Описательные статистики

Форма распределения и нормальность переменной. t-критерий для зависимых и независимых выборок. Внутригрупповые описательные статистики и корреляции. Апостериорные сравнения средних. Таблицы сопряженности, кросстабуляция многомерных откликов и дихотомий.

Рубрика Математика
Вид методичка
Язык русский
Дата добавления 14.07.2009
Размер файла 706,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Графическое представление многовходовых таблиц. Вы можете построить "дважды категоризованные" гистограммы, 3М гистограммы или линейные графики, позволяющие свести частоты для более чем 3-х факторов в один график.

Наборы (каскады) графиков используются для интерпретации сложных многовходовых таблиц (как показано на следующем графике).

Статистики таблиц сопряженности

· Обзор

· Критерий хи-квадрат Пирсона

· Критерий хи-квадрат (метод максимального правдоподобия)

· Поправка Йетса

· Точный критерий Фишера

· Хи-квадрат Макнемара

· Коэффициент Фи

· Тетрахорическая корреляция

· Коэффициент сопряженности

· Интерпретация мер связи

· Статистики, основанные на рангах

· R Спирмена

· Тау Кендалла

· Коэффициент d Соммера: d(X|Y), d(Y|X)

· Гамма-статистика

· Коэффициенты неопределенности: S(X,Y), S(X|Y), S(Y|X)

Обзор. Таблицы сопряженности позволяют измерить связи между кросстабулированными переменными. Следующая таблица отчетливо показывает сильную связь между двумя переменными: переменная Возраст (Взрослый или Ребенок) и переменная - предпочитаемое Печенье (сорт A или сорт B).

 

ПЕЧЕНЬЕ: A

ПЕЧЕНЬЕ: B

 

ВОЗРАСТ: ВЗРОСЛЫЙ

50

 0

50

ВОЗРАСТ: РЕБЕНОК

 0

50

50

 

50

50

100

Из таблицы видно, что все взрослые выбирают печенье A, а все дети печенье B. В данном случае, нет оснований сомневаться в надежности этого факта. Взглянув на таблицу, мало кто усомнится, что между предпочтениями детей и взрослых имеется отчетливое различие. Однако наблюдаемые на практике связи значительно слабее, и поэтому возникает вопрос: как измерить связи между табулированными переменными и оценить их надежность (статистическую значимость). Далее обсуждаются самые общие меры связи между двумя категоризованными переменными. Методы, используемые для анализа связей между более чем двумя переменными в таблицах высокого порядка, обсуждаются в разделах Логлинейный анализ и Анализ соответствий.

Критерий хи-квадрат Пирсона

Хи-квадрат Пирсона - это наиболее простой критерий проверки значимости связи между двумя категоризованными переменными. Критерий Пирсона основывается на том, что в двувходовой таблице ожидаемые частоты при гипотезе "между переменными нет зависимости" можно вычислить непосредственно. Представьте, что 20 мужчин и 20 женщин опрошены относительно выбора газированной воды (марка A или марка B). Если между предпочтением и полом нет связи, то естественно ожидать равного выбора марки A и марки B для каждого пола.

Значение статистики хи-квадрат и ее уровень значимости зависит от общего числа наблюдений и количества ячеек в таблице. В соответствии с принципами, обсуждаемыми в разделе Элементарные понятия статистики, относительно малые отклонения наблюдаемых частот от ожидаемых будет доказывать значимость, если число наблюдений велико.

Имеется только одно существенное ограничение использования критерия хи-квадрат (кроме очевидного предположения о случайном выборе наблюдений), которое состоит в том, что ожидаемые частоты не должны быть очень малы. Это связано с тем, что критерий хи-квадрат по своей природе проверяет вероятности в каждой ячейке; и если ожидаемые частоты в ячейках, становятся, маленькими, например, меньше 5, то эти вероятности нельзя оценить с достаточной точностью с помощью имеющихся частот. Дальнейшие обсуждения см. в работах Everitt (1977), Hays (1988) или Kendall and Stuart (1979).

