Учение об окружающей среде

Анализ миграции химических элементов в окружающей среде. Изучение биологического круговорота элементов. Оценка предупреждения загрязнение атмосферного воздуха. Обзор механизма очистки природных и сточных вод. Вторичное засоление почвенного покрова.

Рубрика Экология и охрана природы
Вид практическая работа
Язык русский
Дата добавления 08.12.2016
Размер файла 4,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Один из важнейших геохимических показателей техногенеза - технофильность химических элементов. Это отношение ежегодной добычи или производства элемента (в тоннах) к его кларку в литосфере. Таким образом, эта величина характеризует относительные масштабы извлечения элементы из природных сред в целях его промышленного использования человеком. При этом не учитываются параметры обратного выхода этих элементов из техногенного оборота, что делает показатель не вполне совершенным. То есть, в отличие отбиофильности, этот показатель не является точным отражением концентрации элемента в продуктах техногенеза. (Ещё Вернадский отмечал, что абсолютная тенденция к концентрации на современном этапе ноосферогенеза характерна только для золота, остальные элементы в конечном счёте попадают в отходы производственной и бытовой деятельности и рассеиваются). Вторая особенность - динамичность показателя. В древности использовалось 18 элементов, в 18 веке - 28, к началу ХХ - около 70, а сейчас в техногенез вовлечены все известные элементы, плюс некоторые созданные искусственно элементы и изотопы. Развитие экономики и технологий приводит к постоянному изменению соотношения технофильности различных элементов. Сейчас наибольшая величина технофильности свойственна углероду, что характеризует интенсивность использования горючих полезных ископаемых. Высокие показатели - для фосфора, золота, свинца, цинка, меди… С другой стороны, низки величины технофильности для таких распространённых элементов, как магний, титан, и особенно - кремний. По существу это характеризует низкую степень использования этих элементов в техногенезе, что со временем, вероятно, изменится. Для кремния время этих изменений уже наступает в связи с началом внедрения керамики в качестве замены металлам и пластмассам (здесь лидирует Япония). В целом по мере развития науки и техники всё большей становится регулирующая роль кларка, так как богатые месторождения истощаются и со временем, видимо, человечество вынуждено будет перейти к извлечению элементов из пород, где их содержания ненамного отличаются от кларковых.

Установлено, что существуют циклы миграции: геохимические и биологические. Вопросы цикличности в техногенных процессах пока целенаправленно не изучались.

Круговороты химических элементов:

геохимический круговорот является составной частью геологического круговорота вещества - большой круговорот (рис. 2.).

Биологический круговорот (БИК) связан с жизнедеятельностью организмов: питание и выделение, трофические цепочки, жизненный цикл) - малый круговорот (рис. 2.3.2) Далее, Вы узнаете, что БИК относительно замкнут лишь в пределах конкретных ландшафтов и биосферы в целом, но он не является полностью замкнутым, т.к. происходит перемещение вещества между ландшафтами, полное выведение части вещества из малого оборота в пределах географической оболочки как результат процессов осадконакопления - но сохранение его в большом круговороте;

Рис. 2. Схема геохимического (большого) круговорота

Рис. 3.. Общая схема биологического круговорота (БИК)

Абиогенные циклы сложились на нашей планете значительно ранее биогенных. Они включают весь комплекс геологических, геохимических, гидрологических, атмосферных процессов.

Абиогенный геохимический круговорот включает накопление, удержание и перераспределение космической энергии Солнца на планете через нагревание водных масс, образование и конденсацию паров, выпадение атмосферных осадков и движение поверхностных и грунтовых вод по уклону от областей питания к областям испарения. Неравномерное нагревание воздуха и воды вызывает планетарные перемещения водных и воздушных масс, формирование градиентов плотности и давления, океанические течения и грандиозные процессы атмосферной циркуляции.

Эрозия, химическая денудация, транспортировка, перераспределение и накопление механических и химических осадков на суше и в океане.

В добиогенных геохимических круговоротах определяющая роль принадлежала водной и воздушной миграции и аккумуляции. На следующих лекциях мы более подробно остановимся на особенностях биогенной миграции элементов, рассмотрим основные геохимические функции живого вещества и особенности биологического круговорота вещества, а также познакомимся с циклами некоторых, наиболее важных для функционирования биосферы, химических элементов.

КОНТРОЛЬНЫЕ ВОПРОСЫ К МОДУЛЮ 1. Тема 4.

Как вы понимаете, что такое миграция химических элементов?

Какие существуют среды миграции?

Назовите основные факторы, определяющие характер миграции элементов.

Какие виды миграции элементов существуют на поверхности Земли?

Как построена геохимическая классификация элементов по особенностям их миграции в биосфере?

Что такое «геохимический барьер»?

Каковы основные особенности миграции химических элементов в биосфере?

Чем определяется коэффициент водной миграции?

Что является результатом миграции химических элементов?

Какие Вы знаете типы геохимических барьеров?

В чем особенности действия окислительно-восстановительного барьера?

В каких случаях возникает кислотно-щелочной барьер?

Что такое испарительный барьер?

Что такое двусторонние барьеры?

Как обозначаются различные типы геохимических барьеров по классификации А.И. Перельмана?

Какие барьеры могут возникать при механической миграции? Дайте краткую характеристику действия каждого из этих барьеров.

Чем отличаются друг от друга микро- мезо- и мегабарьеры?

Что такое контрастность геохимических барьеров?

Охарактеризуйте особенности техногенной миграции элементов?

Какие геохимические барьеры возможны при техногенной миграции? Приведите примеры.

Какова роль геохимических барьеров в процессах концентрации и рассеяния химических элементов в биосфере? Приведите примеры.

Практическая работа №5. Биологический круговорот элементов

1. Общее понятие о биологическом круговороте веществ

2. Элементы биогеохимического круговорота веществ. Параметры биологического круговорота элементов на суше и в океане

Общее понятие о биологическом круговороте веществ

С момента начала изучения взаимодействия живых организмов с окружающей средой стало ясно, что процессы биогенного массообмена имеют циклический характер (см. рис.2.3.2).

