главнаяреклама на сайтезаработоксотрудничество База знаний Allbest
 
 
Сколько стоит заказать работу?   Искать с помощью Google и Яндекса
 


Научные открытия ХIХ века: математика, физика, биология, химия

Особенности развития классической науки в XIX в. Открытия в области биологии и медицины (Пастер, Мечников). Принцип применения гауссовской внутренней геометрии поверхностей. Этапы развития численных методов анализа. Волновая концепция света О. Френеля.

Рубрика: История и исторические личности
Вид: реферат
Язык: русский
Дата добавления: 24.11.2010
Размер файла: 31,5 K

Полная информация о работе Полная информация о работе
Скачать работу можно здесь Скачать работу можно здесь

рекомендуем


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Название работы:
E-mail (не обязательно):
Ваше имя или ник:
Файл:


Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы


1. Главные научные открытия
Развитие науки в XIX веке, послужившее основой для последующего технического прогресса. Биографические данные и научные открытия великих ученых, проводивших исследования в области физики, химии, астрономии, фармацевтики, биологии, медицины, генетики.
презентация [1,2 M], добавлена 15.05.2012

2. Развитие наук в XIX веке
Выдающиеся научные открытия XIX века в области физики, биологии, физиологии человека, психологии, географии, медицины и в других науках. Научные достижения Ж.Б. Ламарка, Н.И. Пирогова, Н.И. Лобачевского, А.Г. Столетова, А.П. Бородина, Ф.А. Бредихина.
презентация [234,0 K], добавлена 05.05.2014

3. Реформы Петра I в области культуры, образования и быта
Развитие и достижения науки России начала XVIII века, открытия в области промышленности и фармацевтики, медицины. Реформы Петра в области медицины, открытие школ с иностранными методами обучения. Пути реформирования быта и развитие новых видов искусств.
презентация [481,3 K], добавлена 12.11.2009

4. Научные открытия XVII-XVIII века
Научные открытия Ломоносова - великого учёного-энциклопедиста. Технические изобретения Кулибина и Нартова. Система образования в XVII-XVIII вв. Открытие кунсткамеры - первого музея. Математические, астрономические и географические знания XVII-XVIII вв.
презентация [685,1 K], добавлена 21.03.2011

5. Русская наука в ХIХ веке
XIX век и его место в истории России. Прогрессивное развитие науки. Разделение научного труда. Инновации в математике. Эффективность применения математики в естествознании. Открытия в области физики. Развитие химии в XIX столетии. Астрономия в России.
реферат [40,5 K], добавлена 19.12.2011

6. Фалес Милетский, факты биографии, ученая деятельность
Основные факты биографии Фалеса Милетского - древнегреческого философа и математика, представителя ионической натурфилософии и основателя ионийской школы, с которой начинается история европейской науки. Открытия ученого в астрономии, геометрии, физике.
презентация [3,3 M], добавлена 24.02.2014

7. Жизнь и научная деятельность американского математика и физика Яноша фон Неймана
История жизни американского физика и математика Яноша фон Неймана. Труды ученого по функциональному анализу, квантовой механике, логике, метеорологии. Вклад в создание первых ЭВМ и разработку методов их применения. Роль теории игр Неймана в экономике.
реферат [25,5 K], добавлена 29.04.2010

8. Наука и образование в первой половине XIX века
Установка наличия поглощения света в межзвездном пространстве Струве. Достижения в сфере математики и физики, основные открытия и проектирование приборов. Ведущие химики и медики первой половины XIX в. Результат научного развития. Типы учебных заведений.
презентация [553,2 K], добавлена 26.09.2014

9. Академик Т. Лысенко
Факты биографии Лысенко. Его позиция в дискуссии о генетике. Влияние личных качеств ученого на выбор направления развития советской сельскохозяйственной науки, создание "мичуринской биологии". Борьба Лысенко и его приспешников с идеями генетики.
реферат [32,5 K], добавлена 23.11.2009

10. Лауреаты Нобелевских премий по физиологии и медицине
Изобретатель динамита, пацифист, шведский химик и инженер Альфред Бернхард Нобель. Учреждение Нобелевской премии. Первые в истории Нобелевские премии. Самые интересные открытия ХХ века. Открытия Джулиуса Аксельрода, Ричарда Аксела, Ильи Мечникова.
презентация [301,7 K], добавлена 04.07.2013


Другие работы, подобные Научные открытия ХIХ века: математика, физика, биология, химия


Размещено на http://www.allbest.ru/

2

Размещено на http://www.allbest.ru/

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

(СИБСТРИН)

РЕФЕРАТ

«Научные открытия ХIХ века: математика, физика, биология, химия».