Критерий хи-квадрат (метод максимального правдоподобия). Максимум правдоподобия хи-квадрат предназначен для проверки той же самой гипотезы относительно связей в таблицах сопряженности, что и критерий хи-квадрат Пирсона. Однако его вычисление основано на методе максимального правдоподобия. На практике статистика МП хи-квадрат очень близка по величине к обычной статистике Пирсона хи-квадрат. Подробнее об этой статистике можно прочитать в работах Bishop, Fienberg, and Holland (1975) или Fienberg (1977). В разделе Логлинейный анализ эта статистика обсуждается подробнее.

Поправка Йетса. Аппроксимация статистики хи-квадрат для таблиц 2x2 с малыми числом наблюдений в ячейках может быть улучшена уменьшением абсолютного значения разностей между ожидаемыми и наблюдаемыми частотами на величину 0.5 перед возведением в квадрат (так называемая поправка Йетса). Поправка Йетса, делающая оценку более умеренной, обычно применяется в тех случаях, когда таблицы содержат только малые частоты, например, когда некоторые ожидаемые частоты становятся меньше 10 (дальнейшее обсуждение см. в Conover, 1974; Everitt, 1977; Hays, 1988; Kendall and Stuart, 1979 и Mantel, 1974).

Точный критерий Фишера. Этот критерий применим только для таблиц 2x2. Критерий основан на следующем рассуждении. Даны маргинальные частоты в таблице, предположим, что обе табулированные переменные независимы. Зададимся вопросом: какова вероятность получения наблюдаемых в таблице частот, исходя из заданных маргинальных? Оказывается, эта вероятность вычисляется точно подсчетом всех таблиц, которые можно построить, исходя из маргинальных. Таким образом, критерий Фишера вычисляет точную вероятность появления наблюдаемых частот при нулевой гипотезе (отсутствие связи между табулированными переменными). В таблице результатов приводятся как односторонние, так и двусторонние уровни.

Хи-квадрат Макнемара. Этот критерий применяется, когда частоты в таблице 2x2 представляют зависимые выборки. Например, наблюдения одних и тех же индивидуумов до и после эксперимента. В частности, вы можете подсчитывать число студентов, имеющих минимальные успехи по математике в начале и в конце семестра или предпочтение одних и тех же респондентов до и после рекламы. Вычисляются два значения хи-квадрат: A/D и B/C. A/D хи-квадрат проверяет гипотезу о том, что частоты в ячейках A и D (верхняя левая, нижняя правая) одинаковы. B/C хи-квадрат проверяет гипотезу о равенстве частот в ячейках B и C (верхняя правая, нижняя левая).

Коэффициент Фи. Фи-квадрат представляет собой меру связи между двумя переменными в таблице 2x2. Его значения изменяются от 0 (нет зависимости между переменными; хи-квадрат = 0.0) до 1 (абсолютная зависимость между двумя факторами в таблице). Подробности см. в Castellan and Siegel (1988, стр. 232).

Тетрахорическая корреляция. Эта статистика вычисляется (и применяется) только для таблиц сопряженности 2x2. Если таблица 2x2 может рассматриваться как результат (искусственного) разбиения значений двух непрерывных переменных на два класса, то коэффициент тетрахорической корреляции позволяет оценить зависимость между двумя этими переменными.

Коэффициент сопряженности. Коэффициент сопряженности представляет собой основанную на статистике хи-квадрат меру связи признаков в таблице сопряженности (предложенную Пирсоном). Преимущество этого коэффициента перед обычной статистикой хи-квадрат в том, что он легче интерпретируется, т.к. диапазон его изменения находится в интервале от 0 до 1 (где 0 соответствует случаю независимости признаков в таблице, а увеличение коэффициента показывает увеличение степени связи). Недостаток коэффициента сопряженности в том, что его максимальное значение "зависит" от размера таблицы. Этот коэффициент может достигать значения 1 только, если число классов не ограничено (см. Siegel, 1956, стр. 201).

Интерпретация мер связи. Существенный недостаток мер связи (рассмотренных выше) связан с трудностью их интерпретации в обычных терминах вероятности или "доли объясненной вариации", как в случае коэффициента корреляции r Пирсона (см. Корреляции). Поэтому не существует одной общепринятой меры или коэффициента связи.