Циклы массообмена различной протяженности в пространстве и неодинаковой длительности во времени образуют динамическую систему биосферы. В.И. Вернадский считал, что история большинства химических элементов, образующих более 99% массы биосферы, может быть понята лишь с учетом круговых миграций (циклов). При этом он подчеркивал, что «эти циклы обратимы лишь в главной части атомов, часть же элементов неизбежно и постоянно выходит из круговорота. Этот выход закономерен, т.е. круговой процесс не является вполне обратимым». Неполная обратимость и несбалансированность миграционных циклов допускают определенные концентрации мигрирующего элемента, к которым организмы могут адаптироваться, но в то же время, обеспечивают вывод избыточного количества элемента из данного цикла.

То есть, целостность биосферы как системы обусловлена непрерывным обменом веществом между её компонентами, в котором ключевую роль играют процессы, связанные с синтезом и разложением органического вещества. Реализуются они как в ходе обмена веществ между живыми организмами и окружающей средой, так и в процессах минерализации органического вещества после смерти организма в целом или отмирания отдельных его органов. Кроме того, свой вклад в круговорот вещества в биосфере сносят и небиогенные по своей природе процессы обмена веществом между различными компонентами географической оболочки.

Элементы биогеохимического круговорота веществ.

Параметры биологического круговорота элементов на суше и в океане

Биологический круговорот веществ представляет собой совокупность процессов поступления химических организмов в живые организмы, биохимического синтеза новых сложных соединений и возвращение элементов в почву, атмосферу и гидросферу (рис.)

Абиогенный и биологический круговороты тесно переплетаются, образуя общепланетарный геохимический круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории нашей планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе, который является основой нормального функционирования биосферы. То есть в условиях развитой биосферы круговорот веществ направляется совместным действием биологических, геологических и геохимических факторов. Соотношение между ними может быть разным, но действие - обязательно совместным! Именно в этом смысле употребляются термины биогеохимический круговорот веществ и биогеохимические циклы.

Биологический круговорот не является полностью компенсированным замкнутым циклом.

Биологическое, биохимическое и геохимическое значение процессов, осуществляемых в биологическом круговороте веществ, впервые показал В.В. Докучаев. Далее оно было раскрыто в трудах В.И. Вернадского, Б.Б. Полынова, Д.Н. Прянишникова, В.Н. Сукачева, Л.Е. Родина, Н.И. Базилевич, В.А. Ковды и других исследователей.

Прежде чем мы приступим к изучению природных биологических круговоротов химических элементов, необходимо познакомиться с наиболее часто употребляемыми терминами.

Биомасса - масса живого вещества, накопленная к данному моменту времени.

Фитомасса ( или биомасса растений0 - масса живых и отмерших, но сохранивших свое анатомическое строение к данному моменту организмов растительных сообществ на любой конкретной площади или на планете в целом.

Структура фитомассы - соотношение подземной и надземной частей растений, а также однолетних и многолетних, фотосинтезирующих и нефотосинтезирующих частей растений.

Ветошь - отмершие части растений, сохранившие механическую связь с растением.

Опад - количество органического вещества растений, отмерших в надземных и подземных частях на единице площади за единицу времени.

Подстилка - масса многолетних отложений растительных остатков разной степени минерализации.

Прирост - масса организма или сообщества организмов, накопленная на единице площади за единицу времени.

Истинный прирост - отношение величины прироста к величине опада за единицу времени на единице площади.

Первичная продукция - масса живого вещества, создаваемая автотрофами (зелеными растениями) на единице площакди за единицу времени.

Вторичная продукция - масса органического вещества, создаваемая гетеротрофами на единице площади за единицу времени.

Следует различать также емкость и скорость биологического круговорота.

Емкость биологического круговорота - количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).

Интенсивность биологического круговорота - количество химических элементов, содержащихся в приросте биомассы на единицу площади в единицу времени.

Скорость биологического круговорота - промежуток времени, в течение которого элемент проходит путь от поглощения его живым веществом до выхода из состава живого вещества.

По Л.Е. Родину и Н.И. Базилевич (1965), полный цикл биологического круговорота элементов на суше слагается из следующих составляющих:

Поглощение растениями из атмосферы углерода, а из почвы - азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов.

Поедание частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов.

Газообмен между растениями и атмосферой (в том числе, почвенным воздухом).

Прижизненные выделения надземными органами растений и их корневыми системами некоторых элементов непосредственно в почву.

Структура биосферы в самом общем виде представляет собой два крупнейших природных комплекса первого ранга - континентальный и океанический. В современную эпоху суша в целом является элювиальной системой, океан - аккумулятивной системой. История «геохимических отношений» между океаном и сушей отражена в химическом составе почв и океанических вод. Элементы, являющиеся основой жизни - Si, Al, Fe, Mn, C, P, N, Ca, K - аккумулируются в почве, а H, O, Na, Cl, S, Mg - составляют химическую основу океана.

Растения, животные и почвенный покров Мировой суши образуют сложную систему. Связывая и перераспределяя солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие биофильные элементы, эта система постоянно формирует новую биомассу и генерирует свободный кислород.

В океане существует вторая система (водные растения и животные), выполняющая на планете те же функции связывания солнечной энергии, углерода, азота, фосфора и других биофилов путем образования фитобиомассы, высвобождения кислорода в атмосферу.

Вам уже известно, что существует три формы накопления и перераспределения космической энергии (прежде всего, энергии Солнца) в биосфере.

Суть первой из них в том. Что живые организмы, а через пищевые цепи и связанные с ними животные и бактерии строят свои ткани, используя многие химические элементы и их соединения. Среди важнейших из них макроэлементы- H, O, N, P, S, Ca, K, Mg, Si, Al, Mn, а также микроэлементы I, Co, Cu, Zn, Mo и др. При этом происходит избирательная селекция легких изотопов углерода, водорода, кислорода, азота и серы от более тяжелых.

В течении всей своей жизни и даже после смерти живые организмы суши, водной и воздушной среды, находятся в состоянии непрерывного обмена с окружающей средой. При этом суммарная масса и объем продуктов прижизненного обмена организмов и среды (метаболитов) в несколько раз превышают биомассу живого вещества.