Выполнил: студент гр. 311

Винникова В.К.

Проверил: Киюта В.А.

НОВОСИБИРСК 2009

План:

1. Введение

2. Открытия в области биологии и медицины (Пастер, Кох, Мечников и другие)

3. Открытие в математике

4. Открытия в области химии

5. Физика как наука

6. Заключение

7. Список литературы

Введение

19 век в целом привнес множество перемен в классическую науку, которая, оставаясь в целом механистической и метафизической, постепенно наполнялась идеями всеобщей связи и развития. Конец этого века примечателен тем, что, при общей тенденции к монументальности идей, прогресс совершил огромный скачок. Благодаря трудам Н. Коперника, Г. Галилея, Ф. Бзкона, Р.Декарта, И. Ньютона, И. Кеплера сформировалась новая картина мира. Появление экспериментального знания и рационалистического типа мышления способствовало последующему ее упорядочиванию в XIX в. Она становится научной системой, изучающей процессы происхождения и развития предметов явлений, организмов и их связей. Принципиально новым являлось утверждение идеи развития и принципа взаимосвязи в природе, т. е. к появлению принципов диалектики в научном исследовании. Научный эксперимент в механике привел к установлению связи науки и производства. На базе механики, физики и математики разрабатывалась техника и технология.

Открытия в области биологии и медицины (Пастер, Кох, Мечников и другие)

Конец XVIII и начало XIX века были особенно щедрыми на открытия в области медицины. Идея предотвращения заражения человека натуральной оспой с помощью прививки оспы коров пришла на ум английскому врачу Дженнеру (1749--1823). Однажды к нему обратилась пожилая крестьянка, напуганная появившимися у нее кожными высыпаниями. На вопрос, не больна ли она натуральной оспой, бедная женщина заявила, что этой болезни у нее не может быть, поскольку она уже переболела «коровьей» оспой. Эта уверенность поразила ученого. Несмотря на то, что предохранительное свойство коровьей оспы было известно задолго до Дженнера, в медицинских кругах к этой идее относились как к невежественному предрассудку. Дженнер решил проверить все факты, имеющие отношение к слухам о предохранительном эффекте коровьей оспы, и выяснить их научное значение. За 30 лет работы Дженнер изучил клинику заболевания и убедился, что вакцина, то есть содержимое оспенных пустул больных коровьей оспой (от лат. vacca-корова), надежно защищает от натуральной оспы и что такая форма искусственного заражения -- безвредный и гуманный способ предотвращения очень тяжелой болезни, какой является натуральная оспа. В 1796 году он привил коровью оспу восьмилетнему мальчику. Спустя 6 недель мальчику была привита натуральная оспа, но он не заболел ею, так как стал невосприимчив к натуральной оспе. И все-таки долгое время бытовало скептическое отношение к методу Дженнера: некоторые серьезные ученые даже полагали, что после прививок коровьей оспы у пациентов могут вырасти рога, копыта или какие-то другие признаки анатомического строения коровы.