Статистики, основанные на рангах. Во многих задачах, возникающих на практике, мы имеем измерения лишь в порядковой шкале (см. Элементарные понятия статистики). Особенно это относится к измерениям в области психологии, социологии и других дисциплинах, связанных с изучением человека. Предположим, вы опросили некоторое множество респондентов с целью выяснения их отношение к некоторым видам спорта. Вы представляете измерения в шкале со следующими позициями: (1) всегда, (2) обычно, (3) иногда и (4) никогда. Очевидно, что ответ иногда интересуюсь показывает меньший интерес респондента, чем ответ обычно интересуюсь и т.д. Таким образом, можно упорядочить (ранжировать) степень интереса респондентов. Это типичный пример порядковой шкалы. Для переменных, измеренных в порядковой шкале, имеются свои типы корреляции, позволяющие оценить зависимости.

R Спирмена. Статистику R Спирмена можно интерпретировать так же, как и корреляцию Пирсона (r Пирсона) в терминах объясненной доли дисперсии (имея, однако, в виду, что статистика Спирмена вычислена по рангам). Предполагается, что переменные измерены как минимум в порядковой шкале. Всестороннее обсуждение ранговой корреляции Спирмена, ее мощности и эффективности можно найти, например, в книгах Gibbons (1985), Hays (1981), McNemar (1969), Siegel (1956), Siegel and Castellan (1988), Kendall (1948), Olds (1949) и Hotelling and Pabst (1936).

Тау Кендалла. Статистика тау Кендалла эквивалентна R Спирмена при выполнении некоторых основных предположений. Также эквивалентны их мощности. Однако обычно значения R Спирмена и тау Кендалла различны, потому что они отличаются как своей внутренней логикой, так и способом вычисления. В работе Siegel and Castellan (1988) авторы выразили соотношение между этими двумя статистиками следующим неравенством:

-1 < = 3 * Тау Кендалла - 2 * R Спирмена < = 1

Более важно то, что статистики Кендалла тау и Спирмена R имеют различную интерпретацию: в то время как статистика R Спирмена может рассматриваться как прямой аналог статистики r Пирсона, вычисленный по рангам, статистика Кендалла тау скорее основана на вероятности. Более точно, проверяется, что имеется различие между вероятностью того, что наблюдаемые данные расположены в том же самом порядке для двух величин и вероятностью того, что они расположены в другом порядке. Kendall (1948, 1975), Everitt (1977), и Siegel and Castellan (1988) очень подробно обсуждают тау Кендалла. Обычно вычисляется два варианта статистики тау Кендалла: taub и tauc. Эти меры различаются только способом обработки совпадающих рангов. В большинстве случаев их значения довольно похожи. Если возникают различия, то, по-видимому, самый безопасный способ - рассматривать наименьшее из двух значений.

Коэффициент d Соммера: d(X|Y), d(Y|X). Статистика d Соммера представляет собой несимметричную меру связи между двумя переменными. Эта статистика близка к taub (см. Siegel and Castellan, 1988, стр. 303-310).

Гамма-статистика. Если в данных имеется много совпадающих значений, статистика гамма предпочтительнее R Спирмена или тау Кендалла. С точки зрения основных предположений, статистика гамма эквивалентна статистике R Спирмена или тау Кендалла. Ее интерпретация и вычисления более похожи на статистику тау Кендалла, чем на статистику R Спирмена. Говоря кратко, гамма представляет собой также вероятность; точнее, разность между вероятностью того, что ранговый порядок двух переменных совпадает, минус вероятность того, что он не совпадает, деленную на единицу минус вероятность совпадений. Таким образом, статистика гамма в основном эквивалентна тау Кендалла, за исключением того, что совпадения явно учитываются в нормировке. Подробное обсуждение статистики гамма можно найти у Goodman and Kruskal (1954, 1959, 1963, 1972), Siegel (1956) и Siegel and Castellan (1988).

Коэффициенты неопределенности. Эти коэффициенты измеряют информационную связь между факторами (строками и столбцами таблицы). Понятие информационной зависимости берет начало в теоретико-информационном подходе к анализу таблиц частот, можно обратиться к соответствующим руководствам для разъяснения этого вопроса (см. Kullback, 1959; Ku and Kullback, 1968; Ku, Varner, and Kullback, 1971; см. также Bishop, Fienberg, and Holland, 1975, стр. 344-348). Статистика  S(Y,X) является симметричной и измеряет количество информации в переменной Y относительно переменной X или в переменной X относительно переменной Y. Статистики S(X|Y) и S(Y|X) выражают направленную зависимость.