Элементами биогеохимического круговорота являются следующие составляющие :

Непрерывные или регулярно повторяющиеся процессы притока энергии, образование и синтез новых соединений.

Постоянные или периодические процессы переноса или перераспределения энергии и процессы выноса и направленного перемещения синтезированных соединений под влиянием физических, химических и биологических агентов.

Направленные ритмические процессы последовательного преобразования: разложения, деструкции синтезированных ранее соединений под влиянием биогенных и абиогенных воздействий среды.

Постоянное или периодическое образование простейших минеральных или органо-минеральных компонентов в газообразном, жидком или твердом состоянии, которые играют роль исходных компонентов для новых, очередных циклов круговорота веществ.

Биологические обусловлены жизнедеятельностью организмов (питание, пищевые связи, размножение, рост, перемещение продуктов метаболизма, смерть, разложение, минерализация)

Обязательными параметрами, учитываемыми при исследовании биогеохимических циклов являются следующие основные показатели:

Общая биомасса и ее фактический прирост (фито-, зоо-, микробная масса по отдельности).

Органический опад (количество, состав)

Органическое вещество почвы (гумус, неразложившиеся органические остатки).

Элементарный вещественный состав почв, вод, воздуха, осадков, отдельных фракций биомассы.

Наземные и подземные запасы биогенной энергии.

Прижизненные метаболиты

Число видов живых организмов, их численность, сост

Продолжительность жизни организмов каждого вида, динамика жизни популяций живых организмов и почв.

Эколого-метеорологическая обстановка среды: фон и оценка вмешательства человека.

Характеристика различных ландшафтов и их элементов.

Количество загрязнителей, их химические, физические, биологические свойства.

Индивидуальная значимость того или иного химического элемента оценивается коэффициентом биологического поглощения, который определяется отношением содержания элемента в золе растений (по массе) к содержанию того же элемента в почве (или в земной коре).

В 1966 году В.А. Ковда предложил использовать для характеристики средней продолжительности общего цикла углерода отношение учтенной фитобиомассы к годичному фотосинтетическому приросту фитомассы. Этот коэффициент характеризует среднюю продолжительность общего цикла синтеза-минерализации биомассы в данной местности (или на суше в целом). Расчеты показали, что доля суши в целом этот цикл укладывается в период от 300-400 до 1000 лет. Соответственно, с этой средней скоростью идет освобождение минеральных соединений, связанных в биомассе, образование и минерализация гумуса в почве.

Для общей оценки биогеохимического значения минеральных компонентов живого вещества биосферы В.А. Ковда предложил сопоставлять запас минеральных веществ биомассы, а также количество минеральных веществ, ежегодно вовлекаемых в оборот с приростом и опадом, с годовым химическим стоком рек. Оказалось, что эти величины сопоставимы. А это означает, что большая часть веществ, растворенных в речных водах, прошла через биологический круговорот системы растения-почвы, до того, как она влилась в геохимическую миграцию с водой в направлении океана или внутриматериковых впадин.

Оказалось, что индексы биогеохимического круговорота очень сильно варьируют в различных климатических условиях, под покровом различных растительных сообществ, при различных условиях естественного дренажа, поэтому Н.И. Базилевич и Л.Е. Родин предложили рассчитывать дополнительный коэффициент, характеризующий интенсивность разложения опада и длительность сохранения подстилки в условиях данного биогеоценоза, равный отношению массы подстилки к массе годичного опада. По данным этих исследователей индексы разложения фитомассы наибольшие в тундре и болотах севера, а наименьшие (около 1) - в степях и полупустынях.

Б.Б. Полынов предложил рассчитывать индекс водной миграции равный отношению количества элемента в минеральном остатке выпаренной речной или грунтовой воды к содержанию того же химического компонента в горных породах (или земной коре). Расчет индексов водной миграции показал, что наиболее подвижными мигрантами в биосфере являются хлор, сера, бор, бром, йод, кальций, натрий, магний, фтор, стронций, цинк, уран, молибден. Наименее подвижны - кремний, алюминий, железо, калий, фосфор, барий, марганец, рубидий, медь, никель, кобальт, мышьяк, литий.

Ненарушенные биогеохимические циклы имеют почти круговой, т.е. почти замкнутый характер. Степень воспроизводства (повторяемости) циклов в природе очень высока (по данным В.А. Ковды - 90-98%). Тем самым поддерживается известное постоянство состава, количества и концентрации компонентов, вовлеченных в круговорот. Но неполная замкнутость биогеохимических циклов , как мы увидим далее, имеет очень важное геохимическое значение и способствует эволюции биосферы. Именно поэтому происходит биогенное накопление кислорода в атмосфере, биогенное и хемогенное накопление соединений углерода в земной коре (нефть, уголь, известняки)

Давайте несколько подробнее рассмотрим основные параметры биогеохимического круговорота на суше.

Общий биогеохимический круговорот элементов включает биогеохимические циклы отдельных химических элементов. Наиболее важное значение в функционировании биосферы в целом и отдельных геосистем более низкого классификационного уровня играют круговороты нескольких химических элементов, самых необходимых для живых организмов в связи с их ролью в составе живого вещества и физиологических процессах. К числу таких наиболее необходимых химических элементов относятся углерод, кислород, азот, сера, фосфор и др.

Биогеохимические циклы важнейших элементов: углерода, кислорода, азота, серы, фосфора, калия, кальция, кремнезема, алюминия, железа, марганца и тяжелых металлов

Давайте хотя бы в общих чертах познакомимся с биогеохимическими циклами таких важных для биосферы элементов как углерод, кислород, азот, сера, фосфор, калий, кальций, а также весьма распространенных в природе элементов, таких как кремний, алюминий и железо.

