главнаяреклама на сайтезаработоксотрудничество Коллекция рефератов Otherreferats
 
 
Сколько стоит заказать работу?   Искать с помощью Google и Яндекса
 


Примеры экологических катастроф на планете

Причины, способные привести к глобальным экологическим катастрофам. Авария на Чернобыльской АЭС, причины аварии и расследование. Ликвидация последствий аварии. Причины аварии на Саяно-Шушенской ГЭС. Истощение ресурсов Мирового океана и его загрязнение.

Рубрика: Экология и охрана природы
Вид: реферат
Язык: русский
Дата добавления: 04.12.2011
Размер файла: 398,5 K

Полная информация о работе Полная информация о работе
Скачать работу можно здесь Скачать работу можно здесь

рекомендуем


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Название работы:
E-mail (не обязательно):
Ваше имя или ник:
Файл:


Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы


1. Чернобыль - черная боль
Техногенная катастрофа на 4-ом энергоблоке Чернобыльской АЭС 26 апреля 1986 года. Последствия взрывов, ликвидация аварии. Решение засыпать воронку теплопоглощающими материалами. Распространение загрязнения. Причины и последствия чернобыльской аварии.
презентация [3,6 M], добавлена 15.01.2011

2. Авария на Чернобыльской АЭС
Основные факторы возникновения аварии на Чернобыльской АЭС: хронология событий. Оценка масштабов радиоактивного загрязнения, эвакуация населения. Работа правительственной комиссии по ликвидации последствий взрыва. Влияние аварии на здоровье людей.
реферат [24,8 K], добавлена 20.11.2011

3. Чернобыльская катастрофа и ее характеристика
Чернобыльская катастрофа и ее характеристика. Комиссия по расследованию причин Чернобыльской аварии и ее заключения. Суть Чернобыльской аварии. Пути расследования причин Чернобыльской аварии. Хронология событий аварии. Доклад советских экспертов в МАГАТЭ.
реферат [29,2 K], добавлена 31.10.2008

4. Аварии на некоторых АЭС
Характер аварии на Чернобыльской станции. Сущность грубых нарушений правил эксплуатации атомной станции. Последствия аварии для населения и для поверхности земли. Особенности аварий на химкомбинате "Маяк" и станции Фукусима, их последствия для природы.
презентация [2,6 M], добавлена 19.03.2014

5. Последствия аварии на Чернобыльской АЭС
Медицинские последствия радиационного облучения в результате аварии на Чернобыльской АЭС: острая лучевая болезнь, онкологические и наследственные заболевания. Влияние регионального выброса радионуклидов в атмосферу на городскую среду, лес, водные системы.
реферат [16,4 K], добавлена 18.06.2011

6. Радиоактивные изотопы, возникшие при аварии на Чернобыльской АЭС
Особо опасные для жизнедеятельности человека радиоактивные изотопы, возникшие при аварии на Чернобыльской АЭС. Отражаение их на здоровье человека. Пути попадания радиоактивных изотопов в атмосферу, воду и пищу, их отрицательное воздействие на человека.
лекция [802,5 K], добавлена 19.11.2008

7. Проблемы Мирового океана
Физико-географическая характеристика Мирового океана. Химическое и нефтяное загрязнение океана. Истощение биологических ресурсов Мирового океана и уменьшение биоразнообразия океана. Захоронение опасных отходов – дампинг. Загрязнение тяжелыми металлами.
реферат [40,1 K], добавлена 13.12.2010

8. Анализ результатов цитогенетических исследований населения, проживающего на радиоактивно-загрязненных территориях после Чернобыльской аварии
Радиологическая опасность чернобыльских радионуклидов. Медицинские последствия аварии. Материалы и методы цитогенетических исследований. Выход нестабильных и стабильных хромосомных аберраций у детей, облучившихся внутриутробно во время аварии на ЧАЭС.
курсовая работа [1,2 M], добавлена 06.12.2010

9. Воздействие радиации
Радиационная обстановка на территории Российской Федерации, подвергшейся радиоактивному загрязнению в результате аварии на Чернобыльской АЭС. Радиоактивное загрязнение водных объектов. Обстановка в районах размещения предприятий атомной энергетики.
реферат [30,1 K], добавлена 21.06.2013

10. Радиоактивное заражение местности
Понятие и причины радиоактивного заражения территории. Возникновение мутаций у людей и животных из-за негативного воздействия радиоизотопов. История трагедии на Чернобыльской АЭС, проведение мероприятий по тушению реактора и ликвидации последствий аварии.
презентация [3,0 M], добавлена 21.04.2012


Другие работы, подобные Примеры экологических катастроф на планете


Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФГБОУ ВПО

«УРАЛЬСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

ВЕТЕРИНАРНОЙ МЕДИЦИНЫ»

Кафедра биологии и экологии

Реферат на тему:

ПРИМЕРЫ ЭКОЛОГИЧЕСКИХ КАТАСТРОФ НА ПЛАНЕТЕ

Реферат выполнила студентка 1 курса

Факультета Ветеринарной медицины

Мурзакова Олеся

Реферат проверен

Доцентом кафедры биологии и экологии

к.б.н. Мазура Н.С.

ТРОИЦК 2011

СОДЕРЖАНИЕ:

1. ЧТО ТАКОЕ ЭКОЛОГИЧЕСКАЯ КАТАСТРОФА

(Список причин способных привести к глобальным экологическим катастрофам)

2. АВАРИЯ НА ЧЕРНОБОЛЬСКОЙ АЭС

2.1Причины аварии и расследования

2.2Последствия аварии

2.3Ликвидация последствий аварии

3.Авария на Саяно-Сушенской ГЭС

3.1 Катастрофа

3.2 Причины аварии

3.3 Последствия

4. АВАРИЯ НА АЭС ТРИ-МАЙЛ-АЙЛЕНД

4.1Хронология и последовательность событий

4.2 Последствия

1. ЧТО ТАКОЕ ЭКОЛОГИЧЕСКАЯ КАТАСТРОФА

экологический катастрофа авария загрязнение

Под экологической катастрофой следует понимать переход системы из одного устойчивого состояния в другое. Например, повышение средней температуры Земли может привести к таянию полярных льдов, опустыниванию почв, вымиранию определенных видов флоры и фауны, может быть, даже к гибели человечества. Экологические катастрофы могут иметь различные уровни - от локальных (гибель леса, осушение моря и т. д) до глобальных (в масштабах Земли, Солнечной системы, Галактики и даже Вселенной).