Многомерные отклики и дихотомии. Переменные типа многомерных откликов и многомерных дихотомий возникают в ситуациях, когда исследователя интересуют не только "простые" частоты событий, но также некоторые (часто неструктурированные) качественные свойства этих событий. Природу многомерных переменных (факторов) лучше всего понять на примерах.

· Многомерные отклики

· Многомерные дихотомии

· Кросстабуляция многомерных откликов и дихотомий

· Парная кросстабуляция переменных с многомерными откликами

· Заключительный комментарий

Многомерные отклики. Представьте, что в процессе большого маркетингового исследования, вы попросили покупателей назвать 3 лучших, с их точки зрения, безалкогольных напитка. Обычный вопрос может выглядеть следующим образом:

Напишите ниже три ваших любимых безалкогольных напитка:

            1:__________    2:__________    3:__________

Анкета содержит от 0 до 3 ответов. Очевидно, список напитков может быть очень большим. Ваша цель - свести результаты в таблицу, в которой, например, будет подсчитан процент респондентов, предпочитающих определенный напиток.

Следующий шаг после получения анкет - занесение ответов в файл данных. Предположим, в ответах упоминалось 50 различных напитков. Вы могли бы, конечно, создать 50 переменных - одну для каждого напитка, рассмотреть респондентов как наблюдения (строки таблицы), ввести код 1 для респондента и переменной, если он предпочитают данный напиток (0, если нет); например:

 

КОКА-КОЛА

ПЕПСИ

СПРАЙТ

. . . .

наблюдение 1
наблюдение 2
наблюдение 3
...

0
1
0
...

1
1
0
...

0
0
1
...

 

Такой метод кодирования откликов, т.е. приписывания им конкретных значений, очевидно, "расточителен". Заметим, что каждый респондент дает максимум 3 ответа; однако для кодирования используется 50 переменных. (Если вы интересуетесь только тремя напитками, то такой метод кодирования будет успешным. Чтобы табулировать предпочтения в выборе напитка, следует рассмотреть 3 переменные, как одну многомерную дихотомию; см. ниже.)

Кодирование многомерных откликов. Более разумным является следующий подход. Введите 3 переменные и определите схему кодирования для 50 напитков. Затем введите соответствующие коды (альфа метки) для значений переменных и получите таблицу следующего вида.

 

Ответ 1

Ответ 2

Ответ 3

наблюдение 1
наблюдение 2
наблюдение 3
 . . .

КОКА-КОЛА
СПРАЙТ
ПЕРЬЕ
 . . .

ПЕПСИ
ФАНТА
7 АП
 . . .

ДЖОЛТ
ДОКТОР ПЕППЕР
ОРАНЖ
 . . .

Теперь, чтобы получить число респондентов, предпочитающих определенный напиток, рассмотрите переменные Ответ 1 - Ответ 3 как переменную с многомерным откликом. Таблица значений такой переменной имеет вид:

N=500
Категория

Частота

Процент
ответов

Процент
наблюдений

КОЛА: Кока Кола
ПЕПСИ: Пепси Кола
СПРАЙТ: Спрайт
ПЕППЕР: Доктор Пеппер
 . . .  : . . . .

44
43
81
74
..

5.23
5.11
9.62
8.79
...

8.80
8.60
16.20
14.80
...

 

842

100.00

168.40

Интерпретация таблиц частот с многомерными откликами

Итак, общее число респондентов в опросе n=500. Заметьте, что числа в первой колонке таблицы не составляют в сумме 500, как можно было бы ожидать, а равны 842. Вы поймете, почему это так, если вспомните, что каждый респондент может дать несколько ответов. Возвращаясь к примеру, видим, что первое наблюдение (Кола, Пепси, Джолт) "дает" три вклада в таблицу частот: в категорию Кола, в категорию Пепси и в категорию Джолт. Второй и третий столбцы таблицы содержат проценты относительного числа ответов (второй столбец) и наблюдений (третий столбец). Таким образом, число 8.80 в первой строке и в последнем столбце таблицы означает, что 8.8% всех респондентов выбрали Кола первым, вторым или третьим пунктом ответа.

