 линии пересечения построены с помощью сферы радиуса R. Эта сфера пересекает поверхность Q по окружности а, а поверхность G по окружности в, которая показана только на горизонтальной проекции. Пересечение горизонтальных проекций окружностей а1 и в1 определяют проекции 11 и 21 точек линии пересечения. Их фронтальные проекции 12 и 22 построены на а2 пересечении с линиями связи.

Аналогично найдены точки 3 и 4.

Для нахождения точек 5 и 6 определяющих границу зоны видимости на горизонтальной проекции использовалась вспомогательная секущая плоскость ?, которая пересекает поверхность Q по окружность n, а коническую поверхность G по треугольнику определяющему ее очерк на горизонтальной проекции.

Точки 7 и 8 находятся на границе зоны видимости фронтальной проекции, для их нахождения используется вспомогательная секущая плоскость ?.

Соединив найденные точки 1...8 с учетом видимости получим линию пересечения поверхностей G и Q.

Эксцентрические сферические посредники применяются при определении точек линии пересечения поверхностей вращения с поверхностью несущей на себе непрерывное множество окружностей. Обе поверхности должны иметь общую плоскость симметрии. Вспомогательные эксцентрические сферы пересекаются с данными поверхностями по окружностям.

Рисунок 8.35. Пересечение конуса и сферы

Определения линии пересечения конуса и сферы применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки расположены на оси конуса. Сфера пересекает конус и сферу по окружностям , которые пересекаются в двух точках, принадлежащих искомой линии пересечения (рис.8.35а).

Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости - плоскости главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций.

Точки определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости - горизонтальной плоскости уровня, пересекающей сферу по экватору - окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности - параллели.

Найденные с помощью вспомогательных поверхностей посредников точки определяют линию пересечения конуса и шара.

Рассмотрим на примере определения линии пересечения конуса Q и сферы G (рис.8.35б) применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки А1, А2 и А3 расположены на оси конуса. Сфера радиуса R1 с центром в точке А1 пересекает конус и сферу по окружностям аи в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R2 с центром А2 исферы R3 с центром А3 определено положение точек 3, 4 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости ? (плоскости фронтального меридиана), пересекающая конус и сферу по главном фронтальном меридианам k и l. Точки 9 и 10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости ? (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Найденные с помощью вспомогательных поверхностей посредников точки 1...10 определяют линию пересечения конуса и шара.

Частные случаи пересечения поверхностей второго порядка

Поверхностью второго порядка называется множество точек пространства, декартовы координаты, которых удовлетворяют алгебраическому уравнению второй степени.

Две поверхности второго порядка в общем случае пересекаются по пространственной линии четвертого порядка, которую называют биквадратной кривой.

В некоторых случаях биквадратная кривая распадается на две плоские кривые второго порядка, причем одна из них может быть мнимой.

Опуская доказательства, приведем некоторые теоремы и примеры, иллюстрирующие их применение.

Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то существует и другая плоская кривая, по которой они пересекаются.

Рассмотрим пример, к которому приложима теорема.

Фронтальные проекции ?2 сферы ? и ?2 эллиптического цилиндра ?, имеющих общую окружность m(m2) с центром О(О2).

Плоскость у, определяемая центром сферы С и осью i цилиндра, является плоскостью симметрии заданных поверхностей, и параллельна фронтальной плоскости проекций.

Общая окружность радиуса r - это одна из плоских кривых второго порядка распавшейся линии пересечения. Остается построить вторую кривую, плоскость б которой должна быть в условиях данного примера перпендикулярна плоскости симметрии у, а следовательно и П2. Вторая линия пересечения (окружность) проецируется на П2 в виде отрезка прямой n2. Для ее построения следует воспользоваться точками А2 и В2, принадлежащими очеркам заданных поверхностей.

Теорема 2.(о двойном касании). Если две поверхности второго порядка имеют касание в двух точках А и В, то линия их пересечения распадается на две плоские кривые второго порядка, плоскость которых проходит через отрезок АВ, соединяющий точки касания.

Например, по двум окружностям m и n пересекается сфера ? и эллиптический цилиндр ?. Точки касания и касательные плоскости обозначены соответственно через А, В, б, в. Окружности, на которые распалась линия пересечения поверхностей, расположены во фронтально- проецирующих плоскостях г и д.