Человечество в процессе жизнедеятельности безусловно влияет на различные экологические системы. Примерами таких, чаще всего опасных, воздействий является осушение болот, вырубание лесов, уничтожение озонового слоя, поворот течения рек, сброс отходов в окружающую среду. Этим самым человек разрушает сложившиеся связи в устойчивой системе, что может привести к ее дестабилизации, то есть к экологической катастрофе.

Список причин способных привести к глобальным экологическим катастрофам:

1. глобальное потепление, сдвиг климатических зон;

2. озоновые дыры;

3. частично обратимое загрязнение окружающей среды;

4. неуничтожимые радиоактивные отходы;

5. эрозия и сокращение площадей плодородных почв;

6. демографический взрыв;

7. истощение невозобновляемых минеральных ресурсов;

8. энергетический кризис;

9. резкий рост числа ранее неизвестных и зачастую неизлечимых болезней;

10. недостаток продуктов питания, перманентное состояние голода большей части населения планеты;

11. Истощение ресурсов мирового океана и его загрязнение.

Вот несколько примеров экологических катастроф:

2. Авария на Чернобыльской АЭС

Авария на Чернобыльской АЭС, Чернобыльская авария-- разрушение 26 апреля 1986 года четвёртого энергоблокаЧернобыльской атомной электростанции, расположенной на территории Украинской ССР (ныне -- Украина). Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Авария расценивается как крупнейшая в своём роде за всю историю атомной энергетики, как по предполагаемому количеству погибших и пострадавших от её последствий людей, так и по экономическому ущербу. 31 человек погиб в течение первых трех месяцев после аварии; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек 134 человека перенесли лучевую болезнь той или иной степени тяжести, более 115 тыс. человек из 30-километровой зоны были эвакуированы. Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии.

В отличие от бомбардировок Хиросимы и Нагасаки, взрыв напоминал очень мощную «грязную бомбу» -- основным поражающим фактором стало радиоактивное заражение.

Облако, образовавшееся от горящего реактора, разнесло различные радиоактивные материалы, и прежде всего радионуклиды йода и цезия, по большей части территории Европы. Наибольшие выпадения отмечались на значительных территориях в Советском Союзе, расположенных вблизи реактора и относящихся теперь к территориям Белоруссии, Российской Федерации и Украины.

Чернобыльская авария стала событием большого общественно-политического значения для СССР, и это наложило определённый отпечаток на ход расследования её причин. Подход к интерпретации фактов и обстоятельств аварии менялся с течением времени, и полностью единого мнения нет до сих пор.

2.1 Причины аварии и расследование

Существуют, по крайней мере, два различных подхода к объяснению причин чернобыльской аварии, которые можно назвать официальными, а также несколько альтернативных версий разной степени достоверности.

Государственная комиссия, сформированная в СССР для расследования причин катастрофы, возложила основную ответственность за неё на оперативный персонал и руководство ЧАЭС. МАГАТЭ создало свою консультативную группу, известную как Консультативный комитет по вопросам ядерной безопасности (INSAG; International Nuclear Safety Advisory Group), который на основании материалов, предоставленных советской стороной, и устных высказываний специалистов (делегацию советских специалистов возглавил В. А. Легасов, первый заместитель директора ИАЭ имени И. В. Курчатова) в своём отчёте 1986 года, также в целом поддержал эту точку зрения. Утверждалось, что авария явилась следствием маловероятного совпадения ряда нарушений правил и регламентов эксплуатационным персоналом, а катастрофические последствия приобрела из-за того, что реактор был приведён в не регламентное состояние

Грубые нарушения правил эксплуатации АЭС, совершённые её персоналом, согласно этой точке зрения, заключаются в следующем:

§ проведение эксперимента «любой ценой», несмотря на изменение состояния реактора;

§ вывод из работы исправных технологических защит, которые просто остановили бы реактор ещё до того, как он попал в опасный режим;

§ замалчивание масштаба аварии в первые дни руководством ЧАЭС.

Однако в 1991 году комиссия Госатомнадзора СССР заново рассмотрела этот вопрос и пришла к заключению, что «начавшаяся из-за действий оперативного персонала Чернобыльская авария приобрела неадекватные им катастрофические масштабы вследствие неудовлетворительной конструкции реактора». Кроме того, комиссия проанализировала действовавшие на момент аварии нормативные документы и не подтвердила некоторые из ранее выдвигавшихся в адрес персонала станции обвинений.

В 1993 году INSAG опубликовал дополнительный отчёт, обновивший «ту часть доклада INSAG-1, в которой основное внимание уделено причинам аварии», и уделивший большее внимание серьёзным проблемам в конструкции реактора. Он основан, главным образом, на данных Госатомнадзора СССР и на докладе «рабочей группы экспертов СССР» (эти два доклада включены в качестве приложений), а также на новых данных, полученных в результате моделирования аварии. В этом отчёте многие выводы, сделанные в 1986 году, признаны неверными и пересматриваются «некоторые детали сценария, представленного в INSAG-1», а также изменены некоторые «важные выводы». Согласно отчёту, наиболее вероятной причиной аварии являлись ошибки проекта и конструкции реактора, эти конструктивные особенности оказали основное влияние на ход аварии и её последствия.

