Евклид и его "Начала"

"Начала" - основная книга Эвклида, самый знаменитый учебник в истории. Расположение материала по тринадцати книгам так, чтобы трудности не возникали преждевременно (планиметрия, арифметика, несоизмеримые величины, стереометрия). Пятый постулат Эвклида.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 05.02.2010
Размер файла 229,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

На тему: Евклид и его “начала”

1. Евклид и его “Начала”

В течение двух тысяч лет геометрию узнавали либо из “Начал” Евклида, либо из учебников, написанных на основе этой книги. Лишь профессиональные математики обращались к трудам других великих греческих геометров: Архимеда, Аполлония и геометров более позднего времени. Классическую геометрию стали называть евклидовой в отличие от появившихся в XIX в “неевклидовой геометрий”.

Об этом поразительном человеке история сохранила настолько мало сведений, что не редко высказываются сомнения в самом его существовании. Что же дошло до нас? Каталог греческих геометров Прокла Диадоха Византийского, жившего в V в н.э., - первый серьёзный источник сведений о греческой геометрии. Из каталога следует, что Евклид был современником царя Птолемея I,который царствовал с 306-283г.до н.э.

Евклид должен быть старше Архимеда, который ссылался на “Начало”. До наших времён дошли сведения, что он преподавал в Александрии, столица Птолемея I, начинавший превращаться в один из центров научной жизни. Евклид был последователем древнегреческого философа Платона, и преподавал он, вероятно, четыре науки, которые, по мнению Платона, должны предшествовать занятиям философией: арифметику, геометрию, теорию гармонии, астрономию. Кроме “Начал” до нас дошли книги Евклида, посвящённые гармонии и астрономии.

Что касается места Евклида в науке, то оно определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Евклиду приписывается несколько теорем и новых доказательств, но их значение не может быть сравнимо с достижениями великих греческих геометров: Фалеса и Пифагора(VI век до н. э.), Евдокса и Теэтета (IV век до н.э.). Величайшая заслуга Евклида в том, что он подвёл итог построению геометрии и придал изложению столь совершенную форму, что на 2000 лет “Начала” стали энциклопедией геометрии.

Евклид с величайшим искусством расположил материал по 13 книгам так, чтобы трудности не возникали преждевременно. Позже греческие математики включили в “Начало” ещё две книги-XIV- и XV-ю, написанные другими авторами.

Первая книга Евклида начинается с 23”определений”, среди них такие: точка есть то, что не имеет частей; линяя есть длина без ширины; линия ограничена точками; прямая есть линия, одинакова расположенная относительно всех своих точек; наконец, две прямые, лежащие в одной плоскости, называются параллельными, если они, сколь угодно продолжены, не встречаются. Это скорее наглядные представления об основных объектах и слово “определение” в современном понимании не точно передаёт смысл греческого слова “хорой”, которым пользовался Евклид.

В книге I рассматриваются основные свойства треугольников, прямоугольников, параллелограммов, сравниваются их площади. Здесь появляется теорема о сумме углов треугольника. Затем следует пять геометрических постулатов: через две точки можно провести одну прямую; каждая прямая может быть сколь угодно продолжена ; данным радиусом из данной точки можно провести окружность; все прямые углы равны; если две прямые проведены к третьей под углами, составляющими в сумме меньше двух прямых, то они встречаются с той же стороны от этой прямой. Все эти постулаты, кроме одного, вошли в современные курсы основной геометрии. За постулатами приводятся общие предположения, или аксиомы,- 8 общематематических утверждений о равенствах и неравенствах. Книга заканчивается теоремой Пифагора.

В книге II излагается геометрическая алгебра, с помощью геометрических чертежей даются решения задач, сводящихся к квадратным уравнениям. Алгебраической символики тогда не существовало.

В книге III рассматриваются свойства круга, свойства касательных и хорд, в книге IV-правильные многоугольники, появляются основы учения о подобии. В книгах VII-IX изложены начала теорий чисел, а основанной на алгоритме нахождения наибольшего общего делителя, приводится алгоритм Евклида, сюда входит теория делимости и теорема о бесконечности множества простых чисел.