Теорема 3. (теорема Г. Монжа). Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки линий касания.

Рисунок 8.38. Пересечение конуса и цилиндра имеющих общую вписанную сферу

В соответствии с этой теоремой линия пересечения конуса У и цилиндра ? (рис.8.38), описанных около сферы ?, будут плоскими кривыми - эллипсами (расположенными в плоскостях ? и ?), фронтальные проекции которых изображаются прямыми А2В2 и С2Д2,

Теорема Монжа находит эффективное применение при конструировании трубопроводов.

Теорема 4. Если две поверхности второго порядка имеют общую плоскость симметрии, то линия их пересечения проецируется на эту плоскость в виде кривой второго порядка.

Рисунок 8.39. Пересечение сферы и цилиндра

Плоскость симметрии определена осью симметрии цилиндра ? и центром сферы ? (рис.8.39). Плоскости принадлежат и симметричные сами себе точки A, B, C иD линий пересечения. Проекция же линий на фронтальную плоскость имеет форму параболы m2 и аналитически описывается формулой параболы.

Лекция №8-4. Развертка поверхности. Основные свойства развертки. Развертка поверхности многогранников. Развертка цилиндрической поверхности. Развертка конической поверхности. Задание касательной плоскости на эпюре Монжа. Поверхность касательная к поверхности

Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).

Приступая к изучению развертки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся, а полученную плоскую фигуру - ее разверткой.

Основные свойства развертки

Длины двух соответствующих линий поверхности и ее развертки равны между собой;

Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке;

Прямой на поверхности соответствует также прямая на развертке;

Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке;

Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

Развертка поверхности многогранников

Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности - плоских многоугольников.

Существует три способа построения развертки многогранных поверхностей:

1. Способ нормального сечения;

2. Способ раскатки;

3. Способ треугольника.

Пример 1. Развертка пирамиды (рис. 8.40).

Рисунок 8.40. Пирамида и её развертка

При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину ребер и сторон основания.

Рисунок 8.41. Определение истинной величины основания и ребер пирамиды

Рисунок 8.42. Построение развертки пирамиды

Алгоритм построения можно сформулировать следующим образом (рис. 8.41):

Определяют натуральную величину основания пирамиды (например методом замены плоскостей проекций);

Определяют истинную величину всех ребер пирамиды любым из известных способов (в данном примере натуральная величина всех ребер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S);

Строят основание пирамиды и по найденным трем сторонам строят какую-либо из боковых граней, пристраивая к ней следующие (рис.8.42).

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки.

Примером первой точки на рисунках служит точка К0 и К?SАD, а иллюстрацией второго случая являются точки М0 и М0*. Для определения точки К0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ ( метод замены плоскостей проекций) и SК (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S0М0 и, наконец, точки К0.

Пример 2. Развертка призмы (рис.8.43).

Рисунок 8.43. Развертка призмы способом нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пересекая призму вспомогательной плоскостью б, перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения - треугольника 1, 2, 3, а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 10-10*, равный периметру нормального сечения. Через точки 10, 20, 30 и 10* проводят прямые, перпендикулярные 10-10*, на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 10, отложены отрезки 10D0=14D4 и 10А0=14А4.

Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рис. 8.44).

Рисунок 8.44. Развертка призмы способом раскатки

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Затем новую проекцию призмы вращают вокруг ребра С4F4 до тех пор пока грань ACDF не станет параллельной плоскости П4. При этом положение ребра С4F4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П1 то на эту плоскость проекций они проецируются без искажения т.е. R=A1C1=D1F1), расположенных в плоскостях, перпендикулярных ребру С4F4. Таким образом, траектории движения точек A и D на плоскость П4 проецируются в прямые, перпендикулярные ребру С4F4.

Когда грань ACDF станет параллельна плоскости П4, она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF. Таким образом, засекая перпендикуляры, по которым перемещаются точки A4 и D4 дугой радиуса R=A1C1=D1F1, можно получить искомое положение точек развертки A0 и D0.

Следующую грань АBDE вращают вокруг ребра AD. На перпендикулярах, по которым перемещаются точки B4 и E4 делают засечки из точек A0 и D0 дугой радиуса R=A1B1=D1E1. Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П4 и проходящую через ребро С4F4.

Построение на развертке точки К, принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую NМ, параллельную боковым ребрам, которая затем построена на развертке.