В 1885 году французский ученый Пастер организовал в Париже свою первую в мире антирабическую (рабес -- бешенство) станцию (вторая была открыта через год в Одессе Мечниковым). Со всех концов в Париж потянулись больные и врачи. В 1886 году в Париж прибыла группа смоленских крестьян, искусанных бешеным волком. С момента заражения прошло уже 12 дней, но в результате курса прививок 16 из 19 крестьян были спасены. После этого случая о Пастере говорил весь мир. По международной подписке были собраны деньги, на которые в Париже был построен великолепный Пастеровский институт микробиологии, открытый в 1888 г. Этот институт работает и по сей день. В 1895 г. Пастер умер, и его прах установили в его институте. Через 80 лет после его смерти в Пастеровском институте были вскрыты баллоны, в которых хранился стерильный раствор. Жидкость в них была абсолютно чистой и прозрачной. В 80-х годах XIX века Пастером были изготовлены вакцины против сибирской язвы, куриной холеры и бешенства. После его работ усилиями всех стран были разработаны прививки почти против всех инфекционных заболеваний. Публичные эксперименты, которые ставил Пастер, произвели фурор во всем мире. Так, однажды он сделал эксперимент с 50 овцами. 25 из них были привиты ослабленной заразой сибирской язвы. А затем всем овцам Пастер привил сибирскую язву в ее смертельной форме. Присутствующим ученым он предложил вернуться через 48 часов, объявив вперед, что 25 животных они застанут уже мертвыми, а 25 целыми и невредимыми. Даже друзья Пастера были напуганы его самоуверенностью. Но пророчество исполнилось буквально. Свидетелями эксперимента были Мечников и Тимирязев. Вслед за Пастером микробиологией серьезно занялись ученые всего мира. Среди них видное мест занимает немецкий врач Роберт Кох (1843--1910). Он пришел к выводу, что, даже если обнаружить микробы у больного не удается, они все-таки существуют. И, совершенствуя методы микроскопических исследований, Кох первым начал использовать окрашивание препаратов анилиновыми красками и использовать твердые питательные среды. В результате микробы стали хорошо видны. В 1882 году Кох открыл возбудитель туберкулеза, названный впоследствии палочкой Коха, а в 1883 г. -- холерный вибрион. Накопив огромный экспериментальный материал, он попытался изложить общую концепцию инфекционного процесса, которая сводилась к трем положениям (триада Коха): первое -- обязательное нахождение возбудителя во всех случаях заболеваний; второе -- получение чистой культуры возбудителя; третье -- необходимость воспроизведения идентичного заболевания прививкой культуры на животном. Для лечения туберкулеза Кох предложил использовать токсин туберкулезной палочки -- туберкулин. Это средство вначале вызвало бум. Но через два года выяснилось, что оно не вылечивает легочную чахотку и даже усугубляет ее действие. Поэтому лекарство перестало применяться. Позже экспериментально было установлено, что туберкулиновая проба может использоваться в диагностике туберкулеза. В 1905 г. Кох за исследования туберкулеза был удостоен Нобелевской премии.