Последние книги посвящены стереометрии. В книге XI излагаются начала стереометрии, в XII с помощью метода исчерпания определяются отношения площадей двух кругов и отношение объёмов пирамиды и призмы, конуса и цилиндра. Вершина стереометрии у Евклида - теория правильных многогранников. В “Начало” не попало одно из величайших достижений греческих геометров - теория конических сечений. О них Евклид написал отдельную книгу “Начала конических сечений”, не дошедшую до нас, но её цитировал в своих сочинениях Архимед.

“Начало” Евклида не дошли до нас в подлиннике. Двенадцать столетий отделяют от Евклида самые старые известные списки, семь столетий - сколь- нибудь подробные сведения о “Началах”. В средневековую эпоху интерес к математике был утрачен, некоторые книги “Начал” пропали и потом с трудом восстанавливались по латинским и арабским переводам. А к тому времени тексты обросли “улучшениями” позднейших комментаторов.

В период возрождения европейской математике (XVIв.) “Начала” изучали и воссоздавали заново. Логическое построение “Начала”, аксиоматика Евклида воспринимались математиками как безупречное вплоть до XIX в., когда начался период критического отношения к достигнутому, который закончился новой аксиоматикой евклидовой геометрии - аксиоматикой Д. Гильберта. Изложение геометрии в “Началах” считалось образцом, которому стремились следовать учёные и за пределами математики.

2. Евклида Алгоритм

Алгоритм Евклида - это способ нахождения наибольшего общего делителя двух целых чисел, а также наибольшей общей меры двух соизмеримых отрезков.

Чтобы найти наибольший общий делитель двух целых положительных чисел, нужно сначала большее число разделить на меньшее, затем второе число разделить на остаток от первого деления, потом первый остаток - на второй и т.д. Последний ненулёвой положительный остаток в этом процессе и будет наибольшим общим делителем данных чисел.

Обозначив исходные числа через а и б, положительные остатки, получающиеся в результате делений, через r1 ,r2…, rn , а неполные частные через q1 , q2, можно записать алгоритм Евклида в виде цепочки равенств:

a=bq1 +r1 ,

b=r1q2 +r2

. . . . . . . . . .

rn-2=rn-1qn+rn

rn-1=rnqn+1.

Приведём пример. Пусть а=777, b=629. Тогда 777=629*1+148, 629=148*4+37, 148=37*4.

Последний ненулевой остаток 37 есть наибольший общий делитель чисел 777 и 629.

Для нахождения наибольшей общей меры двух отрезков поступают аналогично. Операцию деления с остатком заменяют его геометрическим аналогом: меньше отрезок откладывают на большим столько раз, сколько возможно: оставшуюся часть большего отрезка (принимаемую за остаток отделения) откладывают на меньшем отрезке и т.д.если отрезки a и b соизмеримы, то последний не нулевой остаток даст наибольшую общую меру этих отрезков. В случае несоизмеримых отрезков получаемая последовательность не нулевых остатков будет бесконечной.

Рассмотрим пример. Возьмём в качестве исходных отрезков сторону AB и AC равнобедренного треугольника ABC, у которого A=C = 72°, B= 36°. В качестве первого остатка мы получим отрезок AD (CD-биссектриса угла C), и, как легко видеть, последовательность и нулевых остатков будет бесконечной. Значит, отрезки AB и AC не соизмеримы .

Алгоритм Евклида известен издавна. Ему уже более 2000 лет. Этот алгоритм сформулирован в “Началах” Евклида, где из него выводятся свойства простых чисел, наименьшего общего кратного и т.д. Как способ нахождения наибольшей общей меры двух отрезков алгоритм Евклида (иногда называемый методом попеременного вычитания) был известен ещё пифагорейцам. К середине XVI в. алгоритм Евклида был распространён на многочлены, от одного переменного в дальнейшем удалось определить алгоритм Евклида и для некоторых других алгебраических объектах.

Алгоритм Евклида имеет много применений. Равенства, определяющие его, дают возможность представить наибольший делитель d чисел a и b в виде d=ax+by (x;y- целые числа), а это позволяет находить решение Диофантовых уравнений 1-й степени с двумя неизвестными. Алгоритм Евклида является средством для представления рационального числа в виде цепной дроби. Он часто используется в программах для электронных вычислительных машин.