Развертка цилиндрической поверхности

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рис.8.45). Чем больше углов в призме, тем точнее развертка ( приn >?призма преобразуется в цилиндр).

Рисунок 8.45. Развертка цилиндрической поверхности

Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рис.8.46).

Рисунок 8.46. Развертка конической поверхности

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол ц=360о r / l, где r - радиус окружности основания конуса.

Плоскость касательная к поверхности

Касательные плоскости играют большую роль в геометрии. В теоретическом плане плоскости, касательные к поверхности, используются в дифференциальной геометрии при изучении свойств поверхности в районе точки касания.

Решение задач, возникающих при проектировании и конструировании поверхностей-оболочек, требует проведения касательных плоскостей и нормалей к поверхности. При построении на проекционном чертеже очерков поверхностей по заданному направлению проецирования, при определении контуров собственных теней также необходимо строить касательные плоскости к поверхности. Построение касательной плоскости к поверхности представляет частный случай пересечения поверхности плоскостью.

Плоскость, касательная к поверхности, имеет общую с этой поверхностью точку, прямую или плоскую кривую линию. Плоскость в одном месте может касаться поверхности, а в другом пересекать эту поверхность. Линия касания может одновременно являться и линией пересечения поверхности плоскостью.

Плоскость б, представленную двумя касательными, проведенными в точке А поверхности Ф, называется касательной плоскостью к поверхности в данной ее точке.

Любая кривая поверхности проходящая через точку А, имеет в этой точке касательную прямую, принадлежащую плоскости б.

Не в каждой точке поверхности можно провести касательную плоскость. В некоторых точках касательная плоскость не может быть определена или не является единственной. Такие точки называются особыми точками поверхностей, например вершина конической поверхности.

Прямую линию, проходящую через точку касания и перпендикулярную касательной плоскости, называют нормалью поверхности в данной точке.

В зависимости от вида поверхности, касательная плоскость может иметь с поверхностью как одну общую точку, так и множество точек. В зависимости от того, с каким случаем касания, мы имеем дело, точки, принадлежащие поверхности подразделяют на эллиптические, параболические и гиперболические:

Если касательная плоскость имеет с поверхностью только одну общую точку, то все принадлежащие поверхности линии, проходящие через эту точку, будут расположены по одну сторону от касательной плоскости (рис.8.47). Такие точки называются эллиптическими.

В случае проведения касательной плоскости к торсовой поверхности, образованной непрерывным перемещением касательной прямой к некоторой пространственной кривой линии (частный случай - коническая поверхность), плоскость будет касаться поверхности по прямой линии - образующей. Точки, принадлежащие этой образующей, называются параболическими.

Точки поверхности, касательная плоскость, к которым пересекает поверхность, называют гиперболическими. Гиперболическая точка принадлежит линии, по которой касательная плоскость пересекает поверхность.

Задание касательной плоскости на эпюре Монжа

Рисунок 8.50. Построение касательной плоскости к параболоиду вращения

Так как плоскость однозначно определяется двумя пересекающимися прямыми, то для построения касательной плоскости к поверхности в данной точке, достаточно через эту точку провести две линии принадлежащие поверхности и к каждой из них провести касательные в заданной точке.

Касательной прямой к поверхности называется прямая, касательная к какой-либо кривой принадлежащей поверхности.

Рассмотрим на примере (рис.8.50) построение касательной плоскости к параболоиду вращения Ф в точке М.

Для решения этой задачи через точку М проведем две кривые плоские линии n и m принадлежащие поверхности Ф. Линия n - окружность, лежащая в горизонтальной плоскости уровня проведенной через точку М, линия m - парабола, лежащая в горизонтально проецирующей плоскости проведенной через вершину параболоида и точку М. Чтобы построить касательную плоскость достаточно провести к данным линиям касательные.

Касательная к плоской кривой линии лежит в одной плоскости с ней. Так как линия n лежит в горизонтальной плоскости то на плоскость П1 она проецируется в натуральную величину n1, что позволяет сразу построить горизонтальную проекцию касательной к ней t11. На плоскость П2 - окружность проецируется в прямую n2, а фронтальная проекция касательной t21 будет с ней совпадать.

Линия m лежит в горизонтально проецирующей плоскость, поэтому её горизонтальная проекция m1 - прямая, определяющая и горизонтальную проекцию касательной t12.