Третьим в этой триаде был Илья Ильич Мечников -- создатель фагоцитарной теории иммунитета. Он открыл клетки -- фагоциты, которые выполняют функцию защиты организма от болезнетворных микроорганизмов. Параллельно с ним немецкий ученый Эрлих установил, что иммунитет определяется как клеточными, так и гуморальными (гормональными) факторами. Таким образом, было создано учение об иммунитете. В 1908 году его авторы Мечников и Эрлих были удостоены Нобелевской премии. Кроме того, с 19 в. открывается новая эра -- эра анестезиологии. Перестают использовать в качестве обезболивающих средств водку, корень мандрагоры, битье палкой по голове. В 1800 году английский химик Хемфри Деви открыл закись азота -- веселящий газ. В 1844 году он был впервые использован на публичном эксперименте американским врачом Уэлльсом. Эксперимент не удался, из-за чего Уэлльс позже покончил жизнь самоубийством. Лишь в 60-х годах XIX века это обезболивающее средство начали широко использовать в медицине. В 1846 году американский врач Мортон открыл эфирный наркоз. А меньше года спустя эфирный наркоз открывают в России -- Пирогов, Иноземцев, Филомафитский. Пирогов первым в мире применяет наркоз во время операций на поле боя (сделал более 10000 операций с применением наркоза). Также Пирогов изобрел специальную наркозную маску, разработал ректальный способ применения наркоза, указал на возможность внутривенного наркоза. И, наконец, третье классическое средство наркоза -- хлороформ -- было открыто Симпсоном, акушером-гинекологом из города Эдинбурга (в 1847 году). Можно сказать, что в эти три года произошла революция в хирургии и появились возможности производить новые полостные операции. Появился даже афоризм: «Хирург может сделать все, что ему позволит анестезиолог». В 1884 году впервые был вырезан аппендицит (кстати, в предыдущие эпохи он встречался намного реже). В 1879 году французский хирург Пеан впервые в мире удалил часть желудка, пораженную раком. Исход операции был летальным. Первую успешную резекцию желудка выполнил немецкий хирург Бильрот -- основоположник хирургии желудочно-кишечного тракта. Эта операция носит его имя. Он же впервые осуществил резекцию пищевода, гортани, обширное иссечение языка при раке. Ученик Бильрота -- Кохер -- в 1909 году был удостоен Нобелевской премии за разработку операции на щитовидной железе. Кохер внес большой вклад в развитие абдоминальной хирургии, травматологии и военно-полевой хирургии, в разработку проблем асептики и антисептики. В гинекологии начинают успешно бороться с маточными кровотечениями. В стоматологии разрабатывают новые методы и приборы зубоврачевания: в 1870 году изобретают нужную бормашину, с 1836 г. начинают применять мышьяковую кислоту, с 1819 г. -- пломбирование зубов специальными цементами. В 19 веке Р.Двайером и Тренделенбургом была разработана процедура интубации трахеи с помощью ларингоскопа. Операция эта моментально устраняет удушье. В 1803 г. в Лондоне было основано Королевское дженнеровское общество, пожизненным председателем стал, соответственно, Дженнер. Целью этого общества было широкое внедрение вакцинации в Англии. В 1813 г. в Оксфорде Дженнеру была присуждена степень доктора медицины. Вскоре почти все общества Европы избрали его своим почетным членом, а Лондон -- своим почетным гражданином, вручив диплом с настоящими бриллиантами. Пастер, Кох и Мечников были хорошо знакомы между собой. Вместе ходили в рестораны. Кох всегда заказывал себе много еды и водки, а Мечников -- простокваши (был сторонником строгой диеты).  Пастер умер от инсульта. Кох в 1910 году -- в результате сердечного приступа. В 60 лет он женился на молодой актрисе, оставив первую жену и дочь. Мечников, проведя 28 лет жизни в Париже, умер от сердечного заболевания. Урна с его прахом хранится в библиотеке института Пастера.

наука геометрия электродинамика

Открытия в математике

Накопленный в 17 и 18 вв. огромный фактический материал привёл к необходимости углублённого логического анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрической интерпретации комплексных чисел [К. Вессель, 1799, и Ж. Арган (Арганд), 1806], доказательство неразрешимости в радикалах общего алгебраического уравнения пятой степени (Н. Абель, 1824), разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским (1826) и Я. Больяй (1832) неевклидовой геометрии, работы К. Гаусса (1827) по внутренней геометрии поверхностей -- типичные примеры наметившихся на рубеже 18 и 19 вв. новых тенденций в развитии математики. Связь математики с естествознанием приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, но также из внутренних потребностей самой математики. Главная линия развития заключалась здесь в том, что переход в комплексную область делал более ясными и обозримыми свойства подлежащих изучению функций. Широкий интерес к непосредственному реальному применению функций комплексного переменного, например, как функций, задающих конформное отображение, развился позднее, хотя возможности таких применений были намечены еще Л. Эйлером. Теория групп ведёт своё начало с рассмотрения Ж. Лагранжем (1771) групп подстановок в связи с проблемой разрешимости в радикалах алгебраических уравнений высших степеней. Э. Галуа (1830--32,) при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраических уравнений любой степени. В середине 19 в. А. Кэли дал общее «абстрактное» определение группы. С.Ли разработал, исходя из общих проблем геометрии, теорию непрерывных групп. Дифференциальная геометрия поверхностей создаётся К. Гауссом (1827), Ф. Миндингом и К. М. Петерсоном (1853). Для выработки новых взглядов на предмет геометрии основное значение имело создание Н. И. Лобачевским неевклидовой геометрии. Ю. Плюккер строит геометрию, рассматривая в качестве основных элементов прямые, Г. Грассман создаёт афинскую и метрическую геометрию n-мерного векторного пространства.