Биогеохимический цикл углерода

Содержание углерода в атмосфере Земли составляет 0,046% в форме двуокиси углерода и 0,00012% в форме метана. Среднее его содержание в земной коре - 0,35%, а в живом веществе - около 18% (Виноградов, 1964). С углеродом тесно связан весь процесс возникновения и развития биосферы, т.к. именно углерод является основой белковой жизни на нашей планете, т.е. углерод является важнейшим химическим компонентом живого вещества. Именно этот химический элемент, благодаря своей способности образовывать прочные связи между своими атомами, является основой всех органических соединений.

Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для углерода 100 и 1000 соответственно (Ковда, 1985).

Основным резервуаром углерода в биосфере, из которого этот элемент заимствуется живыми организмами для синтеза органического вещества, является атмосфера. Углерод содержится в ней, главным образом, в форме диоксида СО2. Небольшая доля атмосферного углерода входит в состав других газов - СО и различных углеводородов, в основном метана СН4. Но они в кислородной атмосфере неустойчивы, и вступают в химические взаимодействия с образованием, в конечном счёте, того же СО2.

Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения - углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды - консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных.

Возвращение углерода в окружающую среду происходит двумя путями. Во-первых - в процессе дыхания. Суть процессов дыхания заключается в использовании организмами окислительных химических реакций, дающих энергию для физиологических процессов. Окисление органических соединений, для которого используется атмосферный или растворённый в воде кислород, имеет результатом разложение сложных органических соединений с образованием СО2 и Н2О. В итоге углерод в составе СО2 возвращается в атмосферу, и одна ветвь круговорота замыкается.

Второй путь возвращения углерода - разложение органического вещества. В условиях биосферы процесс этот в основном протекает в кислородной среде, и конечными продуктами разложения являются те же СО2 и Н2О. Но большая часть углекислого газа при этом не поступает прямо в атмосферу. Углерод, высвобождающийся при разложении органического вещества, в основном остаётся в растворённой форме в почвенных, грунтовых и поверхностных водах. Или в виде растворённого углекислого газа, или же в составе растворённых карбонатных соединений - в форме ионов НСО3- или СО32-. Он может после более или менее продолжительной миграции частично возвращаться в атмосферу, но большая или меньшая его доля всегда осаждается в виде карбонатных солей и связывается в составе литосферы.

Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде. Главным образом, углекислый газ поглощается из атмосферы, растворяясь в водах Мирового Океана. Сюда же поступает и часть углерода, в тех или иных формах растворённого в водах суши. СО2, растворённый в морской воде, используется морскими организмами на создание карбонатного скелета (раковины, коралловые постройки, панцири иглокожих и т.д.). Он входит в состав пластов карбонатных пород биогенного происхождения, и на более или менее продолжительное время «выпадает» из биосферного круговорота.

В бескислородных средах разложение органического вещества также идёт с формированием в качестве конечного продукта углекислого газа. Здесь окисление протекает за счёт кислорода, заимствуемого из минеральных веществ бактериями-хемосинтетиками. Но процесс в этих условиях идёт медленнее, и разложение органического вещества обычно является неполным. В результате существенная часть углерода остаётся в составе не до конца разложившегося органического вещества и накапливается в толще земной коры в битуминозных илах, торфяниках, углях.

Хранители углерода - это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических эксгаляций, являются процессы разложения органического вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах. Техногенная углекислота составляет 20х109 т, что пока намного меньше, чем естественное ее поступление в атмосферу. За миллиарды лет с момента появления жизни на Земле весь углерод атмосферы и гидросферы неоднократно прошел через живые организмы. В течение всего 304 лет живые организмы усваивают столько углерода, сколько его содержится в атмосфере. Следовательно, всего за 4 года может полностью обновиться углеродный состав атмосферы, и условно можно считать, что углерод атмосферы за этот срок завершает свой цикл. Цикл углерода, входящего в состав гумуса почв оценивается в 300-400 лет.

Роль углерода в биосфере наглядно иллюстрируется схемой его круговорота (рис. 3.5.1).

Рис. 4 Схема биогеохимического цикла углерода

Из этой схемы наглядно видно, что растения, используя механизм фотосинтеза, выполняют функцию продуцентов кислорода и являются основными потребителями углекислого газа.

Однако, цикл биологического круговорота углерода не замкнут. Что очень важно, в том числе, и для нас. Этот элемент нередко выводится из геохимического круговорота на длительный срок в виде карбонатных пород, торфов, сапропелей, углей, гумуса. Таким образом, часть углерода всё время выпадает из биологического круговорота, связываясь в литосфере в составе различных горных пород. Почему же тогда не возникает дефицита углерода в атмосфере? Причина в том, что его потеря компенсируется постоянным поступлением СО2 в атмосферу в результате вулканической деятельности. То есть, в атмосферу постоянно поступают глубинные углекислый газ и окись углерода. Это позволяет поддерживать баланс углерода в биосфере нашей планеты.

Хозяйственная деятельность человека интенсифицирует биологический круговорот углерода и может способствовать повышению первичной, а, следовательно, и вторичной продуктивности. Но дальнейшая интенсификация техногенных процессов и может сопровождаться повышением концентрации двуокиси углерода в атмосфере. Повышение концентрации углекислоты до 0,07% резко ухудшает условия дыхания человека и животных. Расчеты показывают, что при условии сохранения современного уровня добычи и использования горючих ископаемых потребуется чуть больше 200 лет для достижения такой концентрации углекислого газа в атмосфере Земли. В отдельных крупных городах эта угроза вполне реальна уже сейчас.

Биогеохимический цикл кислорода

Как Вы помните, кислород - самый распространенный элемент не только земной коры (его кларк 47), но и гидросферы (85,7%), а также живого вещества (70%). Существенную роль этот элемент играет и в составе атмосферы (более 20%). Благодаря исключительно высокой химической активности, кислород играет особо важную роль в биосфере. Он определяет окислительно-восстановительные и щелочно-кислотные условия растворов и расплавов. Для него характерна как ионная, так и неионная форма миграции в растворах.