На плоскость П2 парабола проецируется с искажением m2, поэтому для построения касательной, повернем поверхность Ф вокруг оси, до совмещения плоскости параболы с фронтальной плоскостью проекций, проекция точки М2 при этом переместиться в положение точки М2*.

Через эту точку проведем касательную t22* к очерку параболоида. И обратным вращением находим проекцию касательной t22.

Две пересекающиеся в точке М2 прямые t21 и t22 определяют положение фронтальной проекции касательной плоскости б2, а прямые t11 и t12 - горизонтальную проекцию касательной плоскость б1.

Таким образом на эпюре получена плоскость б касательная к поверхности параболоида вращения в точке М.

Поверхность касательная к поверхности

Две поверхности могут соприкасаться одна с другой в точке, по прямой или по кривой линии . Соприкасание может быть внешнее или внутреннее .

Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно.

Отметим без доказательства следующие следствия частных случаев касания поверхностей второго порядка:

1. Если две поверхности 2-го порядка касаются в трех точках, то они соприкасаются по кривой 2-го порядка;

2. Если две поверхности 2-го порядка касаются друг друга по кривой линии, то эта линия является кривой 2-го порядка;

3. Если две поверхности 2-го порядка описаны около третьей поверхности 2-го порядка (или вписаны в неё), то они пересекаются по линии, распадающейся на две кривые 2-го порядка (теорема Монжа).

Лекция № 9. Аксонометрические проекции. Стандартные аксонометрические проекции. Основная теорема аксонометрии (теорема Польке). Окружность в аксонометрии. Построение аксонометрических изображений

Аксонометрические проекции

Аксонометрические изображения широко применяются благодаря хорошей наглядности и простоте построений.

Слово "аксонометрия" в переводе с греческого означает измерение по осям. Аксонометрический метод может сочетаться и с параллельным, и с центральным проецированием при условии, что предмет проецируется вместе с координатной системой.

Сущность метода параллельного аксонометрического проецирования заключается в том, что предмет относят к некоторой системе координат и затем проецируют параллельными лучами на плоскость вместе с координатной системой.

На рисунке 9.1 показана точка А, отнесенная к системе прямоугольных координат xyz. Вектор S определяет направление проецирования на плоскость проекций П*.

Аксонометрическую проекцию А1* горизонтальной проекции точки А принято называть вторичной проекцией.

Искажение отрезков осей координат при их проецировании на П' характеризуется так называемым коэффициентом искажения.

Коэффициентом искажения называется отношение длинны проекции отрезка оси на картине к его истинной длине.

Так по оси x* коэффициент искажения составляет u=0*x*/0x, а по оси y* и z* соответственно х=0*y*/0y и щ=0*z*/0z.

В зависимости от отношения коэффициентов искажения аксонометрические проекции могут быть:

Изометрическими, если коэффициенты искажения по всем трем осям равны между собой; в этом случае u=х=щ;

Рисунок 9.1. Сущность метода аксонометрического проецирования

Диметрическими, если коэффициенты искажения по двум любым осям равны между собой, а по третьей - отличается от первых двух;

Триметрическими, если все три коэффициента искажения по осям различны.

Аксонометрические проекции различаются также и по тому углу ц, который образуется проецирующим лучом с плоскостью проекций. Если ц? 90o, то аксонометрическая проекция называется косоугольной, а если ц= 90o - прямоугольной.

Основная теорема аксонометрии (теорема Польке)

Рассмотрев общие сведения об аксонометрических проекциях, можно сделать следующие выводы:

- аксонометрические чертежи обратимы;

- аксонометрическая и вторичная проекции точки вполне определяют её положение в пространстве.

Аксонометрические проекции обратимы, если известна аксонометрия трех главных направлений измерений фигуры и коэффициенты искажения по этим направлениям.

Аксонометрические проекции фигуры являются её проекциями на плоскости произвольного положения при произвольно выбранном направлении проецирования.

Очевидно возможно и обратное. На плоскости можно выбрать произвольное положение осей с произвольными аксонометрическими масштабами.

В пространстве всегда возможно такое положение натуральной системы прямоугольных координат и такой размер натурального масштаба по осям, параллельной проекцией которых является данная аксонометрическая система.

Немецкий ученый Карл Польке (1810-1876) сформулировал основную теорему аксонометрии: три отрезка прямых произвольной длины, лежащих в одной плоскости и выходящих из одной точки под произвольными углами друг к другу, представляют параллельную проекцию трех равных отрезков, отложенных на координатных осях от начала.