Уже в гауссовской внутренней геометрии поверхностей дифференциальная геометрия, по существу, также освобождается от неразрывной связи с геометрией Евклида: то, что поверхность лежит в трёхмерном евклидовом пространстве, является для этой теории случайным обстоятельством. Исходя из этого, Б. Риман создаёт (1854,) концепцию n-мерного многообразия с метрической геометрией, определяемой дифференциальной квадратичной формой. Этим было положено начало общей дифференциальной геометрии n-мерных многообразии (см. Риманова геометрия). Б. Риману же принадлежат и первые идеи в области топологии многомерных многообразии. Конец 19 века и начало 20 века. Лишь в начале 70-х гг. 19 в. Ф. Клейн находит модель неевклидовой геометрии Лобачевского, которая окончательно устраняет сомнения в её непротиворечивости. Ф. Клейн подчиняет (1872) всё разнообразие построенных к этому времени «геометрий» пространств различного числа измерений идее изучения инвариантов той или иной группы преобразований. В это же время (1872) работы по обоснованию анализа получают необходимый фундамент в виде строгой теории иррациональных чисел (Р. Дедекинд, Г. Кантор и К. Вейерштрасс) Чрезвычайное развитие, превосходящее предшествующие периоды не только по количеству работ, но также по совершенству и силе методов и окончательности результатов, получают в конце 19 в. и в начале 20 в. все разделы математики, начиная с самого старого из них -- теории чисел. Э. Куммер, Л. Кронекер, Р. Дедекинд, Е. И. Золотарёв и Д. Гильберт закладывают основы современной алгебраической теории чисел. Ш. Эрмит в 1873 доказывает трансцендентность числа е, Ф. Линдеман в 1882 -- числа П, Ж. Адамар (1896) и Ш. Ла Балле Пуссен (1896) завершают исследования П. Л. Чебышева о законе убывания плотности расположения простых чисел в натуральном ряду. Г. Минковский вводит в теоретико-числовые исследования геометрические методы. В России работы по теории чисел после П. Л. Чебышева блестяще развивают, кроме уже упомянутого Е. И. Золотарёва, А. Н. Коркин, Г. Ф. Вороной и А. А. Марков. Наибольшее число задач, выдвигаемых перед математикой, естествознанием и техникой, сводится к решению дифференциальных уравнений, как обыкновенных (при изучении систем с конечным числом степеней свободы), так и с частными производными (при изучении непрерывных сред и в квантовой физике). Поэтому все направления исследований дифференциальных уравнений в рассматриваемый период интенсивно культивируются. Для решения сложных линейных систем создаются методы операционного исчисления. Практическое использование результатов теоретического математического исследования требует получения ответа на поставленную задачу в численной форме. Между тем даже после исчерпывающего теоретического разбора задачи это часто оказывается совсем не лёгким делом. В кон. 19 в. и в начале 20 в. численные методы анализа выросли в самостоятельную ветвь. Особенно большое внимание уделялось при этом методам численного интегрирования дифференциальных уравнений (методы Адамса, Штёрмера, Рунге и др.) и квадратурным формулам (П. Л. Чебышев, А. А. Марков, В. А. Стеклов). Широкое развитие работ, требующих численных расчётов, привело к необходимости вычисления и публикации всё возрастающего количества математических таблиц.

Существенная новизна начавшегося в 19 в. этапа развития математики состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, например, введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие математики потребовало выработки приёмов сознательного и планомерного создания новых геометрических систем, новых «алгебр» с «некоммутативным» или даже «неассоциативным» умножением и т.д. по мере возникновения в них потребности. Но трудно переоценить важность той перестройки всего склада математического мышления, которая для этого должна была произойти в течение 19 в.

Только к концу 19 в. сложился стандарт требований к логической строгости, остающийся и до настоящего времени господствующим в практической работе математиков над развитием отдельных математических теорий. Этот стандарт основан на теоретико-множественной концепции строения любой теории. С этой точки зрения любая математическая теория имеет дело с одним или несколькими множествами объектов, связанных между собой некоторыми отношениями.