Начала Эвклида

Евклид (330-275 гг. до н. э.) - ученик школы Платона, при царе Птолемее I преподавал математику в Александрии - столице Древнего Египта. Из работ, написанных Евклидом, главным произведением являются «Начала».

Эта книга намного превосходила более поздние труды математиков, она сыграла огромную роль в истории математики. Достаточно сказать, что она была переведена на все языки мира и выдержала около 500 изданий. До середины XIX века все математики учились по «Началам» Евклида.

«Начала» Евклида состоят из 13 книг:

I - VI посвящены планиметрии;

VII - IX - арифметике;

Х - несоизмеримым величинам;

XI-XIII - стереометрии (XIII посвящена правильным многогранникам).

Но не все из того, что уже было известно, изложено в «Началах», например, теория конических сечений в «Началах» не была представлена.

Каждой из 13 книг «Начал» предпосылаются основные предложения, необходимые для вывода всех предложений рассматриваемой книги. Эти предложения делятся на 3 категории: определения, аксиомы и постулаты.

Первая книга «Начал» начинается с 23-х определений. Приведём список некоторых определений «Начал»:

1. Точка есть то, что не имеет частей.

2. Линия есть длина без ширины.

3. Границы линии суть точки.

. . .

Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той ни с другой стороны между собой не встречаются.

За определениями следуют постулаты и аксиомы, т. е. предложения, принимаемые без доказательства. Полный список аксиом и постулатов данный Евклидом не сохранился. Известно 5 постулатов и 10 аксиом.

Постулаты:

Требуется,

1. Чтобы из каждой точки ко всякой другой точке можно было провести прямую линию.

2. И чтобы каждую ограниченную прямую можно было продолжать неограниченно.

3. И чтобы из каждой точки, как из центра, можно было произвольным радиусом описать окружность.

4. И чтобы все прямые углы были равны друг другу.

V постулат:

5. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше 2-х прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше 2-х прямых.

Аксиомы:

1. Равные порознь третьему равны между собой.

2. И если к равным прибавим равные, то получим равные.

. . .

6. И половины равных равны между собой.

. . .

8. И целое больше части.

9. И две прямые не могут заключить пространства.

С современной точки зрения, одно из слабых мест «Начал» Евклида - это определения. Он дает определения таких понятий как точка, плоскость, прямая, т. е. стремится дать определение всем геометрическим понятиям, а это невозможно. Многие его определения крайне туманны, например:

1. «Прямая есть линия, которая одинаково расположена относительно всех своих точек».

2. «Плоскость есть поверхность, которая одинаково расположена по отношению ко всем прямым, на ней лежащим».

Евклид в «Началах» разделил постулаты и аксиомы. Но трудно провести между ними строгую грань. С современной точки зрения все они могут называться аксиомами. Другой важный недостаток «Начал» - неполнота системы аксиом: нет аксиомы непрерывности, аксиом движения и порядка, связанных с терминами «между» и «вне».

Огромное историческое значение «Начал» Евклида в том, что они являются первым крупным научным документом по геометрии, в котором сделана попытка логического построения геометрии на основе аксиом. Чтобы закончить характеристику «Начал» Евклида необходимо остановиться на особо важном вопросе - о V постулате Евклида и попытках его доказательства.

Пятый постулат Эвклида

«Начала» Евклида на протяжении более двух тысяч лет подвергались тщательному изучению. Имеется огромная литература, содержащая комментарии к «Началам». Уже древние комментаторы заметили, что «Начала» содержат существенные недостатки, в связи с этим предпринимались попытки их устранения. Особое внимание критиковавших «Начала» Евклида привлекал к себе V постулат.

V постулат занимает в системе постулатов «Начал» особое положение в силу ряда глубоких соображений. Прежде всего, обращает на себя внимание то обстоятельство, что утверждение, содержащееся в V постулате, не имеет столь простого и очевидного характера, какой имеют прочие постулаты. Во-вторых, формулировка V постулата носит довольно сложный и громоздкий характер. И наконец, третья особенность заключается в весьма своеобразном использовании Евклидом этого постулата. В то время, как все остальные постулаты используются им с самого начала, при изложении первых теорем, V постулат применяется впервые лишь в доказательстве 29-го предложения.

