Эволюция биосферы. Развитие живых организмов

Структура биосферы, круговорот вещества и энергии в природе. Этапы изменения биосферы человеком. Абиотические факторы среды и их влияние на живые организмы. Экологическая и пространственная структура популяций. Возникновение и существование биоценозов.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 21.04.2010
Размер файла 53,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Экология

Введение

Экология - наука о структуре, закономерностях формирования, развития и устойчивого функционирования биологических систем разного ранга в их взаимоотношениях с условиями среды. Термин "экология" (от греческого oikos - "дом", "местообитание") был впервые употреблен немецким биологом Эрнстом Геккелем в 1866 г. в многотомном труде о морфологии организмов. Американский эколог Юджин Одум определяет экологию как "биологию окружающей среды", место которой среди других биологических наук он определяет следующим образом: 1) фундаментальные (общие) науки, изучающие основные свойства живого (молекулярная биология, генетика, теория эволюции, морфология, анатомия, физиология, общая экология и т.п.); 2) частные биологические науки, включающие в себя все вышеперечисленные исследования, но по отдельным группам организмов (бактерии, грибы, растения, животные (простейшие, кишечнополостные, моллюски, насекомые, рыбы, земноводные, пресмыкающиеся, птицы, млекопитающие) и более мелкие таксономические единицы).

В зависимости от объекта исследования, различают следующие разделы экологических наук:

а) экология популяций (демэкология), изучает процессы в популяциях, динамику их численности и т.п.;

б) экология биоценозов (биоценология или синэкология) изучает взаимодействия особей и популяций разных видов в сообществе (биоценозе);

в) экология биогеоценозов или экосистем (биогеоценология, или экосистемология) изучает структуру и функционирование экосистем (биогеоценозов);

г) экология биосферы (глобальная экология) изучает функционирование глобальной экосистемы - биосферы планеты Земля.

В широком понимании глобальная экология является наукой междисциплинарной, синтезирующей достижения многих наук с целью не допустить разрушение биосферы и гибель человечества. Сам термин был введен немецким зоологом-эволюционистом Эрнстом Геккелем (1866) в книге "Всеобщая морфология организмов". Во втором томе этого обширного труда Э. Геккель дал свое определение экологии как науки: "Под экологией мы понимаем общую науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все "условия существования". Раскрытие роли многовидовых совокупностей живых организмов в осуществлении биогенного круговорота веществ и поддержании жизни на Земле привело к тому, что в последнее время экологию чаще определяют как науку о надорганизменных биологических системах или же только о многовидовых сообществах - экосистемах (J. Carpenter, 1962; Е. Odum, 1963; Н.П. Наумов, 1973; Ю. Одум, 1975). По-видимому, такой подход обедняет содержание экологии, особенно если учесть тесную функциональную связь организменного, популяционного и биоценотического уровней в глобальных экологических процессах. Практическая экология объединяет три раздела: 1. науки об охране и рациональном использовании природных ресурсов (геоэкология). Основные ее элементы: ландшафтная экология, биогеохимическая экология, экономика природопользования и охрана окружающей среды, экология атмосферы, гидросферы (включает экологию Мирового океана, естественных и искусственных водоемов, водотоков (рек, ручьев и т.п.)) и литосферы (включает экологию грунтов, месторождений полезных ископаемых (горного дела), геоинженерную экологию, геологическое заповедное дело и др.). Новые разделы блока - 1 геоинформатика и экология геоэнергоаномальных зон. 2. науки о социально-экономических факторах влияния на окружающую среду (социоэкология) объединяет такие важные новые подразделы экологической науки, как экологическое образование, экологическое право, урбоэкология, экология народонаселения, экологический менеджмент, экологический маркетинг, национальная и международная экополитика. 3. науки о техногенных факторах влияния на окружающую среду (техноэкология). Основными структурными элементами раздела являются экология энергетики (основные подразделы: экология АЭС, ТЭС, ГЭС, нетрадиционных источников энергии (солнечная, геотермальная, ветровая, биоэнергетика, энергетика моря)), промышленности (химической, металлургической, топливной, лесохозяйственной, машиностроительной промышленности и производства стройматериалов), агроэкология (мелиоративная, агрохимическая и экология животноводства), экология транспорта, военного дела, экологическая экспертиза.