Эволюция геохимических процессов на Земле сопровождается неуклонным увеличением содержания кислорода. В настоящее время количество кислорода в атмосфере составляет 1,2х1015 тонн. Масштабы продуцирования кислорода зелеными растениями таковы, что это количество могло быть удвоено за 4000 лет. Но этого не происходит, так как в течение года разлагается примерно такое же количество органического вещества, которое образуется в результате фотосинтеза. При этом поглощается почти весь выделившийся кислород. Но благодаря незамкнутости биогеохимического круговорота в связи с тем, что часть органического вещества сохраняется и свободный кислород постепенно накапливается в атмосфере.

Главная «фабрика» по производству кислорода на нашей планете - зеленые растения, хотя в земной коре также протекают разнообразные химические реакции в результате которых выделяется свободный кислород.

Еще один миграционный цикл свободного кислорода связан с массобменом в системе природные воды - тропосфера. В воде океана находится от 3х109 до 10х109 м3 растворенного кислорода. Холодная вода высоких широт поглощает кислород, а, поступая с океаническими течениями в тропики - выделяет его в атмосферу. Поглощение и выделение кислорода происходит и при смене сезонов года, сопровождающихся изменением температуры воды.

Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, илах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на нашей планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.

Таким образом, общая схема круговорота кислорода в биосфере складывается из двух ветвей:

образование свободного кислорода при фотосинтезе;

поглощение кислорода в окислительных реакциях

Согласно расчетам Дж. Уолкера (1980) выделение кислорода растительностью мировой суши составляет 150х1015 тонн в год; выделение фотосинтезирующими организмами океана - 120х1015 тонн в год; поглощение в процессах аэробного дыхания - 210х1015 тонн в год; биологическая нитрификация и другие процессы разложения органического вещества - 70х1015тонн в год.

В биогеохимическом круговороте можно выделить потоки кислорода между отдельными компонентами биосферы (рис. 3.5.2).

Рис. 5. Схема биогеохимического цикла кислорода

В современных условиях установившиеся в биосфере потоки кислорода нарушаются техногенными миграциями. Многие химические соединения, сбрасываемые промышленными предприятиями в природные воды, связывают растворенный в воде кислород. В атмосферу выбрасывается все большее количество углекислого газа и различных аэрозолей. Загрязнение почв и, особенно, вырубка лесов, а также опустынивание земель на огромных территориях уменьшают производство кислорода растениями суши. Огромное количество атмосферного кислорода расходуется при сжигании топлива. В некоторых промышленно развитых странах кислорода сжигают больше, чем образуется его за счет фотосинтеза.

Биогеохимический цикл водорода

Содержание водорода в земной коре, в отличие от кислорода сравнительно невелико. Большая часть атомов водорода здесь входит в состав воды, нефти, горючих газов, некоторых минералов. Геохимия водорода тесно связана с историей воды и живого вещества. Кларк водорода гидросферы - 2,72, а живого вещества - 10,5.

В земной коре свободный водород неустойчив. Он быстро соединяется с кислородом, образуя воду, а также участвует в других реакциях. Кроме того, в связи со своей ничтожно малой атомной массой он способен улетучиваться в космос (диссипировать). Значительное количество водорода поступает на поверхность Земли при вулканических извержениях. Постоянно образуется газообразный водород и в результате некоторых химических реакций, а также в процессе жизнедеятельности бактерий, разлагающих органическое вещество в анаэробных условиях.

Организмы закрепляют водород в биосфере планеты, связывая его не только в органическом веществе, но и участвуя в фиксации водорода минеральным веществом почвы. Это становится возможным в результате диссоциации кислотных продуктов метаболизма с высвобождением иона Н+. Последний, как правило, образует с молекулой воды посредством водородной связи ион гидроксония (Н3О+). При поглощении иона гидроксония некоторыми силикатами происходит их трансформация в глинистые минералы. Таким образом, как подчеркивал В.В. Добровольский, интенсивность продуцирования кислотных продуктов метаболизма является важным фактором гипергенного преобразования кристаллических горных пород и образования коры выветривания.

Из циклических процессов на поверхности Земли, в которых участвует водород, один из наиболее мощных - круговорот воды: ежегодно через атмосферу проходит более 520 тысяч кубометров влаги. Для создания фитомассы Мировой суши, существовавшей до вмешательства человека, по данным В.В. Добровольского (1998) было расщеплено примерно 1,8х1012 тонн воды и, соответственно, связано 0,3х1012 тонн водорода.

В процессе круговорота воды в биосфере происходит разделение изотопов водорода и кислорода. Пары воды при испарении обогащаются легкими изотопами, поэтому атмосферные осадки, поверхностные и грунтовые воды также обогащены легкими изотопами по сравнению с океаническими водами, имеющими устойчивый изотопный состав.

Биогеохимический цикл азота

Азот и его соединения играют в жизни биосферы такую же важную и незаменимую роль, как и углерод. Биофильность азота сравнима с биофильностью углерода. Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для азота 1000 и 10000 соответственно (Ковда, 1985).

Основным резервуаром азота в биосфере также является воздушная оболочка. Около 80% всех запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации. Основной формой, в которой содержится азот в атмосфере, является молекулярная - N2. В качестве несущественной примеси в атмосфере содержатся различные оксидные соединения азота NOx, а также аммиак NH3. Последний в условиях земной атмосферы наиболее неустойчив и легко окисляется. В то же время, величина окислительно-восстановительного потенциала в атмосфере недостаточна и для устойчивого существования оксидных форм азота, потому его свободная молекулярная форма и является основной.

Первичный азот в атмосфере, вероятно, появился в результате процессов дегазации верхней мантии и из вулканических выделений. Фотохимические реакции в высоких слоях атмосферы приводят к образованию соединений азота и заметному поступлению их на сушу и в океан с атмосферными осадками (3-8 кг/га аммонийного азота в год и 1,5-6 кг/га нитратного). Этот азот также включается в общий биогеохимический поток растворенных соединений, мигрирующих с водными массами, участвует в почвообразовательных процессах и в формировании биомассы растений.