Основными факторами, внесшими вклад в возникновение аварии, INSAG-7 считает следующее :

§ реактор не соответствовал нормам безопасности и имел опасные конструктивные особенности;

§ низкое качество регламента эксплуатации в части обеспечения безопасности;

§ неэффективность режима регулирования и надзора за безопасностью в ядерной энергетике, общая недостаточность культуры безопасности в ядерных вопросах как на национальном, так и на местном уровне;

§ отсутствовал эффективный обмен информацией по безопасности как между операторами, так и между операторами и проектировщиками, персонал не обладал достаточным пониманием особенностей станции, влияющих на безопасность;

§ персонал допустил ряд ошибок и нарушил существующие инструкции и программу испытаний.

В целом INSAG-7 достаточно осторожно сформулировал свои выводы о причинах аварии. Так, например, при оценке различных сценариев INSAG отмечает, что «в большинстве аналитических исследований тяжесть аварии связывается с недостатками конструкции стержней СУЗ в сочетании с физическими проектными характеристиками», и, не высказывая при этом своего мнения, говорит про «другие ловушки для эксплуатационного персонала. Любая из них могла бы в равной мере вызвать событие, инициирующее такую или почти идентичную аварию», например, такое событие, как «срыв или кавитация насосов» или «разрушение топливных каналов». Затем задаётся риторический вопрос: «Имеет ли в действительности значение то, какой именно недостаток явился реальной причиной, если любой из них мог потенциально явиться определяющим фактором?». При изложении взглядов на конструкцию реактора INSAG признаёт «наиболее вероятным окончательным вызвавшим аварию событием» «ввод стержней СУЗ в критический момент испытаний» и замечает, что «в этом случае авария явилась бы результатом применения сомнительных регламентов и процедур, которые привели к проявлению и сочетанию двух серьёзных проектных дефектов конструкции стержней и положительной обратной связи по реактивности». Далее говорится: «Вряд ли фактически имеет значение то, явился ли положительный выбег реактивности при аварийном останове последним событием, вызвавшим разрушение реактора. Важно лишь то, что такой недостаток существовал и он мог явиться причиной аварии». INSAG вообще предпочитает говорить не о причинах, а о факторах, способствовавших развитию аварии. Так, например, в выводах причина аварии формулируется так: «Достоверно не известно, с чего начался скачок мощности, приведший к разрушению реактора Чернобыльской АЭС. Определённая положительная реактивность, по-видимому, была внесена в результате роста паросодержания при падении расхода теплоносителя. Внесение дополнительной положительной реактивности в результате погружения полностью выведенных стержней СУЗ в ходе испытаний явилось, вероятно, решающим приведшим к аварии фактором».

Ниже рассматриваются технические аспекты аварии, обусловленные в основном имевшими место недостатками реакторов РБМК, а также нарушениями и ошибками, допущенными персоналом станции при проведении последнего для 4-го блока ЧАЭС эксперимента.

2.2 Последствия аварии

Последствия

Непосредственно во время взрыва на четвёртом энергоблоке погиб только один человек (Валерий Ходемчук), ещё один скончался утром от полученных травм (Владимир Шашенок). Впоследствии, у 134 сотрудников ЧАЭС и членов спасательных команд, находившихся на станции во время взрыва, развилась лучевая болезнь, 28 из них умерли в течение следующих нескольких месяцев.

В 1:24 ночи на пульт дежурного ВПЧ-2 по охране ЧАЭС поступил сигнал о возгорании. К станции выехал дежурный караул пожарной части (на ЗИЛ-131, который возглавлял лейтенант внутренней службы Владимир Павлович Правик). Из Припяти на помощь выехал караул 6-й городской пожарной части, который возглавлял лейтенант Виктор Николаевич Кибенок. Руководство тушением пожара принял на себя лейтенант В. П. Правик. Его грамотными действиями было предотвращено распространение пожара. Были вызваны дополнительные подкрепления из Киева и близлежащих областей.

Из средств защиты у пожарных были только брезентовая роба (боёвка), рукавицы, каска. Звенья ГДЗС были в противогазах КИП-5. К 4 часам утра пожар был локализован на крыше машинного зала, а к 6 часам утра был затушен. Всего принимало участие в тушении пожара 69 человек личного состава и 14 единиц техники. Наличие высокого уровня радиации было достоверно установлено только к 3:30, так как из двух имевшихся приборов на 1000 Р/ч один вышел из строя, а другой оказался недоступен из-за возникших завалов. Поэтому в первые часы аварии были неизвестны реальные уровни радиации в помещениях блока и вокруг него. Неясным было и состояние реактора.

Пожарные не дали огню перекинуться на третий блок (у 3-го и 4-го энергоблоков единые переходы). Вместо огнестойкого покрытия, как было положено по инструкции, крыша машинного зала была залита обычным горючим битумом. Примерно к 2 часам ночи появились первые поражённые из числа пожарных. У них стала проявляться слабость, рвота, «ядерный загар». Помощь им оказывали на месте, в медпункте станции, после чего переправляли в городскую больницу Припяти. 27 апреля первую группу пострадавших из 28 человек отправили самолетом в Москву, в 6-ю радиологическую больницу. Практически не пострадали водители пожарных автомобилей.

В первые часы после аварии, многие, по-видимому, не осознавали, насколько сильно повреждён реактор, поэтому было принято ошибочное решение обеспечить подачу воды в активную зону реактора для её охлаждения. Для этого требовалось вести работы в зонах с высокой радиацией. Эти усилия оказались бесполезны, так как и трубопроводы, и сама активная зона были разрушены. Другие действия персонала станции, такие как тушение очагов пожаров, в помещениях станции, меры, направленные на предотвращение возможного взрыва, напротив, были необходимыми. Возможно, они предотвратили ещё более серьёзные последствия. При выполнении этих работ многие сотрудники станции получили большие дозы радиации, а некоторые даже смертельные.