Все разделы тесно связаны и используют данные других разделов экологии для своих исследований. Основные задачи общей экологии: 1) изучение с позиций системного подхода общего состояния современной биосферы планеты, причин его формирования и особенностей развития под влиянием природных и антропогенных факторов (т.е. изучение закономерностей формирования, существования и функционирования биологических систем всех уровней во взаимосвязи с атмосферой, литосферой, гидросферой и атмосферой); 2) прогноз динамики состояния биосферы во времени и расстоянии; 3) разработка путей гармонизации взаимоотношений человеческого общества и природы, сохранение способности биосферы к самовосстановлению и саморегуляции с учетом основных экологических законов и общих законов оптимизации взаимосвязей общества и природы.

1. Структура биосферы

Биосфера включает в себя: живое вещество, образованное совокупностью организмов; биогенное вещество, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество, которое формируется без участия живых организмов; биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы).

1. Косное вещество биосферы. Границы биосферы определяются факторами земной среды, которые делают невозможным существование живых организмов. Верхняя граница проходит примерно на высоте 20 км от поверхности планеты и ограничена слоем озона, который задерживает губительные для жизни коротковолновую часть ультрафиолетового излучения Солнца. Таким образом, живые организмы могут существовать в тропосфере и нижних слоях стратосферы. В гидросфере земной коры организмы проникают на всю глубину Мирового океана - до 10-11 км. В литосфере жизнь встречается на глубине 3,5-7,5 км, что обусловлено температурой земных недр и условием проникновения воды в жидком состоянии.

2. Атмосфера. Газовая оболочка состоит в основном из азота и кислорода. В небольших количествах в ней содержится диоксид углерода (0,03%) и озон. Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшее значение имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, участвующий в фотосинтезе, и озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной мере благодаря вулканической деятельности, а кислород - в результате фотосинтеза.

3. Гидросфера. Вода - важнейший компонент биосферы и один из необходимых факторов существования живых организмов. Основная ее часть (95%) находится в Мировом океане, который занимает около 70% поверхности земного шара и содержит 1300 млн. км3. Поверхностные воды (озера, реки) включают всего 0,182 млн. км3, а количество воды в живых организмах составляет всего 0,001 млн. км3. Значительные запасы воды (24 млн. км3) содержат ледники. Большое значение имеют газы, растворенные в воде: кислород и диоксид углерода. Их количество широко варьирует от температуры и присутствия живых организмов. Диоксида углерода, содержащегося в воде, в 60 раз больше, чем в атмосфере. Гидросфера формировалась в связи с развитием литосферы, которая в течение геологической истории Земли выделяла большое количество водяного пара.

4. Литосфера. Основная масса организмов, обитающих в пределах литосферы, находится в почвенном слое, глубина которого не превышает нескольких метров. Почва включает минеральные вещества, образующиеся при разрушении горных пород, и органические вещества - продукты жизнедеятельности организмов.

5. Живые организмы (живое вещество). Хотя границы биосферы довольно узки, живые организмы в их пределах распределены очень неравномерно. На большой высоте и в глубинах гидросферы и литосферы организмы встречаются относительно редко. Жизнь сосредоточена главным образом на поверхности Земли, в почве и в приповерхностном слое океана. Общую массу живых организмов оценивают в 2,43х1012т. Биомасса организмов, обитающих на суше, на 99,2% представлена зелеными растениями и 0,8% - животными и микроорганизмами. Напротив, в океане на долю растений приходится 6,3%, а на долю животных и микроорганизмов - 93,7% всей биомассы. Жизнь сосредоточена главным образом на суше. В распределении живых организмов по видовому составу наблюдается важная закономерность. Из общего числа видов 21% приходится на растения, но их вклад в общую биомассу составляет 99%. Среди животных 96% видов - беспозвоночные и только 4% - позвоночные, из которых десятая часть - млекопитающие. Масса живого вещества составляет всего 0,01-0,02% от косного вещества биосферы, однако она играет ведущую роль в геохимических процессах. Вещества и энергию, необходимую для обмена веществ, организмы черпают из окружающей среды. Ограниченные количества живой материи воссоздаются, преобразуются и разлагаются. Ежегодно, благодаря жизнедеятельности растений и животных, воспроизводится около 10% биомассы.

2. Понятие «биосфера»

Биологическое представление о биосфере сформулировал в 1875 г. австрийский геолог Э. Зюсс - как особая оболочка Земли, образованная живыми организмами. Французские учёные Э. Леруа (1927) и П. Тейяр де Шарден (1965, 1969) также взяли за основу определение Зюсса, однако трактуют его в идеалистическом плане. Согласно Тейяру, биосфера - живой пласт планеты - одна из стадий воплощения Бога. Представление Зюсса о биосфере как об особой оболочке земли использовал и В.И. Вернадский (1926), вложив в него, однако, существенно иное, биогеохимическое, содержание. Биосфера, по Вернадскому, - область распространения жизни, включающая наряду с организмами и среду их обитания. В настоящее время оба понимания биосферы, по Зюссу и по Вернадскому, существуют. Н.В. Тимофеев-Ресовский предлагает говорить о биосфере в узком и широком понимании. Представляется более целесообразным употреблять это понятие, вкладывая в него смысл, приданный Вернадским, - область распространения жизни, используя для биосферы в «узком смысле» выражения: «совокупность организмов», «пленка жизни», «живой покров Земли», «биота».