В отличие от углерода, атмосферный азот не может напрямую использоваться высшими растениями. Поэтому ключевую роль в биологическом круговороте азота играют организмы-фиксаторы. Это микроорганизмы нескольких различных групп, обладающие способностью путём прямой фиксации непосредственно извлекать азот из атмосферы и, в конечном счёте, связывать его в почве. К ним относятся:

некоторые свободноживущие почвенные бактерии;

симбионтные клубеньковые бактерии (существующие в симбиозе с бобовыми);

цианобионты, которые также бывают симбионтами грибов, мхов, папоротников, а иногда и высших растений.

В результате деятельности организмов - фиксаторов азота он связывается в почвах в нитритной форме (соединения на основе NH3).

Нитритные соединения азота способны мигрировать в водных растворах. При этом они окисляются и преобразуются в нитратные - соли азотной кислоты HNO3. В этой форме азотные соединения способны эффективно усваиваться высшими растениями и использоваться для синтеза белковых молекул на основе пептидных связей C-N. Далее, по трофическим цепям, азот попадает в организмы животных. В окружающую среду (в водные растворы и в почву) он возвращается в процессах выделительной деятельности животных или разложения органического вещества.

Возврат свободного азота в атмосферу, как и его извлечение, осуществляется в результате микробиологических процессов. Это звено круговорота функционирует благодаря деятельности почвенных бактерий-денитрификаторов, вновь переводящих азот в молекулярную форму.

В литосфере, в составе осадочных отложений, связывается весьма небольшая часть азота. Причина этого в том, что минеральные соединения азота, в отличие от карбонатов, очень хорошо растворимы. Выпадение некоторой доли азота из биологического круговорота также компенсируется вулканическими процессами. Благодаря вулканической деятельности в атмосферу поступают различные газообразные соединения азота, который в условиях географической оболочки Земли неизбежно переходит в свободную молекулярную форму.

Таким образом, основными специфическими чертами круговорота азота в биосфере можно считать следующие:

преимущественную концентрацию в атмосфере, играющей исключительную роль резервуара, из которой живые организмы черпают запасы необходимого им азота;

ведущую роль в круговороте азота почв и, в особенности, почвенных микроорганизмов, деятельность которых обеспечивает переход азота в биосфере из одних форм в другие (рис. 3.5.3).

Рис. 6. Схема биогеохимического цикла азота

Поэтому огромное количество азота в связанном виде содержит биосфера: в органическом веществе почвенного покрова (1,5х1011 т), в биомассе растений (1,1х109 т), в биомассе животных (6,1х107 т). В больших количествах азот содержится и в некоторых биогенных ископаемых (селитры).

В то же время наблюдается парадокс - при огромном содержании азота в атмосфере вследствие чрезвычайно высокой растворимости солей азотной кислоты и солей аммония, азота в почве мало и почти всегда недостаточно для питания растений. Поэтому потребность культурных растений в азотных удобрениях всегда высока. Поэтому ежегодно в почву вносится по разным оценкам от 30 до 35 млн. тонн азота в виде минеральных удобрений. Таким образом, поступление за счет азотных удобрений составляет 30% от общих поступлений азота на сушу и в океан. Это часто приводит к существенному загрязнению окружающей среды и тяжелым заболеваниям человека и животных. Особенно велики потери нитратных форм азота, так как он не сорбируется почвой, легко вымывается природными водами, восстанавливается в газообразные формы и до 20-40% его теряется для питания растений. Существенным нарушением цикла азота является и все возрастающее количество отходов животноводства, промышленных отходов и стоков больших городов, поступление в атмосферу аммония и оксидов азота при сжигании угля, нефти, мазута и т.д. Опасно проникновение оксидов азота в стратосферу (выхлопы сверхзвуковых самолетов, ракет, ядерные взрывы), так как это может быть причиной разрушения озонового слоя. Все это, естественно, сказывается на биогеохимическом цикле азота.

Биогеохимический цикл серы

Сера также является одним из элементов, играющих чрезвычайно важную роль в круговороте веществ биосферы. Она относится к числу химических элементов, наиболее необходимых для живых организмов. В частности, она является компонентом аминокислот. Она предопределяет важные биохимические процессы живой клетки, является незаменимым компонентом питания растений и микрофлоры. Соединения серы участвуют в формировании химического состава почв, в значительных количествах присутствуют в подземных водах, что играет решающую роль в процессах засоления почв.

Содержание серы в земной коре составляет 4,7х10-2%, в почве - 8,5х10-2%, в океане - 8,8х10-2% (Виноградов, 1962). Однако, в засоленных почвах содержание серы может достигать значений, измеряемых целыми процентами. Таким образом, основным резервуаром, из которого она черпается живыми организмами, является литосфера. Это обусловлено тем, что устойчивое существование сернистых соединений в условиях современной атмосферы Земли, содержащей свободный кислород и пары Н2О, невозможно. Сероводород (H2S) в кислородной среде окисляется, а кислородные соединения серы, реагируя с Н2О, образуют серную кислоту H2SO4, которая выпадает на поверхность Земли в составе кислотных дождей. Поэтому оксиды серы SOх, хотя и могут усваиваться растениями непосредственно из атмосферы, существенной роли в круговороте серы этот процесс не играет.

Сера имеет несколько изотопов, из которых в природных соединениях наиболее распространены S32 (>95%) и S34 (4,18%). В результате биологических и биогеохимических процессов происходит изменение в соотношении этих изотопов в сторону увеличения содержаний более легкого изотопа в верхних гумусовых горизонтах почв.

Изотопный состав серы подземных, почвенно-грунтовых вод и водорастворимых сульфатов из горизонта С сульфатно-содовых солончаков является сходным.

В составе земной коры соединения серы существуют, в основном, в двух минеральных формах: сульфидной (соли сероводородной кислоты) и сульфатной (соли серной кислоты). Редко встречается самородная сера, которая неустойчива и склонна, в зависимости, от значений окислительно-восстановительного потенциала среды, формировать или кислородные, или водородные соединения.

Первичной, глубинной по происхождению, минеральной формой нахождения серы в земной коре, является сульфидная. Сульфидные соединения в условиях биосферы практически нерастворимы, и потому сульфидная сера растениями не усваивается. Но, в то же время, сульфиды в кислородной среде неустойчивы. Поэтому сульфиды на земной поверхности, как правило, окисляются, и в результате этого сера входит в состав сульфатных соединений. Сульфатные соли обладают достаточно хорошей растворимостью, и сера в географической оболочке активно мигрирует в водных растворах в составе сульфат-иона SO42-.