2.3 Ликвидация последствий аварии

Для ликвидации последствий аварии была создана правительственная комиссия, председателем которой был назначен заместитель председателя Совета министров СССР Борис Евдокимович Щербина. От института, разработавшего реактор, в комиссию вошёл химик-неорганик академикВ. А. Легасов. В итоге он проработал на месте аварии 4 месяца вместо положенных двух недель. Именно он рассчитал возможность применения и разработал состав смеси (боросодержащие вещества, свинец и доломиты), которой с самого первого дня забрасывали с вертолётов в зону реактора для предотвращения дальнейшего разогрева остатков реактора и уменьшения выбросов радиоактивных аэрозолей в атмосферу. Также именно он, выехав на бронетранспортёре непосредственно к реактору, определил, что показания датчиков нейтронов о продолжающейся ядерной реакции недостоверны, так как они реагируют на мощнейшее гамма-излучение. Проведённый анализ соотношения изотопов йода показал, что на самом деле реакция остановилась. Первые десять суток генерал-майор авиации Н. Т. Антошкин непосредственно руководил действиями личного состава по сбросу смеси с вертолетов.

Для координации работ были также созданы республиканские комиссии в Белорусской, Украинской ССР и в РСФСР, различные ведомственные комиссии и штабы. В 30-километровую зону вокруг ЧАЭС стали прибывать специалисты, командированные для проведения работ на аварийном блоке и вокруг него, а также воинские части, как регулярные, так и составленные из срочно призванных резервистов. Их всех позднее стали называть «ликвидаторами». Ликвидаторы работали в опасной зоне посменно: те, кто набрал максимально допустимую дозу радиации, уезжали, а на их место приезжали другие. Основная часть работ была выполнена в 1986--1987 годах, в них приняли участие примерно 240 тыс. человек. Общее количество ликвидаторов (включая последующие годы) составило около 600 тыс.

Во всех сберкассах страны был открыт «счёт 904» для пожертвований граждан, на который за полгода поступило 520 млн рублей. Среди жертвователей была Алла Пугачёва, давшая благотворительный концерт в Олимпийском и сольный концерт в Чернобыле для ликвидаторов

В первые дни основные усилия были направлены на снижение радиоактивных выбросов из разрушенного реактора и предотвращение ещё более серьёзных последствий. Например, существовали опасения, что из-за остаточного тепловыделения в топливе, остающемся в реакторе, произойдёт расплавление активной зоны ядерного реактора. Расплавленное вещество могло бы проникнуть в затопленное помещение под реактором и вызвать ещё один взрыв с большим выбросом радиоактивности. Вода из этих помещений была откачана. Также были приняты меры для того, чтобы предотвратить проникновение расплава в грунт под реактором.

Затем начались работы по очистке территории и захоронению разрушенного реактора. Вокруг 4-го блока был построен бетонный «саркофаг» (т. н. объект «Укрытие»). Так как было принято решение о запуске 1-го, 2-го и 3-го блоков станции, радиоактивные обломки, разбросанные по территории АЭС и на крыше машинного зала были убраны внутрь саркофага или забетонированы. В помещениях первых трёх энергоблоков проводилась дезактивация. Строительство саркофага было завершено в ноябре 1986 года. Работы над саркофагом не обошлись без человеческих жертв: 2 октября 1986 года возле 4-го энергоблока, зацепившись за подъемный кран, потерпел катастрофу вертолёт Ми-8, экипаж из 4 человек погиб.

По данным Российского государственного медико-дозиметрического регистра за прошедшие годы среди российских ликвидаторов с дозами облучения выше 100 мЗв (это около 60 тыс. человек) несколько десятков смертей могли быть связаны с облучением. Всего за 20 лет в этой группе от всех причин, не связанных с радиацией, умерло примерно 5 тысяч ликвидаторов.

3. Авария на Саяно-Шушенской ГЭС

Авария на Саяно-Шушенской ГЭС -- индустриальная техногенная катастрофа, произошедшая 17 августа 2009 года. В результате аварии погибло 75 человек, оборудованию и помещениям станции нанесён серьёзный ущерб. Работа станции по производству электроэнергии приостановлена. Последствия аварии отразились на экологической обстановке акватории, прилегающей к ГЭС, на социальной и экономической сферах региона. В результате проведённого расследования непосредственной причиной аварии было названо усталостное разрушение шпилек крепления крышки турбины гидроагрегата, что привело к её срыву и затоплению машинного зала станции.

Авария на данный момент является крупнейшей в истории катастрофой на гидроэнергетическом объекте России и одной из самых значительных в истории мировой гидроэнергетики.[2] «Авария уникальна, -- сказал, в частности, министр РФ по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий С. К. Шойгу. -- Ничего подобного в мировой практике не наблюдалось». Тем не менее, оценка последствий катастрофы в экспертном и политическом сообществе неоднозначна. Некоторые специалисты и организации, в том числе тот же Сергей Шойгу,[4] сравнивали Саяно-Шушенскую аварию по её значимости и влиянию на экономические и социологические аспекты жизни России с аварией на Чернобыльской АЭС.[5][6] Другие эксперты утверждали, что эти аварии несравнимы по масштабам.[7] Президент Российской Федерации Д. А. Медведев высказывал мнение, что не следует излишне драматизировать ситуацию и делать «апокалиптические» комментарии.[8][9] Авария вызвала большой общественный резонанс, став одним из самых обсуждаемых всредствах массовой информации событий 2009 года.

3.1 Катастрофа

На момент аварии нагрузка на станцию составляла 4100 МВт, из 10 гидроагрегатов в работе находилось 9 (гидроагрегат № 6 находился в ремонте). В 8:13 местного времени 17 августа 2009 года произошло внезапное разрушение гидроагрегата № 2 с поступлением через шахту гидроагрегата под большим напором значительных объёмов воды. Персонал электростанции, находившийся в машинном зале, услышал громкий хлопок в районе гидроагрегата № 2 и увидел выброс мощного столба воды.