Верхняя граница биосферы, по Вернадскому (1965), проходит на высоте 15-20 км, охватывая всю тропосферу и нижнюю часть стратосферы: озон находится у полюсов в слое 8-30 км, в тропиках 15-35 км. Снизу Биосфера ограниченна отложениями на дне океанов (до глубины свыше 10 км) и глубиной проникновения в недра Земли организмов и воды в жидком состоянии. Подстилающая литосфера, верхняя стратосфера, ионосфера и космическое пространство служат биосфере средой. Основной энергетический источник, обеспечивающий функционирование биосферы, - лучистая энергия Солнца. Таким образом, биосфера - это особая термодинамическая открытая оболочка Земли, вещество, энергетика и организация которой и обуславливаются взаимодействием её биотического и абиотического компонентов. Она, следовательно, включает совокупность организмов и их остатки, а также части атмосферы, гидросферы и литосферы, населённые организмами и изменяемые их деятельностью.

Важнейшей функцией биосферы является регулярное, возрастающее во времени воссоздание живого вещества по численности, весу и количеству аккумулированной и удерживаемой энергии. Человек воспринимает эту функцию как биологическую продуктивность биосферы, её частей (океан, почвы, пресные воды) или её отдельных экосистем и биогеоценозов (дельты, луга, тайга, поля зерновых и т.д.).

Биосфера распределена по поверхности Земли неравномерно. В различных природных условиях она сформирована в виде относительно самостоятельных природных комплексов, получивших название экосистем.

3. Гидросфера

В понятие гидросферы включают все типы водоемов. В ней выделяют Мировой океан, континентальные воды и подземные воды. Основная масса воды сосредоточена в водоемах океанического типа (71% поверхности Земли занимает Мировой океан, 5% - внутренние водоемы). В составе гидросферы океан составляет 94%, подземные воды - 4,1%, ледники - 1, 6%, озера - 0,016%, почвенная влага - 0,005%, пары атмосферы - 0,001%, а речные воды составляют лишь 0,0001%. По мнению большинства современных ученых, жизнь зародилась в океане, свойства водной океанической среды во многом определили химико-физическую эволюцию всех форм жизни. В частности, набор химических элементов, а нередко и количественное соотношение отдельных ионов в тканях живых организмов, близки к составу морской воды даже у наземных животных и растений. Большое экологическое значение имеют высокая плотность и вязкость воды. Плотность воды примерно в 800 - 1000 раз выше плотности воздуха. В результате водные организмы (особенно активно передвигающиеся животные) сталкиваются с достаточно мощными силами гидродинамического сопротивления, что направило эволюцию многих групп животных на формирование органов и типов движения, снижающих лобовое сопротивление. В связи с высокой плотностью водной среды ее обитатели лишены обязательной связи с субстратом, характерной для наземных форм и вызванной силами гравитации. В толще Мирового океана сложились комплексы живых организмов, свободно "парящих" в воде и самостоятельно поддерживающих круговорот веществ. Благодаря этому жизнь распространена в гидросфере по всей ее толщине, встречаясь даже в самых глубоководных океанических впадинах - на глубине до 11 км, где давление достигает 100 атм (1*108 Па). В соответствии со структурным делением водоемов на бенталь (область дна) и пелагиаль (толща воды), все водные организмы принято делить на бентос и пелагос. Эти сообщества содержат пассивно парящие в толще воды формы - планктон, и активно плавающих животных - нектон. Водная оболочка Земли отличается довольно низким содержанием растворенного в ней кислорода. Для крупных животных, размеры тела которых не позволяют дышать путем прямого проникновения кислорода через поверхность тела, эти условия послужили стимулом к развитию дыхательной системы с большей, чем у наземных организмов, эффективностью газообмена. Специфическая черта гидросферы заключается в отчетливом вертикальном градиенте биогенного круговорота веществ. Верхние слои водоемов составляет эуфотическая зона (зона деятельности фотосинтезирующих растений, определяющаяся глубиной проникновения солнечного света достаточной интенсивности) глубиной около 200 м. Все сообщества организмов последующих, более глубоких слоев, прямо или опосредованно используют органические вещества, синтезированные в этой зоне. Таким образом, все население толщи водной среды от поверхности до самых глубоких участков дна представляет собой единую трофическую систему.

