Забойные двигатели

Исследование технологии и принципа работы забойных гидравлических двигателей, применяемых для углубления скважины методом долбления, сверления или истирания. Характеристика основных видов бурения: ударное, вращательное, ударно-вращательное и дробовое.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 07.05.2010
Размер файла 42,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Многолетние стендовые и промысловые испытания подтвердили преимущества упорных подшипников скольжения при эксплуатации двигателей в абразивной среде и при высоких нагрузках. Недостаток подшипников скольжения - повышенные механические потери, особенно при невысоких частотах вращения.

В подпятниках используется резина марки ИРП-1226, а рабочие поверхности контактирующих с ними дисков выполняются из цементируемой стали, закаленной до твердости 45-48 ед. HRC.

Радиальные подшипники шпинделя в большинстве случаев представлены парой трения скольжения «резина - металл». Неподвижный элемент выполняется в виде резинометаллической детали, рабочая эластичная поверхность которой имеет профильные канавки. Ответственная деталь - металлическая, ее рабочая поверхность подвержена упрочнению.

В двигателях для наклонно направленного и горизонтального бурения радиальные подшипники выполняются в виде пары трения «металл - металл». Однако из-за повышенных радиальных нагрузок, присущих ВЗД этого класса (вследствие действия отклоняющей силы на долоте), данный узел является одним из самых недолговечных, определяющих межремонтный период двигателя в целом.

Соединение ротора ВЗД и вала шпинделя. Это один из основных узлов двигателя, определяющий долговечность и надежность гидромашины в целом.

Механизм, соединяющий планетарно движущийся ротор с концентрично вращающимся валом, работает в тяжелых условиях. Помимо передачи крутящего момента и осевой силы, этот узел должен воспринимать сложную систему сил в РО, характеризующуюся непостоянной ориентацией ротора.

В отличие от известных в технике соединений, передающих вращение между двумя несоосными концентрическими вращающимися валами, рассматриваемое соединение в ВЗД является связующим звеном с ротором, совершающим планетарное движение, причем за один оборот выходного вала ротор Z1 поворачивается вокруг своей оси, соответственно совершая Z1 циклов переменных напряжений.

Эти обстоятельства предопределяют повышенные требования к циклической прочности соединения, особенно при использовании многозаходных ВЗД.

Своеобразные условия работы соединения и невозможность переноса напрямую из других отраслей техники готового технического решения предопределили многообразие компоновок этого узла. Принципиально могут быть использованы четыре типа соединений на базе:

деформации одного или нескольких элементов конструкции;

обеспечения свободы перемещения ротора за счет введения элементов с относительно большим люфтом;

шарнирных соединений;

гибкого вала (торсиона).

Первый и второй тип соединения из-за существенных удельных нагрузок в ВЗД не нашли применения.

Шарнирные соединения ВЗД. Они прошли эволюцию от пальцевых шарниров (аналогичных автомобильным) до специальных конструкций, наиболее приспособленных для передачи динамических осевой нагрузки и крутящего момента.

В первом поколении отечественных ВЗД применялись двухшарнирные соединения зубчатого типа с центральным шаром. Оно использовалось для передачи крутящих моментов до 700 кгс?м (68600 Н?м) при частоте вращения до 200 об/мин. Эксцентриситет соединения доходил до 5 мм.

Шарнирные соединения ВЗД работают, как правило, в среде абразивных жидкостей. Поэтому надежная герметизация шарниров является одним из основных направлений повышения их работоспособности. Проблема герметизации осложняется тем, что полости, которые требуется изолировать, вращаются вокруг смещенных осей в условиях вибрации и значительного гидростатического давления. Поэтому герметизирующие элементы должны быть гибкими и прочными при циклической нагрузке, а устройство для герметизации - в целом простым и надежным.

Сначала в шарнирах использовались простейшие резиновые уплотнения, в дальнейшем стали применять уплотнения сильфонного и манжетного типов.

Гибкие валы. Существенный шаг, оказавший влияние на подходы к конструированию ВЗД в целом был сделан в середине 70-х годов, когда ВНИИБТ выполнил комплекс научно-исследовательских работ и впервые в практике проектирования ВЗД предложил конструкцию гибкого вала, защищенную патентами СССР и других стран.