Потоки воды быстро затопили машинный зал и помещения, находящиеся под ним. Все гидроагрегаты ГЭС были затоплены, при этом на работавших гидрогенераторах произошли короткие замыкания (их вспышки хорошо видны на любительском видео катастрофы), выведшие их из строя. Произошёл полный сброс нагрузки ГЭС, что привело в том числе и к обесточиванию самой станции. На центральном пульте управления станцией сработала светозвуковая сигнализация, после чего пульт был обесточен -- пропала оперативная связь, электропитание освещения, приборов автоматики и сигнализации.[1] Автоматические системы, останавливающие гидроагрегаты, сработали только на гидроагрегате № 5, направляющий аппарат которого был автоматически закрыт. Затворы на водоприёмниках других гидроагрегатов оставались открытыми, и вода поводоводам продолжала поступать на турбины, что привело к разрушению гидроагрегатов № 7 и 9 (сильно повреждены статоры и крестовины генераторов). Потоками воды и разлетающимися обломками гидроагрегатов были полностью разрушены стены и перекрытия машинного зала в районе гидроагрегатов № 2, 3, 4. Гидроагрегаты № 3, 4 и 5 были завалены обломками машинного зала. Сотрудники станции, имевшие такую возможность, оперативно покинули место аварии.

На момент аварии из руководства станции на своих местах находились главный инженер ГЭС А. Н. Митрофанов, исполняющий обязанности начальника штаба ГО и ЧСМ. И. Чиглинцев, начальник службы мониторинга оборудования А. В. Матвиенко, начальник службы надёжности и техники безопасности Н. В. Чуричков. Главный инженер после аварии прибыл на центральный пункт управления и отдал распоряжение находившемуся там начальнику смены станции М. Г. Нефёдову о закрытии затворов. Чиглинцев, Матвиенко и Чуричков после аварии покинули территорию станции.

В связи с потерей энергоснабжения закрыть затворы можно было только вручную, для чего персоналу необходимо было проникнуть в специальное помещение на гребне плотины. Около 8:30 восемь человек оперативного персонала добрались до помещения затворов, после чего связались по сотовому телефону с начальником смены станции, который дал указание опустить затворы. Взломав железную дверь, работники станции А. В. Катайцев, Е. В. Кондратцев, И. М. Багаутдинов, П. А. Майорошин и Н. Н. Третьяков в течение часа вручную осуществили сброс аварийно-ремонтных затворов водоприёмников, прекратив поступление воды в машинный зал.[1] Закрытие водоводов привело к необходимости открытия затворов водосливной плотины с целью обеспечения санитарного попуска в нижнем бьефе СШГЭС. К 11:32 было организовано питание козлового крана гребня плотины от передвижного дизель-генератора, в 11:50 началась операция по подъёму затворов.[16] К 13:07 все 11 затворов водосливной плотины были открыты, начался пропуск воды вхолостую.

3.2 Причины аварии

Результаты расследования аварии комиссией Ростехнадзора были опубликованы на сайте ведомства в виде документа под официальным названием «Акт технического расследования причин аварии, произошедшей 17 августа 2009 года в филиале Открытого Акционерного Общества „РусГидро“ -- „Саяно-Шушенская ГЭС имени П. С. Непорожнего“».[1] В акте приводятся общие сведения о гидроэлектростанции, перечисление событий, предшествовавших аварии, описывается ход аварии, перечисляются причины и события, повлиявшие на развитие аварии. Непосредственная причина аварии этим актом была сформулирована так:

Вследствие многократного возникновения дополнительных нагрузок переменного характера на гидроагрегат, связанных с переходами через не рекомендованную зону, образовались и развились усталостные повреждения узлов крепления гидроагрегата, в том числе крышки турбины. Вызванные динамическими нагрузками разрушения шпилек привели к срыву крышки турбины и разгерметизации водоподводящего тракта гидроагрегата

Парламентская комиссия, результаты работы которой были опубликованы 21 декабря 2009 года под официальным названием «Итоговый доклад парламентской комиссии по расследованию обстоятельств, связанных с возникновением чрезвычайной ситуации техногенного характера на Саяно-Шушенской ГЭС 17 августа 2009 года», причины аварии сформулировала следующим образом:

Авария на СШГЭС с многочисленными человеческими жертвами стала следствием целого ряда причин технического, организационного и нормативного правового характера. Большинство этих причин носит системный многофакторный характер, включая недопустимо низкую ответственность эксплуатационного персонала, недопустимо низкую ответственность и профессионализм руководства станции, а также злоупотребление служебным положением руководством станции.

Не был должным образом организован постоянный контроль технического состояния оборудования оперативно-ремонтным персоналом (что должно предусматриваться инструкцией по эксплуатации гидроагрегатов Саяно-Шушенской ГЭС, утверждённой главным инженером СШГЭС от 18.05.2009 г.). Основной причиной аварии стало непринятие мер к оперативной остановке второго гидроагрегата и выяснения причин вибрации.

3.3 Последствия

Социальные последствия

На момент аварии в машинном зале станции находилось 116 человек, в том числе один человек на крыше зала, 52 человека на полу зала (отметка 327 м) и 63 человека во внутренних помещениях ниже уровня пола зала (на отметках 315 и 320 м). Из них сотрудниками станции были 15 человек, остальные являлись работниками различных подрядных организаций, осуществлявших ремонтные работы (большая часть из них -- сотрудники ОАО «Саяно-Шушенский Гидроэнергоремонт»). Всего на территории станции (в том числе вне зоны, затронутой аварией) находилось около 300 человек. В результате аварии погибло 75 человек, пострадало 13 человек. Тело последнего погибшего было найдено 23 сентября.[50] Полный список погибших с указанием мест обнаружения тел опубликован в акте технического расследования комиссии Ростехнадзора. Большое количество погибших объясняется нахождением большинства людей во внутренних помещениях станции ниже уровня пола машинного зала и быстрым затоплением этих помещений.

С первого дня аварии оценки шансов на выживание людей, которые могли находиться внутри затопленного водой машинного зала, были неутешительными. В частности, член правления компании «РусГидро», бывший генеральный директор ГЭС Александр Толошинов заявил:

Если человек оказался в воздушном пузыре и не в воде, то есть. Если люди в воде, а температура там плюс четыре градуса, то шансов практически нет.