Именно в этой, сульфатной форме сера, в составе водных растворов, эффективно усваивается растениями, а далее - животными организмами. Усвоению способствует то, что сульфатные соединения серы способны накапливаться в почвах, участвуя в процессах обменной сорбции и входя при этом в состав почвенного поглощающего комплекса (ППК).

Разложение органического вещества в кислородной среде приводит к возвращению серы в почву и природные воды. Сульфатная сера мигрирует в водных растворах, и может снова использоваться растениями. Если же разложение идёт в бескислородной среде, ведущую роль играет деятельность серобактерий, которые восстанавливают SO42- до H2S. Сероводород выделяется в атмосферу, где окисляется и возвращается в другие компоненты биосферы в сульфатной форме. Часть серы в восстановительной обстановке может связываться в сульфидных соединениях, которые, при возобновлении доступа кислорода, снова окисляются и переходят в сульфатную форму.

Биогеохимический цикл серы состоит из 4 стадий (рис. 3.5.4 ):

усвоение соединений серы живыми организмами (растениями и бактериями) и включение серы в состав белков и аминокислот.

Превращение органической серы живыми организмами (животными и бактериями) в конечный продукт - сероводород.

Окисление минеральной серы живыми организмами (серобактериями, тионовыми бактериями) в процессе сульфатредукции. На этой стадии происходит окисление сероводорода, элементарной серы, ее тио- и тетрасоединений.

Восстановление минеральной серы живыми организмами (бактериями) в процессе десульфофикации до сероводорода. Таким образом, важнейшим звеном всего биогеохимического цикла серы в биосфере является биогенное образование сероводорода.

Рис. 6. Схема биогеохимического цикла серы

Изъятие серы из биосферного круговорота происходит в результате накопления сульфатных отложений (в основном гипсовых), слои и линзы которых становятся компонентами литосферы. Компенсируются потери во-первых, в процессах вулканизма (поступление H2S и SOx в атмосферу, а оттуда, с атмосферными осадками - на поверхность Земли). А во-вторых, в результате деятельности термальных вод, с которыми в верхние горизонты земной коры и на дно Мирового океана поступают сульфидные соединения.

Таким образом, к характерным особенностям круговорота серы можно отнести второстепенную роль процессов атмосферной миграции, а также многообразие форм нахождения, обусловленное переходом её из сульфидных форм в сульфатные и обратно, в зависимости от изменения окислительно-восстановительных условий.

Промышленные процессы выносят в атмосферу большое количество серы. В отдельных случаях значительная концентрация соединений серы в воздухе служит причиной нарушений в окружающей среде, в том числе, кислотных дождей. Присутствие в воздухе двуокиси серы негативно влияет как на высшие растения, так и на лишайники, причем эпифитные лишайники могут служить индикаторами повышенных содержаний серы в воздухе. Лишайники поглощают влагу из атмосферы всем слоевищем, поэтому концентрация серы в них быстро достигает предельно допустимого уровня, что ведет к гибели организмов.

Поступление серы в общий круговорот по данным Дж. П. Френда (1976) следующее:

При дегазации земной коры - 12х1012 г/год; при выветривании осадочных пород - 42х1012 г/год,; антропогенные поступления в виде сернистого газа - 65х1012 г/год, что в сумме составляет 119х1012 г/год. Значительные количества серы ежегодно консервируются в виде сульфидов и сульфатов - 100х1012 г/год и , таким образом., временно выводятся из общего биогеохимического круговорота.

Таким образом, антропогенное поступление серы в биосферу существенно изменяет круговорот этого элемента, а приход серы в биосферу превышает ее расход, в результате чего, должно происходить постепенное ее накопление.

Биогеохимический цикл фосфора

Круговорот фосфора в природе сильно отличается от биогеохимических циклов углерода, кислорода, азота и серы, так как газовая форма соединений фосфора (например РН3) практически не участвует в биогеохимическом цикле фосфора. То есть фосфор к накоплению в атмосфере вообще не способен. Поэтому роль «резервуара» фосфора, из которого этот элемент извлекается и используется в биологическом круговороте, так же как и для серы, играет литосфера.

Фосфор в литосфере содержится в форме фосфатных соединений (солей фосфорной кислоты). Основная доля среди них приходится на фосфат кальция - апатит. Это полигенный минерал, образующийся в различных природных процессах - как в глубинных, так и в гипергенных (в том числе и биогенных). Фосфатные соединения способны растворяться в воде, и фосфор в составе иона РО43- может мигрировать в водных растворах. Из них фосфор и усваивается растениями.

Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для фосфора, так же, как и для азота 1000 и 10000 соответственно (Ковда, 1985). Для растений наиболее доступным является фосфор неспецифических органических соединений и гумуса и именно он играет главную роль в малом (локальном) биологическом цикле фосфора.

Животные являются еще большими концентраторами фосфора, чем растения. Многие из них накапливают фосфор в составе тканей мозга, скелета, панцирей. Есть несколько способов усвоения фосфора организмами-консументами. Во-первых, прямое усвоение из растений в процессе питания. Во-вторых, водные организмы-фильтраторы извлекают фосфор из органических взвесей. В-третьих, органические соединения фосфора усваиваются организмами-илоедами при переработке ими биогенных илов.

Возврат фосфора в окружающую среду происходит при разложении органического вещества. Но возврат этот оказывается далеко не полным. В целом для соединений фосфора характерна тенденция выноса в форме водных растворов и взвесей в конечные водоёмы стока, в наибольшей мере - в Мировой Океан, где он и накапливается в составе осадочных отложений различного генезиса. Вновь вернуться в экзогенный круговорот эта часть фосфора может только в результате тектонических процессов, растягивающихся на сотни миллионов лет. В естественных условиях сохранение баланса обеспечивается сравнительно слабой подвижностью соединений фосфора, в результате которой фосфор, извлечённый растениями из почвы, большей частью возвращается в неё в результате разложения органического вещества. В почвах и породах фосфор достаточно легко фиксируется. Фиксаторами фосфора являются гидроксиды железа, марганца, алюминия, глинистые минералы (особенно, минералы группы каолинита). Однако, фиксированный фосфор может быть на 40-50% десорбирован и использован растениями. Этот процесс зависит от рН и Eh условий среды. Повышенная кислотность, образование угольной кислоты, способствуют десорбции фосфора, усилению миграции фосфорных соединений.