Таким образом, применение V постулата в «Началах» Евклида резко разграничивает геометрические предложения на две категории: на предложения, доказываемые без помощи V постулата; и на предложения, которые не могут быть доказаны без его использования. Предложения первой категории называются абсолютной геометрией, а второй - образует так называемую собственную евклидову геометрию.

Изложенные особенности V постулата имели большое значение для последующего развития геометрии. Исследователи, жившие после Евклида, и комментаторы «Начал», рассматривали V постулат, как предложение, которое не следует помещать среди постулатов, а необходимо доказать как теорему. Они были убеждены в его доказуемости. Поэтому усилия многих поколений математиков были направлены на то, чтобы доказать V постулат при помощи остальных постулатов и тем самым свести его в разряд теорем. В этом и заключалась проблема V постулата Евклида.

Решением этой проблемы занимались многие математики, в том числе: Посидоний (I в. до н. э.), Птолемей (III в. до н. э.), Прокл (410 - 475 гг), Насир-Эддин (1201 - 1274 гг.), Д. Валлис (1616 - 1703 гг.), Ламберт (1728 - 1777 гг.), Лежандр (1752 - 1833 гг.), Гаусс (1777 - 1855 гг.), И. Больяи (1802 - 1860 гг.). Все они неизменно оканчивались неудачей. Авторы доказательств в своих рассуждениях использовали явным или скрытым образом наглядно очевидные предложения, которые при тщательном анализе оказывались предложениями эквивалентными самому постулату.

Например, наиболее интересная попытка доказательства была предпринята итальянским математиком Джироламо Саккери (1667 - 1733 гг.) - священник, профессор университета. Он пытался заменить V постулат Евклида его отрицанием и попытался вывести теорему, которая противоречила бы одной из доказанных Евклидом теорем. Полученное противоречие показало бы, что его предположение ложно и V постулат можно вывести из остальных. В процессе поиска он получил теорему, которая противоречила ранее полученным результатом, и написал книгу «Евклид, избавленный от всех пятен». Однако впоследствии математики выяснили, что Саккери в действительности не пришел к противоречию, и вопрос по-прежнему остается открытым.

В середине XVIII в. над этой проблемой размышлял немецкий математик Ламберт. В отличие от Саккери, он понял, что любой набор гипотез, который не приводит к противоречию, порождает новую геометрию, и убедился, что V постулат Евклида невозможно вывести из остальных аксиом, т. е. аксиома о параллельных независима от остальных.

Насколько велик труд, затраченный на исследования, связанные с проблемой доказательства V постулата, можно судить по тому, что известно около 250 серьёзных сочинений, посвящённых теории параллельности и не достигших поставленной цели. Однако, несмотря на безрезультатность и тщетность всех попыток доказательства V постулата, они всё же не были бесполезны. В результате этих многовековых поисков были выявлены логические зависимости между некоторыми важными геометрическими предложениями и, в частности, были открыты предложения, эквивалентные V постулату. Например, в современной школьной практике V постулат известен, как аксиома параллельных Плейфера: «Через точку, лежащую вне данной прямой, можно провести только одну прямую, параллельную данной».

Создание неэвклидовой геометрии

Безуспешные поиски доказательства 5-го постулата сыграли ту положительную роль, что помогли глубже проникнуть в структуру геометрии, уяснить взаимную связь её важнейших предложений. Эти попытки подготовили почву для возникновения у передовых учёных предположения, что 5-ый постулат недоказуем при помощи остальных аксиом геометрии Евклида.

Здесь повторилось замечательное явление, неоднократно наблюдавшееся в истории науки вообще и математики в частности, когда достаточно созревшие новые идеи возникали у нескольких учёных одновременно. Это обстоятельство весьма красочно выражено в одном из писем Ф. Бояи к своему сыну Я. Бояи: «Как весной сразу всюду появляются фиалки, так и для научных открытий бывают эпохи, когда одни и те же мысли вспыхивают у учёных в разных местах». В течении первых же десятилетий XIX в. проблема 5-го постулата была решена несколькими лицами почти одновременно и независимо друг от друга, но совершенно не так, как предполагали это прежние учёные: была создана новая геометрия, независимая от 5-го постулата, основанная на замене его утверждением, эквивалентным гипотезе острого угла Саккери.