Отсутствие официальной информации об аварии и состоянии плотины в течение первых часов, перебои в связи, и, в дальнейшем, недоверие заявлениям местных властей, основанное на опыте, вызвали панические настроения в лежащих ниже по течению реки населённых пунктах -- Черёмушках, Саяногорске, Абакане,Минусинске. Жители спешно уезжали к родственникам, подальше от плотины, и на близлежащие возвышенности, что приводило к многочисленным очередям наавтозаправочных станциях, пробкам на дорогах и автомобильным авариям. По словам Сергея Шойгу,

В два раза подскочили цены на бензин, люди начали забирать детей из детских садов, из пионерских лагерей, заправлять канистры все, какие были в доме, бензином, скупать продукты и предметы первой необходимости в магазинах. <…> Ну, то, что касается заправок, -- с этим, естественно, будем отдельно разбираться, кто на этом погрел руки. Значит, то, что касается продовольствия и предметов первой необходимости, -- тоже, я думаю, надо будет разбираться, и уже разбираются.

В связи с этим Хакасское управление Федеральной антимонопольной службы провело проверку цен на бензин, повышения не выявившую.

19 августа 2009 года главный редактор интернет-журнала «Новый фокус» Михаил Афанасьев разместил в своём блоге сообщение о том, что в затопленном машинном зале станции якобы находятся живые люди, с предложением возможных мер по их спасению. Это сообщение, вызвавшее большой резонанс, послужило поводом для возбуждения против Афанасьева уголовного дела по ст. 129 УК РФ (клевета). В дальнейшем уголовное дело было прекращено в связи с отсутствием состава преступления.

19 августа в Хакасии объявлен днём траура. Праздники Дня города в Абакане (22 августа) и Черногорске (29 августа) были отменены. Кроме того, было перенесено проведение ряда крупных спортивных и общественных мероприятий. 25 августа во всех филиалах и ДЗО ОАО «РусГидро» объявлено днём траура.

Экологические последствия

Авария оказала негативное воздействие на окружающую среду: масло из ванн смазки подпятников гидроагрегатов, из разрушенных систем управления направляющими аппаратами и трансформаторов попало в Енисей, образовавшееся пятно растянулось на 130 км. Общий объём утечек масла из оборудования станции составил 436,5 м?, из которых ориентировочно 45 м? преимущественно турбинного масла попало в реку. С целью недопущения дальнейшего распространения масла по реке были установленыбоновые заграждения; для облегчения сбора масла применялся специальный сорбент, но оперативно прекратить распространение нефтепродуктов не удалось; пятно было полностью ликвидировано лишь 24 августа, а мероприятия по очистке прибрежной полосы планировалось завершить к 31 декабря 2009 года. Загрязнение воды нефтепродуктами привело к гибели около 400 тонн промышленной форели в рыбоводческих хозяйствах, расположенных ниже по течению реки; фактов гибели рыбы в самом Енисее отмечено не было. Общая сумма экологического ущерба предварительно оценивается в 63 млн рублей.

В посёлке Майна из-за выхода из строя фильтров очистки был приостановлен водозабор из Енисея, что вызвало нарушение централизованного водоснабжения посёлка. Местными властями была организована доставка воды автоцистернами по графику; 40 % населения посёлка Майна временно использовало воду из колодцев. Для 1,8 тыс. пожилых людей и инвалидов, которые не могли донести воду до дома, была организована доставка бутилированной воды силами местного отделения Красного Креста при финансировании Еврокомиссии в размере 10,5 тыс. евро.

4 . Авария на АЭС Три-Майл-Айленд

Авария на АЭС Три-Майл-Айленд (англ. Three Mile Island accident) -- одна из крупнейших аварий в истории ядерной энергетики, произошедшая 28 марта 1979 года на атомной станции Три-Майл-Айленд, расположенной нареке Саскуэханна, неподалёку от Гаррисберга (Пенсильвания, США).

До Чернобыльской аварии, случившейся через семь лет, авария на АЭС «Три-Майл Айленд» считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией вСША, в ходе неё была серьёзно повреждена активная зона реактора, часть ядерного топлива расплавилась.

4.1 Хронология и последовательность событий

На АЭС «Три-Майл Айленд» использовались водо-водяные реакторы с двухконтурной системой охлаждения, эксплуатировались два энергоблока, мощностью 802 и 906 МВт, авария произошла на блоке номер два (TMI-2) 28 марта1979 года примерно в 4:00.

Для простоты в дальнейшем отсчёт ровно от 4:00:00.

4:00:00

Первопричиной аварии явился отказ питательных насосов во втором контуре системы охлаждения реактора, в результате которого прекратилась подача воды в оба парогенератора. Автоматически отключился турбогенератор и включилась аварийная система подачи питательной воды в парогенераторы, однако, несмотря на нормальное функционирование всех трёх аварийных насосов, вода в парогенераторы не поступала. Оказалось, что задвижки на напоре насосов были закрыты. Это состояние сохранилось с планового ремонта, закончившегося на блоке за несколько дней до аварии.

4:00:00--4:00:12

Так как отвод тепла от первого контура прекратился, в нём стало расти давление, которое через несколько секунд превысило допустимое значение. Открылся импульсный предохранительный клапан на системе компенсации давления, сбрасывающий пар в специальную ёмкость, барботёр. Давление стало повышаться гораздо медленнее. Высокое давление в первом контуре, примерно 17 МПа, послужило причиной остановки реактора действием аварийной защиты через 9 секунд после исходного события. Теплоноситель в контуре перестал нагреваться, средняя температура упала, и объём воды стал уменьшаться. Рост давления резко перешёл в его падение. В этот момент проявилась ещё одна техническая неисправность -- предохранительный клапан должен был закрыться по нижней уставке срабатывания, но этого не произошло и сброс теплоносителя первого контура продолжался. Индикатор на пульте оператора при этом показывал, что клапан закрыт, хотя, на самом деле, лампочка сигнализировала лишь о том, что с клапана было снято питание. Других средств контроля не было предусмотрено. Утечка теплоносителя продолжалась почти 2,5 часа, пока не был закрыт отсечной клапан.