4. Литосфера

Литосфера - это "каменная оболочка" Земли, верхняя часть земной коры. Поверхностную часть литосферы, измельченную в процессе физического, химического и биологического выветривания и содержащую, помимо минерального, еще и органическое вещество, называют почвой (эдафосферой или педосферой). Значение почвы в биосфере можно определить как связующее звено биологического и геологического круговоротов. Почва служит источником вещества для образования минералов, горных пород, полезных ископаемых и способствует переносу аккумулированной солнечной энергии в глубокие слои литосферы.

В почве, как и в гидросфере наблюдается вертикальная структурированность трофических процессов, связанных с биологическим круговоротом веществ. Вертикальный градиент характерен также для ряда других параметров, определяющих условия жизни почвенных организмов: света, влажности, состава газовой среды, температуры и др. экологических факторов.

Как среда жизни, почва занимает промежуточное положение между атмосферой и гидросферой: она обладает структурированностью, здесь возможно обитание организмов, дышащих как по водному, так и по воздушному типу, имеет место вертикальный градиент проникновения света, более резкий, чем в гидросфере.

Все это определяет распространение жизни в почве: микроорганизмы встречаются по всей ее толщине, растения связаны лишь с наружными горизонтами (корневая система некоторых деревьев проникает на глубину 8 - 10 м), беспозвоночные животные обитают главным образом в верхних горизонтах почвы. Норы и ходы грызунов, насекомых и червей проникают в почву на глубину обычно не более 5-7 м. Бактерии находят в подземных водах, сопровождающих залежи нефти на глубине 3-5 км. Этим практически ограничивается распространение жизни в каменной оболочке Земли - литосфере.

Таким образом, общая толщина биосферы, "пленки жизни", составляет не более 30 км.

6. Эволюция биосферы

Все компоненты биосферы тесно взаимодействуют между собой, составляя целостную, сложно организованную систему, развивающуюся по своим внутренним законам и под действием внешних сил, в том числе космических (солнечного излучения, гравитационных сил, магнитных полей Солнца, Луны и др. небесных тел). По современным представлениям, развитие безжизненной геосферы, т.е. оболочки, образованной веществом Земли, происходило на ранних стадиях существования нашей планеты, миллиарды лет назад. Изменения облика Земли были связаны с геологическими процессами, происходившими в земной коре, на поверхности и в глубинных слоях планеты и находили проявление в извержениях вулканов, землетрясениях, подвижках земной коры, горообразовании. Такие процессы происходят и сейчас на безжизненных планетах солнечной системы и их спутниках - Марсе, Венере, Луне. С возникновением жизни (саморазвивающихся устойчивых форм) сначала медленно и слабо, затем все быстрее и значительнее стало проявляться влияние живой материи на геологические процессы Земли. Деятельность живого вещества, проникшего во все уголки планеты, привела к возникновению нового образования - биосферы - тесно взаимосвязанной единой системы геологических и биологических тел и процессов преобразования энергии и вещества. Размеры преобразований, осуществляемых живой материей, достигли планетарных масштабов, существенно видоизменив облик и эволюцию Земли. Так, например, в результате процесса фотосинтеза - деятельности зеленых растений, образовался современный газовый состав атмосферы, в ней появился кислород. В свою очередь на активность фотосинтеза существенно влияет концентрация углекислого газа в атмосфере, наличие влаги и тепла. Почва является целиком результатом деятельности живого вещества в косной (неживой) среде. Решающая роль в этом процессе принадлежит климату, топографии, деятельности микроорганизмов и растений и материнским породам. Биосфера, возникнув и сформировавшись 1-2 млрд. лет назад (к этому времени относятся первые обнаруженные остатки живых организмов), находится в постоянном динамическом равновесии и развитии. В биосфере, как в любой экосистеме, происходит круговорот воды, планетарные перемещения воздушных масс, а также биологический круговорот, характеризующийся емкостью - количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью - количеством живого вещества, образующегося и разлагающегося в единицу времени. В результате на Земле поддерживается большой геологический круговорот веществ, где для каждого элемента характерна своя скорость миграции в больших и малых циклах. Еще на ранних этапах эволюции живое вещество распространилось по безжизненным пространствам планеты, занимая все потенциально доступные для жизни места, изменяя их и превращая в места обитания. И уже в древние времена различные жизненные формы и виды растений, животных, микроорганизмов, грибов заняли всю планету. Живое органическое вещество, можно найти и в глубинах океана, и на вершинах самых высоких гор, и в вечных снегах Приполярья, и в горячих водах источников вулканических районов. Такую способность к распространению живого вещества В.И. Вернадский назвал «всюдностью жизни». Эволюция биосферы шла по пути усложнения структуры биологических сообществ, умножения числа видов и совершенствования их приспособляемости. Эволюционный процесс сопровождался увеличением эффективности преобразования энергии и вещества биологическими системами: организмами, популяциями, сообществами. Стабильность биосферы основывается на высоком разнообразии живых организмов, отдельные группы которых выполняют различные функции в поддержании общего потока вещества и распределении энергии, на теснейшем переплетении и взаимосвязи биогенных и абиогенных процессов, на согласовании циклов отдельных элементов и уравновешивании емкости отдельных резервуаров. В биосфере действуют сложные системы обратных связей и зависимостей. Как показывают исследования, по крайней мере последние 600 млн. лет, начиная с Кембрия, характер основных круговоротов на Земле существенно не менялся. Вершиной эволюции живого на Земле явился человек, который как биологический вид на основе многочисленных изменений приобрел не только сознание (совершенную форму отображения окружающего мира), но и способность изготавливать и использовать в своей жизни орудия труда. Посредством орудий труда человечество стало создавать фактически искусственную среду своего обитания (поселения, жилища, одежду, продукты питания, машины и многое другое). С этих пор эволюция биосферы вступила в новую фазу, где человеческий фактор стал мощной природной движущей силой.