К открытию новой, так называемой «неевклидовой», геометрии пришли три человека:

1) профессор Казанского университета Николай Иванович Лобачевский (1792-1856);

2) великий немецкий математик Карл Фридрих Гаусс (1777-1855);

3) венгерский офицер Янош Бояи (1802-1860).

Однако вклад в создание новой геометрии, сделанный этими учёными, весьма неравноценен.

Что касается Гаусса, то он совершенно не оставил никаких следов систематического изложения своих открытий в области неевклидовой геометрии и при жизни не опубликовал ни одной строчки по этому вопросу. Гаусс слишком боялся уронить свой огромный авторитет в глазах учёного мира.

Янош Бояи пришёл к открытию неевклидовой геометрии в 1823 г., будучи в возрасте 21 года, но опубликовал свои результаты в 1832 г. (позже Лобачевского) в виде приложения к учебнику математики «Опыт введения учащегося юношества в начала чистой математики», изданному его отцом Ф. Бояи. Но, непонятый своими современниками, встретивший сдержанное, нечуткое отношение со стороны Гаусса, он впал в глубокое отчаяние. Больше ни одного произведения по новой геометрии Я. Бояи не опубликовал. Остаток жизни он трагически провёл в нужде, неизвестности и полном одиночестве, пережив и Гаусса, и Лобачевского.

Однако всё сделанное в области геометрии Гауссом и Я. Бояи представляет собой лишь первые шаги по сравнению с глубокими и далеко идущими исследованиями Лобачевского, который всю жизнь упорно и настойчиво разрабатывал с разных точек зрения своё учение, довёл его до высокой степени совершенства и опубликовал целый ряд крупных сочинений по новой геометрии. Поэтому как с формальной стороны (первое по времени опубликование открытия в 1826 г.), так и по существу первое место среди лиц, разделяющих славу создания неевклидовой геометрии, следует безраздельно отвести Н. И. Лобачевскому, имя которого и носит созданная им геометрия.

Следует указать ещё на двух лиц, пришедших к идеям новой геометрии: 1) Ф. К. Швейкарт (1780-1859), профессор права в Харьковском университете с 1812 по 1817 г. и 2) его племянник Тауринус (1794-1874). Однако они дали лишь самые беглые наброски новой геометрии.

Геометрия Лобачевского так и не была понята и оценена при жизни самого учёного. Но уже через десятилетие после смерти Лобачевского его открытие привлекло всеобщее внимание математических кругов и послужило могучим стимулом к коренному пересмотру взглядов на основания геометрии.

Это объясняется тем, что к этому времени самим развитием математики была подготовлена почва к правильному восприятию и пониманию идей Лобачевского и к их дальнейшему углублению и развитию.

Начала Евклида

(«Начамла» Евклимда) научное произведение, написанное Евклидом в 3 в. до н. э., содержащее основы античной математики: элементарной геометрии, теории чисел, алгебры, общей теории отношений и метода определения площадей и объёмов, включавшего элементы теории пределов. Евклид подвёл в этом сочинении итог трехсотлетнему развитию греческой математики и создал прочный фундамент для дальнейших математических исследований. «Н.» Е. не являются, однако, энциклопедией математических знаний своей эпохи. Так, в «Н.» Е. не излагается теория конических сечений, которая была тогда достаточно развита, отсутствуют здесь и вычислительные методы.

«Н.» Е. построены по дедуктивной системе: сначала приводятся определения, постулаты и аксиомы, затем формулировки теорем и их доказательства. Вслед за определением основных геометрических понятий и объектов (например, точки, прямой) Евклид доказывает существование остальных объектов геометрии (например, равностороннего треугольника) путём их построения, которое выполняется на основании пяти постулатов. В постулатах утверждается возможность выполнения некоторых элементарных построений, например «что от всякой точки до всякой точки (можно) провести прямую линию» (1 постулат); «И что от всякого центра и всяким раствором (может быть) описан круг» (III постулат). Особое место среди постулатов занимает V постулат (аксиома о параллельных): «И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти прямые неограниченно встретятся с той стороной, где углы меньше двух прямых». Относительная сложность формулировки привела к стремлению многих математиков (на протяжении почти 2 тыс. лет) вывести его как теорему из др. основных положений геометрии. Попытки доказать V постулат продолжались вплоть до работ Н. И. Лобачевского, построившего первую систему неевклидовой геометрии, в которой этот постулат не выполняется. За постулатами в «Н.» Е. приводятся аксиомы -- предложения о свойствах отношений равенства и неравенства между величинами. Например: «Равные одному и тому же равны и между собой» (1-я аксиома); «И целое больше части» (8-я аксиома).