4:01

Время полного осушения при потере питательной воды для парогенераторов того типа, которые были установлены на данной станции, составляет 30-60 секунд, что определяется их малым водосодержанием. Поэтому на несколько минут теплоотвод из первого контура практически полностью прекратился.

4:02

Через две минуты после исходного события автоматически, как и предусмотрено при падении давления ниже допустимого, в данном случае 12 МПа, в системе первого контура включилась система аварийного охлаждения активной зоны реактора, насосы системы высокого давления.

4:05

В этот момент операторы АЭС допустили первую серьёзную ошибку, которая, вероятно, и определила характер аварии и её масштаб. Они отключили один, а затем и второй аварийный насос из трёх работающих, а на оставшемся вручную уменьшили расход более чем в 2 раза, такого количества воды было недостаточно для компенсации течи. Причиной такого решения послужили показания уровнемера компенсатора объёма, из которых следовало, что вода подаётся в первый контур быстрее, чем выходит через неисправное предохранительное устройство. Управляющий реактором персонал был обучен предотвращать заполнение водой компенсатора давления (не «вставать на жёсткий контур»), так как при этом затрудняется регулирование давления в контуре, что опасно с точки зрения его целостности, поэтому они отключили «лишние» по их мнению насосы высокого давления. Как оказалось впоследствии, уровнемер давал неправильные показания. На самом деле в это время происходило дальнейшее падение давления в первом контуре из-за некомпенсированной течи. Когда давление упало до точки насыщения, в активной зоне начали образовываться пузырьки пара, которые начали вытеснять из неё воду в компенсатор давления, тем самым ещё больше увеличивая ложные показания уровнемера. Всё ещё обеспокоенные необходимостью не допустить переполнения компенсатора, операторы начали сливать воду из него ещё и через дренажную линию первого контура.

4:08

В этот момент было обнаружено, что задвижки на напоре аварийных насосов питательной воды закрыты, индикацию об их состоянии скрывала маркировочная ремонтная табличка, поднять которую операторы наконец догадались. Персонал понял, что аварийная питательная вода не поступает в парогенераторы, задвижки открыли и началось её поступление. То обстоятельство, что подача питательной воды в парогенераторы была прервана на 8 минут, само по себе не могло привести к серьёзным последствиям, но прибавило замешательства в действия персонала и отвлекло их внимание от опасных последствий заедания в открытом положении импульсного клапана в системе компенсации давления.

4:14

Отвлёкшиеся от основной проблемы операторы не придали значения нескольким признакам того, что предохранительный клапан не закрылся -- датчик температуры на его сбросной линии показывал превышение на 100 градусов, однако его показания были списаны на остаточный разогрев от сброса пара в начале события и на завышение датчиком показаний, что считалось обычным делом.

Также в это время было замечено срабатывание предохранительных мембран на барботёре из-за превышения в нём давления, в результате чего пар с высокими параметрами стал поступать в помещения гермооболочки.

4:38

Обходчики помещений реакторного отделения доложили, что включились насосы, откачивающие переполняющийся бак-приямок гермообъёма. Операторы на щите управления выключили их, всё ещё не понимая, что в помещениях гермообъёма большое количество воды.

4:50--5:00

Конечное состояние активной зоны реактора:

1 -- вход 1-й петли А

2 -- вход 2-й петли B

3 -- каверна

4 -- верхний слой частично сплавленных фрагментов ТВС

5 -- корка металл-топливо

6 -- расплавленный материал

7 -- нижний слой фрагментов окислившегося урана и циркония

8 -- вероятный объём урана, который стёк вниз

9 -- повреждённые гильзы внутриреакторного контроля

10 -- проплавленное отверстие в выгородке активной зоны

11 -- слой расплавленных конструкционных материалов на обводном участке внутрикорпусных устройств

12 -- повреждения плиты блока защитных труб

Ещё один косвенный признак течи первого контура был проигнорирован -- температура в помещениях гермооболочки выросла на 50 градусов, а избыточное давление превысило 0,003 кгс/см?.

Также в это время было замечена ещё одна странность -- концентрация жидкого поглотителя, борной кислоты, в контуре сильно снизилась и, несмотря на полностью погружённые регулирующие стержни, начали расти показания приборов контроля нейтронного потока. Снижение концентрации борной кислоты также было последствием сильной течи. Операторы приступили к экстренному вводу бора, чтобы не допустить повторной критичности реактора, что было частично правильным решением, но не решающим главную проблему, которая до сих пор не была определена.

5:13

К этому времени циркуляция в первом контуре была настолько нарушена, что начали сильно вибрировать два из четырёх главных циркуляционных насоса, вследствие смешения в контуре воды и пара. Операторы выключили насосы, чтобы предотвратить их разрушение или повреждение трубопроводов первого контура.

5:45

По той же причине были выключены 2 оставшихся циркуляционных насоса первого контура. Принудительная циркуляция теплоносителя прекратилась.

Можно отметить, что отключение циркуляционных насосов в первом контуре реакторов с водой под давлением не должно приводить к прекращению циркуляции теплоносителя, должна продолжаться естественная циркуляция. Однако под крышкой реактора на этот момент накопился парогазовый пузырь, наличие которого вкупе с геометрическим расположением активной зоны и парогенераторов в конструкции данной ядерной установки воспрепятствовало возникновению естественной циркуляции в первом контуре.

6:18

Почти через 2,5 часа после начала событий, их причина была определена только что прибывшим инженером. Операторы закрылиотсечной клапан на линии импульсного клапана, заклинившего в открытом положении. Истечение теплоносителя из первого контура прекратилось. Однако разрушение оказавшейся к этому моменту оголённой активной зоны продолжалось, как показали впоследствии расчёты, её обнажившиеся 2/3 разогрелись до температуры свыше 2200 °C, что привело к быстрому окислениюоболочек тепловыделяющих элементов (пароциркониевая реакция с выделением большого количества водорода) и в дальнейшем их обширному разрушению вследствие растворения диоксида урана цирконием и стеканию этой массы вниз. По оценкам специалистов окислилось примерно 1/3 общего количества циркония.