Согласно этой теореме, любые три прямые в плоскости, исходящие из одной точки и не совпадающие между собой, можно принять за аксонометрические оси. Любые отрезки произвольной длинны на этих прямых, отложенные от точки их пересечения, можно принять за аксонометрические масштабы. Эта система аксонометрических осей и масштабов является параллельной проекцией некоторой прямоугольной системы координатных осей и натуральных масштабов.

В практике построения аксонометрических изображений обычно применяют лишь некоторые определенные комбинации направлений аксонометрических осей и аксонометрических масштабов: прямоугольная изометрия и диметрия, косоугольная фронтальная диметрия, кабинетная проекция и др.

Стандартные аксонометрические проекции

Согласно ГОСТ 2.317-69, из прямоугольных аксонометрических проекций рекомендуется применять прямоугольные изометрию и диметрию.

Между коэффициентами искажения и углом ц, образованным направлением проецирования и картинной плоскостью, существует следующая зависимость:

u2+х2+щ2=2+ctq2ц,

если ц=90o, то u2+х2+щ2=2,

В изометрии u=х=щ и, следовательно, 3u2=2, откуда u=2/3 ? 0,82.

Таким образом, в прямоугольной изометрии размеры предмета по всем трем измерениям сокращаются на 18 %. ГОСТ рекомендует изометрическую проекцию строить без сокращения по осям координат, что соответствует увеличению изображения против оригинала в 1,22 раза.

При построении прямоугольной диметрической проекции сокращение длин по оси y' принимают вдвое больше, чем по двум другим, т.е. полагают, что

u=щ, а х=0,5u.

Тогда 2u2+(0,5u)2=2, откуда u2=8/9 и u?0,94, а х=0,47.

В практических построениях от таких дробных коэффициентов обычно отказываются, вводя масштаб увеличения, определяемый соотношением 1/0,94=1,06, и тогда коэффициенты искажения по осям x' и z' равны единице, а по оси y' вдвое меньше х=0,5.

Из косоугольных аксонометрических проекций ГОСТом предусмотрено применение фронтальной и горизонтальной изометрии и фронтальной диметрии (последнюю ещё называют кабинетной проекцией).

Окружность в аксонометрии

Рисунок 9.4. Проецирование окружности на плоскость

При параллельном проецировании окружности на какую-нибудь плоскость П* получаем ее изображение в общем случае в виде эллипса (рис. 9.4).

Как бы ни была расположена плоскость окружности, сначала целесообразно построить параллелограмм A*B*C*D* - параллельную проекцию квадрата ABCD, описанного около данной окружности, а затем с помощью восьми точек и восьми касательных вписать в него эллипс.

Точки 1, 3, 5 и 7 - середины сторон параллелограмма. Точки 2, 4, 6 и 8 расположены на диагоналях так, что каждая из них делит полудиагональ в соотношении 3:7.

Действительно, на основании свойств параллельного проецирования можно записать, что А2/1О=A*2*/2*O*, Но А1/1О=(rv2-r)/r?3/7.

Из восьми касательных к эллипсу первые четыре - это стороны параллелограмма, а остальные t2, t4, t6 иt8- прямые, параллельные его диагоналям. Так касательная t2* к эллипсу параллельна диагонали C*D*, Объясняется это тем, что t2* и C*D* являются проекциями двух параллельных прямых t2 и CD.

Графические построения, предшествующие вычерчиванию самого эллипса, целесообразно выполнять в следующей последовательности.

Построить аксонометрическую проекцию квадрата - параллелограмм A*B*C*D* и провести диагонали A*C* и B*D*;

Отметить середины сторон параллелограмма - точки 1*, 3*, 5* и 7* ;

На отрезке 3*B*, как на гипотенузе, построить прямоугольный равнобедренный треугольник 3*KB*;

Из точки 3* радиусом 3*K описать полуокружность, которая пересечет A*B* в точках L и M; эти точки делят отрезок 3*A* и равный ему отрезок 3*B* в отношении 3:7 ;

Через точки L и М провести прямые параллельные боковым сторонам параллелограмма, и отметить точки 2*, 4*, 6* и 8* расположенные на диагоналях;

Построить касательные к эллипсу в найденных точках. Касательных t2 и t6 параллельны BD, а касательных t4 и t8 параллельны AC.