К началу 90-х годов в большинстве типоразмеров ВЗД, выпускаемых в России, для соединения ротора и выходного вала применяются гибкие валы. В двигателях с наружным диаметром 88 мм и более гибкий вал размещается в расточке ротора, а в малогабаритных двигателях ниже ротора.

В большинстве случаев гибкий вал ВЗД представляет собой металлический стержень круглого сечения с утолщенными концами. На концах выполняются присоединительные элементы: гладкий конус или коническая резьба. Иногда гибкий вал выполняется полым со сквозным цилиндрическим каналом для подвода рабочей жидкости высокого давления непосредственно к долоту. Для повышения циклической прочности в месте перехода от заделки к рабочей части вала имеется конус с углом 5-15° или галтель с отношением радиуса галтели к диаметру вала в пределах от 0,1 до 0,2.

Преимущества использования гибких валов заключаются в простоте конструкции и высокой технологичности, большом сроке службы, соизмеримом с ресурсом корпусных деталей двигателя, а также возможностью реализации различных компоновок двигателей.

Опыт эксплуатации двигателей в наклонно направленном и горизонтальном бурении выявил недостаточную стойкость гибких валов при углах перекоса секций более 1°30?. В связи с этим в последних конструкциях двигатели типа ДГ стали оснащать шарнирно-торсионными соединениями.

Характеристики ВЗД

Характеристики ВЗД необходимы для выбора оптимальных параметров режима бурения и поддержания их в процессе долбления, а также для определения путей дальнейшего совершенствования конструкций ВЗД и технологии бурения с их использованием.

В последнее время внимание к характеристикам ВЗД все более повышается. Это связано с внедрением регулируемых приводов буровых насосов, для эффективного использования которых знание характеристик гидромашины становится непременным условием; распространением новых технологий (наклонно направленное и горизонтальное бурение, бурение с использованием непрерывных труб), особенно чувствительных к изменению режимов работы ВЗД.

Современные программы бурения ведущих зарубежных фирм предусматривают стендовые испытания каждого гидродвигателя с целью получения их фактических характеристик. Несмотря на дополнительные затраты, это позволяет наиболее эффективно использовать ВЗД, в частности, косвенно по давлению на стояке контролировать нагрузку на долото, что в конечном итоге приводит к улучшению технико-экономических показателей процесса бурения.

В России стендовые испытания также стали проводить заводы-изготовители двигателей.

В общем случае различают статические и динамические характеристики ВЗД. Статические характеристики отражают зависимости между переменными гидродвигателя в установившихся режимах. Динамические характеристики определяют соответствующие зависимости в неустановившихся режимах и обусловливаются инерционностью происходящих процессов. К динамическим относятся и пусковые характеристики гидродвигателя.

Статические характеристики ВЗД. Статические характеристики ВЗД можно условно классифицировать как стендовые и нагрузочные. Стендовые характеристики (как функции от крутящего момента) определяют в результате испытаний гидродвигателя. Нагрузочные характеристики (как функции от осевой нагрузки) чаще всего рассчитывают по стендовым для конкретных условий бурения.

По мере роста момента М перепад давления р увеличивается практически линейно, а частота вращения л снижается вначале незначительно, а при приближении к тормозному режиму - резко. Кривые мощности N и общего КПД ц имеют экстремальный характер.

Различают четыре основных режима: холостой (М = 0); оптимальный (максимального КПД); экстремальный (максимальной мощности) и тормозной (л = 0).

Рабочий режим ВЗД принимается соответствующим экстремальному (паспортные данные двигателя приводятся для данного режима) или режиму максимально допустимого перепада давлений (ограниченного объемным КПД или контактными напряжениями в паре). Некоторые фирмы в своих каталогах приводят конкретные значения допускаемого р.

Оптимальный режим смещен влево по отношению к экстремальному, т.е. наступает при меньших значениях крутящего момента. Как правило, экстремальный режим, соответствующий условиям наиболее эффективного разрушения горных пород, расположен рядом с границей зоны устойчивой работы ВЗД, при достижении которой дальнейшее увеличение нагрузки приводит к торможению двигателя.

ВЛИЯНИЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ РАБОЧИХ ОРГАНОВ

Кинематическое отношение L При заданных расходах жидкости и контурном диаметре кинематическое отношение оказывает определяющее влияние на характеристики ВЗД. Из рис. 4.10 видно, что многозаходные ВЗД обладают повышенным крутящим моментом при низкой частоте вращения, т.е. обладают высоким значением критерия эффективности I/i, определяющего показатели процесса бурения. Хотя по своему КПД много-заходные ВЗД немного уступают двигателям с однозаходным ротором, в целом КПД гидродвигателей с различными значениями i остается на одном уровне.