6:30

Операторы запросили у руководства разрешение на разведку работниками реакторного цеха в гермообъёме. К счастью, разрешение не было получено, вошедшие туда люди могли погибнуть.

7:10

В этот момент была зафиксирована высокая радиоактивность в первом контуре, что указывало на серьёзное повреждение оболочек ТВЭЛов.

К управляющему энергоблоком персоналу пришло первое понимание масштаба аварии.

7:20--8:00

Наконец вновь были запущены насосы аварийного охлаждения высокого давления, проработали 40 минут и отключились, закончился аварийный запас борированной воды. Однако она успела накрыть активную зону, предотвращая её дальнейшее разрушение, но это была лишь временная мера.

8:30--11:30

Операторы, поняв что естественной циркуляции в контуре и теплоотвода от топлива по прежнему нет, пытаются поднять давление, чтобы сконденсировать пар в контуре и запустить циркуляционные насосы, однако они не знают, что в нём скопилось большое количество неконденсирующихся газов, в первую очередь водорода.

11:40

Персоналом за неимением плана действий и мыслей в правильном направлении было принято решение осторожно и медленно сбрасывать давление в первом контуре для инициирования срабатывания гидроаккумуляторов, ещё одной, пассивной, системы безопасности. Весь последующий день они пытались это сделать, но фактически эти действия не имели успеха и лишь незначительное количество воды из гидроёмкостей попало в активную зону. Зато теперь из-за сброшенного давления невозможно было запустить циркуляционные насосы.

Также в течение дня имели место локальные загорания водорода в гермооболочке.

16:00

Наконец руководством станции было принято правильное решение -- поднимать давление в первом контуре и пытаться запустить циркуляционные насосы. Были вновь включены аварийные насосы высокого давления.

19:50

Операторы запустили один циркуляционный насос первого контура, который проработал всего 15 секунд, но успел забросить в активную зону несколько десятков кубометров воды, которая сконденсировала пар и позволила затем запустить циркуляционные насосы. В дальнейшем персонал не допускал ошибок, опасное количество водорода, накопившегося под крышкой реактора, было постепенно удалено. В состояние холодный останов реактор был переведён лишь через месяц[.

4.2 Последствия

Хотя ядерное топливо частично расплавилось, оно не прожгло корпус реактора, так что радиоактивные вещества, в основном, остались внутри. По разным оценкам, радиоактивность благородных газов, выброшенных в атмосферу, составила от 2,5 до 13 миллионов кюри(480?1015 Бк), однако выброс опасных нуклидов, таких как йод-131, был незначительным[5][6]. Территория станции также была загрязнена радиоактивной водой, вытекшей из первого контура. Было решено, что в эвакуации населения, проживавшего рядом со станцией, нет необходимости, однако губернатор Пенсильвании посоветовал покинуть пятимильную (8 км) зону беременным женщинам и детям дошкольного возраста[7]. Средняя эквивалентная доза радиации для людей живущих в 10-мильной (16 км) зоне составила 8 миллибэр(80 мкЗв) и не превысила 100 миллибэр (1 мЗв) для любого из жителей[8]. Для сравнения, восемь миллибэр примерно соответствуют дозе, получаемой при флюорографии, а 100 миллибэр равны одной трети от средней дозы, получаемой жителем США за год за счёт фонового излучения.

Было проведено тщательное расследование обстоятельств аварии. Было признано, что операторы допустили ряд ошибок, которые серьёзно ухудшили ситуацию. Эти ошибки были вызваны тем, что они были перегружены информацией, часть которой не относилась к ситуации, а часть была просто неверной. После аварии были внесены изменения в систему подготовки операторов. Если до этого главное внимание уделялось умению оператора анализировать возникшую ситуацию и определять, чем вызвана проблема, то после аварии подготовка была сконцентрирована на выполнении оператором заранее определённых технологических процедур. Были также улучшены пульты управления и другое оборудование станции. На всех атомных станциях США были составлены планы действий на случай аварии, предусматривающие быстрое оповещение жителей в 10-мильной зоне.

Работы по устранению последствий аварии были начаты в августе 1979 года и официально завершены в декабре 1993 г. Они обошлись в 975 миллионов долларов США. Была проведена дезактивация территории станции, топливо было выгружено из реактора. Однако часть радиоактивной воды впиталась в бетон защитной оболочки, и эту радиоактивность практически невозможно удалить.

Эксплуатация другого реактора станции (TMI-1) была возобновлена в 1985 году.

По данным ООН, техногенные катастрофы по числу погибших находятся на третьем месте среди всех видов стихийных бедствий. Технический прогресс существенно повышает риск подобных трагедий. И хотя каждая техногенная катастрофа по-своему уникальна, американский исследователь Ли Дэвис, автор справочника «Рукотворные катастрофы», утверждает, что причины у них общие: глупость, небрежность и корысть.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

1) Давлетбаев. Последняя смена // Чернобыль. Десять лет спустя. Неизбежность или случайность? -- М.: Энергоатомиздат, 1995. -- С. 366

2)«О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС и меры по повышению безопасности АЭС с реакторами РБМК». Доклад рабочей группы экспертов СССР, 1991

3) Акт технического расследования причин аварии на Саяно-Шушенской ГЭС. Ростехнадзор (3 октября 2009)

4) Самые громкие российские события 2009 года. Коммерсантъ Власть (21 декабря 2009)

5) О.Б.Самойлов, Г.Б.Усынин, А.М.Бахметьев Безопасность ядерных энергетических установок -- М.: Энергоатомиздат, 1989. -- С. 187--190. -- 280 с.

Размещено на Allbest.ru


Скачать работу можно здесь Скачать работу "Примеры экологических катастроф на планете" можно здесь
Сколько стоит?

Рекомендуем!

база знанийглобальная сеть рефератов