Получив восемь точек и столько же касательных, можно с достаточной точностью вычертить эллипс.

ГОСТ 2.317-69 определяет положение окружностей, лежащих в плоскостях, параллельных плоскостям проекций для прямоугольной изометрической проекции (рис.9.6) и для прямоугольной диметрии (рис.9.7).

Рисунок 9.6. Изометрические проекции окружностей, расположенных в плоскостях параллельных плоскостям проекций

Рисунок 9.7. Диметрические проекции окружностей, расположенных в плоскостях параллельных плоскостям проекций

Если изометрическую проекцию выполняют без искажения по осям x, y, z, то большая ось эллипсов 1,2, 3 равна 1,22, а малая ось -0.71 диаметра окружности.

Если изометрическую проекцию выполняют с искажением по осям x, y, z, то большая ось ось эллипсов 1, 2, 3 равна диаметру окружности, а малая - 0.58 диаметра окружности.

Если димметрическую проекцию выполняют без искажения по осям x и z то большая ось эллипсов 1, 2, 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 - 0.95, эллипсов 2 и 3 - 0.35 диаметра окружности.

Если диметрическую проекцию выполняют с искажения по осям x и z, то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось эллипса 1 - 0.9, эллипсов 2 и 3 - 0,33 диаметра окружности.

1-эллипс (большая ось расположена под углом 900 к оси y); 2-эллипс (большая ось расположена под углом 900 к оси z); 3-эллипс (большая ось расположена под углом 900 к оси x).

Построение аксонометрических изображений

Рисунок 9.8. Построение аксонометрического изображения

Переход от ортогональных проекций предмета к аксонометрическому изображению рекомендуется осуществлять в такой последовательности (рис. 9.8):

1. На ортогональном чертеже размечают оси прямоугольной системы координат, к которой и относят данный предмет. Оси ориентируют так, чтобы они допускали удобное измерение координат точек предмета. Например, при построении аксонометрии тела вращения одну из координатных осей целесообразно совместить с осью тела.

2. Строят аксонометрические оси с таким расчетом, чтобы обеспечить наилучшую наглядность изображения и видимость тех или иных точек предмета.

3. По одной из ортогональных проекций предмета чертят вторичную проекцию.

4. Создают аксонометрическое изображение, для наглядности делают вырез четверти.

ГОСТ 2.317-69 определяет условности и способы нанесения размеров при построении аксонометрического изображения, основное внимание следует обратить на следующих:

?Линии штриховки сечения в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям.

?При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии - параллельно измеряемому отрезку.

??В аксонометрических проекциях спицы маховиков и шкивов, ребра жесткости и подобные элементы штрихуют.

Размещено на Allbest.ru


Подобные документы

  • Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.

    методичка [4,2 M], добавлен 03.02.2013

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа [115,2 K], добавлен 10.01.2010

  • Оптимальные фигуры многоугольников на плоскости. Соотношение размеров соседних фигур на плоскости на примере соприкасающихся окружностей. Реализация шестигранных ячеек в природе. Характеристика таких категорий: целое и части, дискретное и непрерывное.

    статья [290,7 K], добавлен 28.03.2012

  • Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа [2,3 M], добавлен 24.06.2010

  • Изучение правил и норм выполнения построения геометрических тел. Способы выполнения чертежей, эскизов, наглядных изображений. Конструктивный анализ пространства. Элементы рисунка, создающие иллюзию трехмерности. Место рисунка в творческом процессе.

    курсовая работа [484,8 K], добавлен 07.04.2014

  • Истоки, понятие аналитической геометрии. Метод координат на плоскости. Аффинная и Декартова система координат на плоскости, прямая и окружность. Аналитическое задание геометрических фигур. Применение аналитического метода к решению планиметрических задач.

    курсовая работа [1,2 M], добавлен 12.05.2009

  • Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.

    контрольная работа [376,1 K], добавлен 16.06.2012

  • Сущность и графическое отображение игры на преследование, ее математический смысл и формулирование соответствующих теорем. Стратегия параллельного сближения и ее обоснование. Порядок преследования на плоскости с одним или несколькими преследователями.

    творческая работа [24,9 K], добавлен 03.01.2010

  • Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.

    презентация [106,9 K], добавлен 21.09.2013

  • Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.

    презентация [1,5 M], добавлен 14.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.