Многомерные дихотомии. Предположим, вас интересуют только Кола, Пепси и Спрайт. Как отмечалось, одним из способов кодирования является следующий:

 

КОЛА

ПЕПСИ

СПРАЙТ

. . . .

наблюдение 1
наблюдение 2
наблюдение 3
. . .

 
1
 
. . .

1
1
 
. . .

 
 
1
. . .

 

Здесь каждая переменная используется для одного напитка. Код 1 будет введен в таблицу для переменной каждый раз, когда соответствующий респондент указал ее в своем ответе. Заметим, что каждая переменная является дихотомией, т.к. принимает только два значения: "1" и "не 1" (можно ввести 1 и 0, но так обычно не делается, можно просто рассматривать 0 как пустую ячейку или пропуск). Когда табулируются такие значения, вы получите итоговую таблицу, очень похожую на ту, что была показана раньше для переменных с многомерными откликами; из нее вы можете вычислить число и процент респондентов (и ответов) для каждого напитка. Таким образом, вы компактно представили три переменные - Кола, Пепси, Спрайт одной переменной (Безалкогольные напитки) - многомерной дихотомией.

Кросстабуляция многомерных откликов и дихотомий

Все эти типы переменных можно использовать в таблицах сопряженности. Например, вы можете объединить многомерную дихотомию Безалкогольные напитки (закодированную, как описано выше) с многомерным откликом Любимая еда (со многими категориями, например, Гамбургеры, Пицца и т.д.), а также с простой группирующей переменной Пол. Как и в таблице частот для обычных переменных, в таблице частот для многомерных переменных, можно вычислить проценты и маргинальные суммы или по общему числу респондентов или по общему числу ответов (откликов). Например, рассмотрим следующего гипотетического респондента:

Пол

Кола

Пепси

Спрайт

Еда1

Еда2

женщина

1

1

 

РЫБА

ПИЦЦА

Эта женщина назвала Кола и Пепси своими любимыми напитками, а Рыбу и Пиццу - любимыми блюдами. В полной таблице сопряженности этот респондент будет представлен следующими наборами:

 

Еда

. . .

 
Всего
ответов

Пол

Напиток

ГАМБУРГЕР

РЫБА

ПИЦЦА

. . .

женщина
 
 
мужчина
 
 

КОЛА
ПЕПСИ
СПРАЙТ
КОЛА
ПЕПСИ
СПРАЙТ

 
 
 
 
 
 

X
X
 
 
 
 

X
X
 
 
 
 

 
 
 
 
 
 

2
2
 
 
 
 

Данный респондент учитывается в таблице 4 раза. Дополнительно, он будет считаться дважды в столбце Женщина - КОЛА маргинальных частот, если этот столбец выводится для представления общего числа откликов. Если пользователь запрашивает маргинальные суммы, вычисленные как общее число респондентов, тогда этот респондент будет учитываться только один раз.

Парная кросстабуляция переменных с многомерными откликами

Особенность процедуры табулирования многомерных переменных состоит в их попарном рассмотрении. Лучше всего показать это на простом примере. Предположим, проводится обследование нынешних и бывших домовладений респондента. Вы попросили респондента описать три последних дома, которыми он владел (включая тот, которым он владеет в данный момент). Естественно, для некоторых из респондентов нынешний дом является самым первым (до этого они не приобретали дома в частную собственность). Другие владели домами раньше. Для каждого дома респондента просят написать количество квартир и число жильцов - членов семьи. Ниже показано, как ответ одного респондента (скажем, наблюдение 112) может быть введен в файл данных:

Наблюдение

Число комнат

 1 

 2 

 3 

Число жильцов

 1 

 2 

 3 

 112

 

 3 

 3 

 4 

 

 2 

 3 

 5 

Респондент имел три дома: первый из 3-х комнат, второй также из 3-х комнат, третий из 4-х комнат. Количество членов семьи также росло: в первом доме жило 2 человека, во втором - 3, в третьем - 5.