Открытия в области химии

19 век характеризуется развитием химической атомистики. Атомное учение в 17-18 вв. разрабатывалось преимущественно с сугубо абстрактной, механистической точки зрения. Но уже Ломоносов близко подошёл к приложению атомной гипотезы к задачам химии. Химическая атомистика родилась из слияния старой натурфилософской идеи об атомах с опытными аналитическими данными о химическом количественном составе веществ. В течение первых двух третей 19 в. в химии сформировались два фундаментальных её понятия - атомного веса (атомной массы) и валентности, или «атомности» - В 1869 году Менделеевым была раскрыта связь между ними. В том же году Менделеев создал периодическую систему элементов и открыл лежащий в её основе закон. Это открытие явилось теоретическим синтезом всего предшествующего развития химии. В 1852 Франкленд, изучая метало-органические соединения, заложил основы учения о валентности. В 1861 А. М. Бутлеров создал химического строения теорию, согласно которой химические свойства вещества определяются составом и строением молекул, а реакционная способность зависит от того, в какой последовательности атомы связаны в данной молекуле, а также от их взаимного влияния. Первый международный конгресс химиков в Карлсруэ (1860) четко разграничил понятия атома, молекулы, эквивалента; это способствовало дальнейшему развитию химии. В 1859-61 она обогатилась совершенным методом спектрального анализа, благодаря чему удалось обнаружить присутствие некоторых химических элементов в составе небесных тел; была установлена связь между физикой (оптикой), астрономией и химией. По мере открытия новых химических элементов всё острее ощущалась необходимость их систематизации. По мере прогресса физики и химии устанавливались основные понятия и законы, которые, с одной стороны, поставили на более высокую ступень обе эти науки, а с другой - послужили основой для становления физической химии, зарождение отдельных отраслей которой началось ещё в конце 18 - 1-й половине 19 вв. В исследовании общих закономерностей, управляющих химическими процессами, оказалась крайне заинтересованной и химическая промышленность, достигшая значительных успехов к 80-м гг. 19 в. Изучение тепловых эффектов химических процессов получило прочную основу после открытия Г. И. Гессом (1840) основного теплового закона химических процессов. Во 2-й половине 19 в. большая работа по определению теплот химических реакций была проделана П. Э. М. Бертло, Х. П. Ю. Томсеном, Н. Н. Бекетовым и др.; она завершилась к концу 19в. созданием одного из разделов физической химии - термохимии. С возникновением термодинамики и развитием термохимии в тесной связи с последней во 2-й половине 19 в. начинает развиваться химическая термодинамика, изучающая энергетические эффекты, которыми сопровождаются химические процессы, самую возможность, направление и пределы таких процессов и др. термодинамические явления в физико-химических системах (труды Дж. Гиббса, Я. Вант-Гоффа, А. Ле Шателье и др.). Со 2-й половины 19 в. началось изучение механизма прохождения электрического тока через растворы электролитов (работы Р. Клаузиуса, И. В. Гитторфа, Ф. Кольрауша и др.), которое привело к созданию С. Аррениусом теории электролитической диссоциации (1883-87). Согласно этой теории, электролиты в растворах распадаются на ионы. Согласно химической теории водных растворов Менделеева, разработанной в 1865-87, растворённое вещество и растворитель взаимодействуют между собой в растворе. К концу 19 в. учение о катализе и практическое использование катализаторов заняли важное место в общей химии. С катализом теснейшим образом связана адсорбция, открытая Т. Е. Ловицем в 1785. В 1878 Гиббс установил основные законы поверхностных явлений, адсорбции и образования новых фаз. Со 2-й половины 19 в. развивается учение о скоростях химических реакций и химическом равновесии. Значение активной массы (концентрации) реагирующих веществ было отмечено ещё в 1801-03 К. Бертолле. Последующая разработка вопросов, связанных с равновесием химических реакций, привела К. Гульдберга и П. Вааге к открытию (1864-67) закона действующих масс, который лёг в основу учения о скоростях реакций. Систематические работы Н.А.Меншуткина (с 1877) явились существенным вкладом в установление кинетических закономерностей химических реакций. В 1884 Вант-Гофф суммировал накопившийся в этой области материал в виде кинетических уравнений.