В восстановительной среде образуются соединения фосфора с двухвалентным железом, что тоже способствует выносу фосфора из почвы.

Миграция фосфора возможна и за счет водной и ветровой эрозии. Поэтому биогеохимический цикл фосфора значительно менее замкнут и менее обратим, чем циклы углерода и азота, а загрязнение фосфором окружающей среды особенно опасно (рис. 3.5.5).

Рис. 7. Схема биогеохимического цикла фосфора

Основными особенностями круговорота фосфора, таким образом, являются:

отсутствие атмосферного переноса;

наличие единственного источника - литосферы;

тенденция к накоплению в конечных водоёмах стока.

При интенсивной сельскохозяйственной эксплуатации земель потери фосфора в ландшафте становятся практически необратимыми. Компенсация возможна только за счёт применения фосфорных удобрений. Известно, что фосфорные удобрения являются важным и необходимым звеном в получении высоких урожаев сельскохозяйственных культур. Однако, все известные запасы месторождений фосфатов ограничены и по предсказаниям ученых могут истощиться уже в ближайшие 75-100 лет. В то же время, вредные соединения фосфатов в последнее время становятся одним из важнейших факторов загрязнения речных и озерных вод.

Таким образом, в последе время общая картина распределения им миграции фосфора в биосфере резко нарушена человеком. Вот слагаемые этого явления: во-первых, мобилизация фосфора из агроруд и шлаков, производство и применение фосфорных удобрений, во-вторых производство фосфорсодержащих препаратов и их использование в быту; в-третьих - производство фосфорсодержащих ресурсов продовольствия и кормов, вывоз и потребление их в зонах концентрации населения; в-четвертых - развитие рыбного промысла, добыча морских моллюсков и водорослей, что влечет за собой перераспределение фосфора из океана на сушу. В итоге наблюдается процесс фосфатизации суши, но процесс этот проявляется крайне неравномерно. Увеличивается содержание фосфора в окружающей среде больших городов. Напротив, страны, активно экспортирующие органические продукты и не применяющие фосфорных удобрений, теряют запасы фосфора в своих почвах.

Биогеохимические циклы калия и натрия

Кларк калия в земной коре составляет 2,89, а натрия 2, 46, т.е их относительные содержания очень близки.

Калий состоит из смеси 3-х изотопов: 39К - 93,08%; 40К -0,0119%; 41К - 6,91%. Изотоп 40К неустойчив и превращается в соседние изобары кальция и аргона.

Превращение калия в аргон явилось основой для разработки калий-аргонового метода ядерной геохронологии.


Подобные документы

  • Понятие о геохимических барьерах. Миграции химических элементов в различных природных ландшафтах. Особенности источников загрязнения атмосферного воздуха и природных вод. Рекультивация и контроль за загрязнением почв тяжелыми металлами и пестицидами.

    контрольная работа [45,1 K], добавлен 14.09.2014

  • Анализ и мониторинг сточных и природных вод. Отбор проб воздуха из вентиляционных установок в цехах завода. Методика определения меди в сточных водах фотоколориметрическим методом. Проведение анализа проб атмосферного воздуха.

    отчет по практике [13,0 K], добавлен 10.06.2009

  • Характеристика природных условий Светлогорского района. Анализ геоэкологических проблем территории. Оценка состояния атмосферного воздуха и водных ресурсов. Динамика выбросов вредных веществ в атмосферный воздух. Загрязнение окружающей среды отходами.

    отчет по практике [82,7 K], добавлен 11.02.2014

  • Химический состав, строение и химические реакции, протекающие в атмосфере, гидросфере и литосфере. Перенос химических элементов в циклических процессах. Специфика химических процессов, протекающих в окружающей среде под воздействием деятельности человека.

    учебное пособие [437,5 K], добавлен 22.01.2012

  • Требования Закона "Об охране атмосферного воздуха", предъявляемые к промышленному предприятию. Основные направления безотходного промышленного производства. Источники промышленного загрязнения атмосферы. Физико-химические методы очистки сточных вод.

    контрольная работа [114,7 K], добавлен 16.11.2014

  • Изучение взаимосвязи человека и окружающей среды. Обоснование экологической обусловленности болезней. Анализ основных видов загрязнений воздуха, воды, пищевых продуктов. Здоровье и искусственные пищевые добавки. Канцерогенные вещества в окружающей среде.

    реферат [29,1 K], добавлен 11.05.2010

  • Загрязнение окружающей среды предприятиями металлургической отрасли. Влияние металлургических предприятий на атмосферный воздух и сточные воды. Определение и виды промышленных сточных вод и способы их очистки. Санитарная охрана атмосферного воздуха.

    курсовая работа [65,5 K], добавлен 27.10.2015

  • Экологическое и технологическое влияние на биосферу. Обеспечение круговорота химических элементов. Основные функции биосферы. Последствия техногенного и антропогенного воздействий на биосферу. Загрязнение окружающей среды радиоактивными отходами.

    презентация [3,4 M], добавлен 22.12.2012

  • Основные международно-правовые документы в области охраны окружающей среды. Стокгольмская конференция по окружающей среде 1972 года. Конференция ООН по окружающей среде и развитию в Рио-де-Жанейро 1992 года. Всемирная конференция ООН.

    курсовая работа [72,2 K], добавлен 18.04.2004

  • Основные объекты загрязнения окружающей среды. Физическое загрязнение, связанное с изменением физических, температурно-энергетических, волновых и радиационных параметров внешней среды. Процесс прогрессирующего накопления металлов в окружающей среде.

    презентация [609,6 K], добавлен 28.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.