Контурный диаметр Dк. При заданном кинематическом отношении увеличение контурного диаметра РО приводит к возрастанию рабочего объема ВЗД и соответственному изменению его характеристик. Вместе с тем, возможность варьирования Dк на стадии проектирования ограничена, поскольку исходным параметром является диаметр скважины.

Шаги РО (Т, t). При заданных Dк и Q характеристики ВЗД можно изменять путем изменения шагов винтовых поверхностей статора O и ротора t. С увеличением шагов возрастает рабочий объем V и критерий эффективности I/i гидродвигателя. При выборе шагов РО необходимо учитывать, что увеличение O приводит к увеличению длины РО и общей длины гидродвигателя (это усложняет технологию изготовления РО и снижает эффективность использования ВЗД в наклонно направленном и горизонтальном бурении); снижение O может привести к выходу из оптимального диапазона изменения коэффициента формы поверхности и ухудшению пусковых свойств двигателя (возможность незапуска).

Число шагов РО k. Влияние числа шагов (длины) РО на характеристики в первую очередь связано с изменением числа камер, отделяющих вход и выход гидромашины.

Результаты исследований (рис. 4.15) показали, что с уменьшением длины ротора существенно снижаются такие показатели экстремального режима, как крутящий момент, мощность и перепад давления, а также тормозной момент.

Данные эксперименты подтверждают целесообразность применения многошаговых конструкций РО с целью повышения крутящего момента и мощности ВЗД. Опыт эксплуатации двигателей показывает, что применение многошаговых пар также обеспечивает существенное увеличение их стойкости.

Исследования влияния натяга в паре на характеристики ВЗД, например при испытаниях двигателя Д1-195 в интервале от зазора 0,9 мм до натяга 0,6 мм, продемонстрировали, что с уменьшением натяга характеристика p - I становится более «мягкой» (рис. 4.16): снижается тормозной момент и перепад давлений, крутящий момент в экстремальном режиме. Вследствие возрастания утечек при уменьшении натяга (увеличении зазора) снижается частота вращения и перепад давления в холостом режиме. При уменьшении ? частота вращения в номинальном режиме (для двигателя Д1-195 номинальный крутящий момент принят равным 4 кН?м) существенно снижается (в 2-3 раза при зазоре 0,6 мм по сравнению с натягом 0,3-0,6 мм). Перепад давления в номинальном режиме мало зависит от натяга. При уменьшении натяга снижаются амплитуда поперечных колебаний корпуса двигателя и динамические нагрузки в РО и опорах шпинделя.

По мере износа РО, что равносильно снижению натяга или появлению зазора в паре, рекомендуется в процессе бурения увеличивать расход жидкости.

Влияние расхода жидкости

Расход жидкости Q - один из параметров режима бурения. Чаще всего возможный диапазон изменения Q определяют исходя из технологии бурения скважины и задают конструктору ВЗД вместе с другими исходными данными.

Стендовые испытания ВЗД различных типоразмеров показывают, что с увеличением расхода (рис. 4.17) повышаются как тормозной момент и перепад давления, так и мощность, крутящий момент, частота вращения и перепад давления в экстремальном режиме. КПД гидродвигателя при увеличении Q в допустимом диапазоне изменяется незначительно.

Нижний предел расхода жидкости ограничивается нагрузочной способностью или устойчивостью работы двигателя. Верхний предел допустимого расхода жидкости ограничивается тремя факторами:

высокими инерционными нагрузками при увеличении частоты вращения;

КПД двигателя: при заданном натяге с определенного расхода жидкости происходит снижение объемного ?. Это объясняется тем, что с увеличением частоты вращения и перепада давления на длине линии контакта образуется односторонний зазор, приводящий к разгерметизации РО и росту утечек. Кроме того, с увеличением расхода растут и гидравлические потери в двигателе;

износом РО вследствие повышенных контактных напряжений и скоростей скольжения в рабочей паре, а также скорости жидкости в каналах РО.

В случае, если ограничения по расходу не удовлетворяют требованиям гидравлической программы бурения, используется способ разделения потока жидкости через полый ротор двигателя с помощью регулятора расхода.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.