Физика как наука

Физика XIX века считается классической. Ньютоновский феноменологический метод стал главным инструментом познания природы. Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, опираясь на измерительную технику, обеспечивал небывалую ранее точность. Физическое знание все в большей мере становилось основой промышленной технологии и техники, стимулировало развитие других естественных наук. В физике изолированные ранее свет, электричество, магнетизм и теплота оказались объединенными в электромагнитную теорию. И хотя природа тяготения оставалась не выясненной, его действия можно было рассчитать. Утвердилась концепция механистического детерминизма Лапласа, исходившая из возможности однозначно определить поведение системы в любой момент времени, если известные исходные условия. Структура механики как науки казалась прочной, надежной и почти полностью завершенной - т.е. не укладывающиеся в существующие классические каноны феномены, с которыми приходилось сталкиваться. Казались вполне объяснимыми в будущем более изощренными умами с позиций классической механики. Складывалось впечатление, что знание физики близко к своему полному завершению - столь мощную силу демонстрировал фундамент классической физики, несмотря на то, что в ее отдельных областях гнездились остатки старых метафизических концепций. Но постепенно последние сдают свои позиции: сходят с арены теория флюидов, теория теплорода и т.д. Проникновение физических знаний в промышленность, технику приводит к появлению прикладной физики, а исследования в ее области значительно расширяли фактический материал, требовавший теоретической интерпретации. В конце концов неспособность классической теории объяснить новые факты приводит на рубеже XIX и XX веков к научной революции в физике.

1. Волновая концепция света О.Френеля

Сформировавшиеся в предшествующее столетие корпускулярная и волновая концепции света в XIX веке продолжили ожесточенную борьбу. Первая опиралась на авторитет Ньютона, вторая - на авторитет Гука, Гюйгенса, Эйлера, Ломоносова. Сторонники корпускулярной концепции надеялись объяснить с ее позиций затруднения с объяснением явлений дифракции и интерференции. Т.Юнг дал это объяснение с позиций волновой концепции. Исходя из высказанных им гипотез о существовании разреженного и упругого светоносного эфира, заполняющего Вселенную, о возбуждении волнообразных движений в эфире при свечении тела, о зависимости ощущения различных цветов от различной частоты колебаний, возбуждаемых светом на сетчатке глаза, о притягивании всеми материальными телами эфирной среды, вследствие чего последняя накапливается в веществе этих тел и на малом расстоянии вокруг них в состоянии большей плотности (но не большей упругости), Юнг делает вывод о том, что излучаемый свет состоит из волнообразных движений светоносного эфира. Это дало возможность все разнообразие цветов свести к колебательным движениям эфира, а различие цветов объяснить различием частот колебаний эфира, а также сформулировать принцип интерференции. Прямолинейное распространение света было наиболее важным аргументом в пользу корпускулярной теории. О.Френель делает новый существенный шаг в развитии волновой теории. (Идея интерференции вообще оказалась столь плодотворной, что при встрече с неизвестным видом излучения всегда стараются получить интерференцию. И если это удается, то тем самым доказывается его волновой характер.) Связав принцип Гюйгенса, (согласно которому молекулы тела, приведенные в колебание падающим светом становятся центрами испускания новых волн) с принципом интерференции, (согласно которому налагающиеся волны, в противоположность корпускулярным лучам, не обязательно усиливаются, а могут и ослабляться до полного уничтожения), Френель дал объяснение прямолинейному распространению света, показав, что лучи, поляризованные перпендикулярно друг к другу, не интерферируются. В опытах по дифракции света он установил, что дифракционные полосы появляются вследствие интерференции лучей. Принцип интерференции позволил Френелю законы отражения и преломления объяснить взаимным погашением световых колебаний во всех направлениях, за исключением тех. которые удовлетворяют закону отражения. Френелю удалось экспериментально доказать, что световые лучи могут воздействовать друг на друга, ослабляться и даже почти полностью погашаться в случаях согласных колебаний, что и позволило ему дать объяснение явлению дифракции. Френель доказал, что свет является поперечным волновым движением. Он объяснил явление поляризации света в экспериментальных исследованиях отражения и преломления света от поверхности прозрачных веществ. Им было установлено, что отражение плоско-поляризованного света от поверхности прозрачного тела сопровождается поворотом плоскости поляризации в тех случаях, когда эта плоскость не совпадает с плоскостью падения или не перпендикулярна к ней. Развивая идеи Гюйгенса о распространении волн в кристаллах, Френель заложил основы кристаллооптики. Таким образом, борьба волновой и корпускулярной концепции света в первой половине XIX века завершается победой волновой концепции - было установлено, что свет является поперечным волновым движением. Решающим вкладом в эту победу и явилось объяснение с помощью волновой концепции явлений дифракции и интерференции света.