Пусть вы хотите кросстабулировать число комнат с числом жильцов для всех респондентов (например, чтобы понять, как количество комнат связано с числом жильцов). Один из способов - создать 3 различные таблицы с двумя входами; одну таблицу для одного дома. Вы можете также рассмотреть два фактора в этом исследовании (Число комнат, Число жильцов) как переменные со многими откликами. Однако, очевидно, нет никакого смысла в приведенном примере с респондентом 112 учитывать значения 3 и 5 в ячейке Комнаты - Жильцы в таблице сопряженности (которые вы могли бы учитывать, если бы рассматривали два эти фактора как одинарные переменные с многомерными откликами). Другими словами, вы хотите игнорировать комбинацию жильцов в третьем доме с числом комнат в первом. Скорее всего, вам нужно рассматривать переменные попарно; вы хотели бы рассмотреть число комнат в первом доме вместе с числом жильцов в первом доме, число комнат во втором доме вместе с числом жильцов в нем и т.д. Так именно и происходит, когда программа выполняет парную кросстабуляцию многомерных переменных.

Заключительный комментарий

Иногда при создании сложных таблиц сопряженности с переменными - многомерными откликами и дихотомиями, возникает следующий вопрос (в ваших исследованиях): "какую дорогу выбрать" или как точно будут учитываться наблюдения в файле данных. Лучший способ проверить, как строится соответствующая таблица - рассмотреть простой пример, и по нему ясно увидеть, каким образом учитывается каждое наблюдение (какой оно вносит вклад). В примерах к разделу Кросстабуляции используется именно такой метод, для того чтобы показать, как вычисляются данные для таблиц с переменными - многомерными откликами и многомерными дихотомиями.

Дополнительная информация по методам анализа данных, добычи данных, визуализации и прогнозированию содержится на Портале StatSoft (http://www.statsoft.ru/home/portal/default.asp) и в Углубленном Учебнике StatSoft (Учебник с формулами).


Подобные документы

  • Числовые характеристики непрерывных величин. Точечные оценки параметров распределения. Статистическая проверка гипотез. Сравнение средних известной и неизвестной точности измерений. Критерий Хи-квадрат для проверки гипотезы о виде распределения.

    курсовая работа [79,0 K], добавлен 23.01.2012

  • Изучение раздела математической статистики, посвященного методам выявления влияния отдельных факторов на результат эксперимента. Эффекты взаимодействия. Использование однофакторного дисперсионного анализа для сравнения средних значений нескольких выборок.

    презентация [110,0 K], добавлен 09.11.2014

  • Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.

    реферат [105,5 K], добавлен 01.01.2011

  • Обработка одномерной и двумерной случайных выборок. Нахождение точечных оценок. Построение гистограммы функций распределения, корреляционной таблицы. Нахождение выборочного коэффициента корреляции. Построение поля рассеивания, корреляционные отношения.

    курсовая работа [1,3 M], добавлен 10.06.2013

  • Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.

    курсовая работа [549,1 K], добавлен 07.08.2013

  • Случайная выборка объема как совокупность независимых случайных величин. Математическая модель в одинаковых условиях независимых измерений. Определение длины интервала по формуле Стерджесса. Плотность относительных частот, критерий согласия Пирсона.

    контрольная работа [90,4 K], добавлен 17.10.2009

  • Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция [387,7 K], добавлен 12.12.2011

  • Понятие математической статистики как науки о математических методах систематизации и использования статистических данных для научных и практических выводов. Точечные оценки параметров статистических распределений. Анализ вычисления средних величин.

    курсовая работа [215,1 K], добавлен 13.12.2014

  • Ознакомление с механизмом проверки гипотезы для случая единственной выборки, двух и нескольких независимых выборок. Проверка совпадений карт, выбор фильмов разных жанров. Обоснование результатов, полученных после проверки статистических гипотез.

    курсовая работа [726,2 K], добавлен 26.02.2015

  • Исторические аспекты развития статистики, ее предмет. Понятие статистической методологии. Организация государственной и международной статистики. Программа и формы статистического наблюдения. Формы вариационного ряда. Средняя арифметическая и ее свойства.

    шпаргалка [37,9 K], добавлен 12.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.