С современной точки зрения система аксиом и постулатов «Н.» Е. недостаточна для дедуктивного построения геометрии. Так, здесь нет ни аксиом движения, ни аксиом конгруэнтности (за исключением одной). Отсутствуют также аксиомы расположения и непрерывности. Фактически же Евклид использует при доказательствах и движение и непрерывность. Логические недостатки построения «Н.» Е. полностью выяснились лишь в конце 19 в. после работ Д. Гильберта. До этого на протяжении более 2 тыс. лет «Н.» Е. служили образцом научной строгости; по этой книге в полном либо в сокращённом и переработанном виде изучали геометрию.

«Н.» Е. состоят из тринадцати книг (отделов, или частей). В книге I рассматриваются основные свойства треугольников, прямоугольников, параллелограммов и производится сравнение их площадей. Заканчивается книга Пифагора теоремой. В книге II излагается так называемая геометрическая алгебра, т. е. строится геометрический аппарат для решения задач, сводящихся к квадратным уравнениям (алгебраическая символика в «Н.» Е. отсутствует). В книге III рассматриваются свойства круга, его касательных и хорд (эти проблемы были исследованы Гиппократом Хиосским во 2-й половине 5 в. до н. э.), в книге IV -- правильные многоугольники. В книге V даётся общая теория отношений величин, созданная Евдоксом Книдским; её можно рассматривать как прообраз теории действительных чисел, разработанной только во 2-й половине 19 в. Общая теория отношений является основой учения о подобии (книга VI) и метода исчерпывания (книга VII), также восходящих к Евдоксу. В книгах VII--IX изложены начала теории чисел, основанные на алгоритме нахождения наибольшего общего делителя. В эти книги входит теория делимости, включая теоремы об однозначности разложения целого числа на простые множители и о бесконечности числа простых чисел; здесь излагается также учение об отношении целых чисел, эквивалентное, по существу, теории рациональных (положительных) чисел. В книге Х даётся классификация квадратичных и биквадратичных иррациональностей и обосновываются некоторые правила их преобразования. Результаты книги Х применяются в книге XIII для нахождения длин рёбер правильных многогранников. Значительная часть книг Х и XIII (вероятно и VII) принадлежит Теэтету (начало 4 в. до н. э.). В книге XI излагаются основы стереометрии. В книге XII определяются с помощью метода исчерпывания отношение площадей двух кругов и отношение объёмов пирамиды и призмы, конуса и цилиндра. Эти теоремы впервые доказаны Евдоксом. Наконец, в книге XIII определяется отношение объёмов двух шаров, строятся пять правильных многогранников и доказывается, что иных правильных тел не существует. Последующими греческими математиками к «Н.» Е. были присоединены книги XIV и XV, не принадлежавшие Евклиду. Они нередко и теперь издаются совместно с основным текстом «Н.» Е.

«Н.» Е. получили широкую известность уже в древности. Архимед, Аполлоний Пергский и др. учёные опирались на них при своих исследованиях в области математики и механики. До нашего времени античный текст «Н.» Е. не дошёл (древнейшая из сохранившихся копий относится ко 2-й половине 9 в.). В конце 8 в. -- начале 9 в. появляются переводы «Н.» Е. на арабский язык. Первый перевод на латинский язык был сделан с арабского Ателхардом Батским в 1-й четверти 12 в. Старинные списки отличаются существенными разночтениями; подлинный текст «Н.» Е. точно не восстановлен. Первое печатное издание «Н.» Е. в переводе Дж. Кампано на латинский язык появилось в Венеции в 1482 с чертежами на полях книги (перевод был выполнен около 1250--1260; Кампано использовал как арабские источники, так и перевод Ателхарда Батского). Наилучшим в настоящее время считается издание И. Гейберга («Euclidis Elementa», v. 1--5, Lipsiae, 1883--88), в котором приводится как греч. текст, так и его лат. перевод. На русском языке «Н.» Е. издавались многократно начиная с 18 в. Лучшее издание -- «Начала Евклида», пер. с греч. и комментарии Д. Д. Мордухай-Болтовского, т. 1--3, 1948--50.