2. Концепции классической электродинамики

Классическая электродинамика, представляющая собой теорию электромагнитных процессов в различных средах и вакууме, охватывает огромную совокупность явлений, в которых главная роль принадлежит взаимодействиям между заряженными частицами, которые осуществляются посредством электромагнитного поля. Разделом электродинамики, изучающим взаимодействия и электрические поля покоящихся электрических зарядов, является электростатика. Успехи в области электростатики, выразившиеся в установлении количественного закона электрических взаимодействий, способствовали не только накоплению экспериментальных данных в области электростатических явлений и совершенствованию электростатических машин, но и созданию математической теории электро- и магнитостатистических взаимодействий. Открытие Л.Гальвани «животного электричества», создание А.Вольта первого генератора электрического тока («вольтова столба»), осуществление первого описания замкнутой цепи электрического тока, открытие В.В.Петровым электрической дуги, открытие Г.Дэви и М.Фарадея химического действия электрического тока, теоретические работы по электро- и магнитостатике С.Пуассона и Д.Грина были завершающими успехами в области концепции электрической жидкости, считавшейся в начале XIX века основой электростатики, подобно тому, как концепция магнитной жидкости считалась основой магнитостатики. В дальнейшем главным направлением в данной области становится электромагнитизм. Картина мира, построенная на основе данных концепций, не нуждалась в божественном вмешательстве, но ее слабостью был чисто описательный характер, не допускавший количественных изменений. Данная картина была дополнена Пифагором, внесшим идею объяснения явлений реальности на основе математической закономерности. Но в области физических явлений опытное познание подменялось мистикой чисел. Идеалом познания пифагорийцев было пассивное созерцание, а не активный эксперимент. Вместе с тем для развития физических концепций была важна установленная пифагорейцами возможность операций с физическими величинами сведением их к мере и числу, что расширяло возможности человека в преобразовании природы. Таким образом, несомненно, укреплялась идея о естественном характере развития действительности, которая приобретала все более конкретные очертания и вылилась в атомистическую концепцию, сыгравшую огромную роль в развитии науки.

Заключение

На стыке 18-19 веков утвердился тот стереотип исследования, который назывался классической наукой. У Коперника, Кеплера, Галилея, Ньютона, Декарта и Бэкона был сформирован каркас понятия классическая научная рациональность:

1) механицизм был господствующей тенденцией в науке - ценности и нормы механики лежат в основе классической науки

2) физика всему задавала тон, была образцом, по которому ориентировались все другие науки, в том числе и психология (машиноподобный, технофицированный подход)

3) строгое установление причинно-следственных связей, функция объяснения. Попытки установить причины были и в социальных дисциплинах, так Конт рассматривал социологию как социальную физику, учение об обществе, которое приравнивалось работе машины.

4) К концу 19 века завершение периода становления науки как социального института, его важность заключалась в том, что бюджет государств выделял средства для ее развития. Дальнейшее развитие индустриализации зависело от развития науки (19 век - технические открытия, которые способствовали развитию индустриализации: это все открытия, связанные с тепловой энергетикой и теплодинамикой).

5) Появились тенденции дифференциации наук. Несмотря на универсализм 19 век заявляет, что будущее развитие науки связано с дифференциацией и специализацией, отсюда методологическая установка на размежевание дисциплин на естественные, биологические и все науки о жизни.

Список литературы:

1. Кузнецов Б.Т. От Галилея до Эйнштейна М.: Наука, 1966.

2. Маркова А.Н. «Культурологи. История мировой культуры». Москва «Юнити»

1998г.

3. Рыбников К.А. История математики.- М.: МГУ.

4. Петров Ю.П. История и философия науки. Математика, вычислительная техника, информатика, -СПб.: БХВ-Петербург.

5. http://lazervip.info

6. http://mur-olg2.home.nov.ru

Размещено на http://www.allbest.ru/


Скачать работу можно здесь Скачать работу "Научные открытия ХIХ века: математика, физика, биология, химия" можно здесь
Сколько стоит?

Рекомендуем!

база знанийглобальная сеть рефератов