Доказательство V постулата Прокла

Прокл даёт доказательство V постулата, исходя из того предположения, принимаемого им за очевидное, что расстояние от точки, лежащей на одной стороне острого угла, до другой его стороны при удалении этой точки от вершины угла может быть сделано сколь угодно большим. Отметим, что это предложение принадлежит абсолютной геометрии.

На основании этого предположения Прокл доказывает V постулат следующим образом (рис. 2).

Рис.2

Пусть . Требуется доказать, что прямые g' и g" пересекаются в некоторой точке C.

Проведём через точку A прямую g''', параллельную g'. Возьмём на прямой g" точку B и опустим из неё перпендикуляр на g'''. Так как при удалении точки B от A её расстояние от g''' неограниченно растёт, а расстояние между параллельными прямыми g' и g''' конечно, то на g'' найдётся точка C, принадлежащая g'. В этой точке пересекаются прямые g' и g''. Что приводит к справедливости V постулата.

Но это достигнуто только потому, что Прокл пользуется предпосылкой, что расстояние между параллельными прямыми конечно. Однако, это есть новый постулат, равносильный V постулату.


Подобные документы

  • Основные математические постулаты Эвклида. Попытки математиков доказать пятый постулат "О параллельности" как теорему. Основные подходы к подходов к построению гиперболической геометрии, ее содержание, примеры и отличие от эвклидовой аксиоматики.

    контрольная работа [223,2 K], добавлен 25.06.2009

  • Очерк жизни и творчества великого древнегреческого ученого Эвклида, оценка его достижений в области математики. Анализ главных произведений Эвклида, его основополагающие идеи и источники их формирования. Геометрия на поверхности отрицательной кривизны.

    реферат [393,9 K], добавлен 13.12.2010

  • Краткие биографические сведения из жизни и научных изысканиях ученых Евклида и Архимеда. Разработка Евклидом основ стереометрии, планометрии, алгебры, теории чисел, отражение их в труде "Начала". Вклад Архимеда в развитие арифметики, геометрии, механики.

    реферат [18,0 K], добавлен 13.06.2009

  • Геометрия как научная дисциплина, причины и предпосылки, история и основные этапы ее возникновения и развития. Евклид как основатель геометрии, его вклад в развитие новой науки, характеристика, содержание ее главных разделов - планиметрии и стереометрии.

    презентация [55,3 K], добавлен 28.12.2010

  • Некоторые биографические данные и легенды из жизни Евклида. Основание математической школы и изложение геометрии в труде "Начала", описание метрических свойств пространства и его бесконечности. Сочинения "Оптика" и "Катоптрика" и изобретение монохорда.

    презентация [2,0 M], добавлен 21.12.2010

  • Основные этапы развития математики в Древней Греции. Изучение чисел и геометрии в Пифагорейской школе. Вклад Зенона, Демокрита, Платона и Евдокса в становление античной науки. Великий геометр древности Евклид и содержание его главного труда "Начала".

    презентация [2,5 M], добавлен 10.03.2013

  • Геометрия как раздел математики, изучающий пространственные структуры, отношения и их обобщения. Планиметрия, стереометрия, проективная геометрия. История развития науки. Исследование свойств плоских фигур. Сущность понятий "полупрямая", "треугольник".

    презентация [1,1 M], добавлен 16.10.2014

  • Начала математической теории. Арифметика узлов, их классификация. Свойства неальтернированных узлов; преобразование Рейдемейстера. Арифметические операции с математическими узлами. Разложение составного узла. Алгоритм полного перебора с заполнением.

    презентация [1,6 M], добавлен 13.04.2016

  • Развитие математики как теории в школе Пифагора. Планиметрия прямолинейных фигур. Стереометрия, теория арифметической и геометрической пропорций. Открытие несоизмеримых величин. Бесконечность как математическая категория. Период академии, фаза упадка.

    реферат [24,5 K], добавлен 29.03.2010

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа [4,1 M], добавлен 15.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.