8. Круговорот вещества и энергии

Биогеохимические циклы. В рамках концепции биосферы деятельность живых организмов, населяющих разные среды, интегрируется на уровне биосферы как целостной функциональной системы. Основной ее функцией является поддержание жизни благодаря непрерывному потоку вещества и энергии. Тесная связь биотической и абиотической составляющей экосистемы является главным принципом ее организации и выделения как целостного образования. Основные элементы: углерод, водород, кислород, азот - необходимы организмам в больших количествах; их называют макроэлементами. Другие используются в относительно незначительных количествах, почему их часто относят к микроэлементам. Тем не менее, все химические элементы циркулируют в биосфере по определенным путям: из внешней среды в организмы и из них опять во внешнюю среду. Эти пути, в большей или меньшей степени замкнутые, называются биогеохимическими циклами. Движение химических элементов и неорганических соединений, используемых для жизни и циркулирующих в биосфере, называют круговоротом элементов питания или круговоротом биогенных элементов. В каждом круговороте веществ различают две части: резервный фонд и подвижный (обменный) фонд. В резервный фонд входят медленно движущиеся вещества, в основном небиологический компонент. Для обменного фонда характерен быстрый обмен между организмами и окружающей средой. Для оценки антропогенной деятельности важны сравнительные объемы резервных фондов; изменениям, как правило, наиболее подвержены малообъемные фонды. С точки зрения существования биосферы биогеохимические циклы делят на: 1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере; 2) осадочный цикл с резервным фондом в земной коре. Такое разделение имеет смысл, потому что некоторые круговороты, в частности углерода, азота или кислорода, благодаря наличию крупных атмосферных или океанических фондов довольно быстро компенсируют различные нарушения. Большинство элементов и соединений входит в общий осадочный цикл, циркуляция в котором осуществляется за счет эрозионных процессов, осадкообразования, горообразования, вулканической деятельности и биологического переноса. В нем большое значение имеет перенос почвенных частиц и химических элементов под воздействием эрозионных процессов. В периоды с малой геологической активностью происходит перенос химических элементов с возвышенностей в понижения, моря и океаны. Интенсивность осадочного цикла в разных регионах мира неодинакова и зависит от природно-климатических условий, освоенности территории, хозяйственной деятельности человека. Говоря о круговороте вещества в экосистеме, обычно имеют в виду не столько само вещество, сколько химические элементы: углерод, кислород, азот и фосфор. Их относят к так называемым биогенным элементам, т. е. элементам, порождающим жизнь. Рассмотрим каждый из них более подробно.

1. Углерод в биосфере часто представлен наиболее подвижной формой - углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане. В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

2. Азот при гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кис­лоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСО3, образует нитраты:

2HNО3 + СаСО3 = Са(NО3)2 + СОС + НОН

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде. Процессы, возмещающие потери азота: 1) электрические разряды в атмосфере, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. 2) жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий -- «клубеньков», почему они и получили название клубеньковых бактерий. Бактерии родов Azotobacter и Clostridium; симбиотические клубеньковые бактерии рода Rhizobium; сине-зеленые водоросли (цианобактерии) родов Anabaena, Nostoc, а также другие члены порядка Nostocales; пурпурные бактерии рода Rhodospirillum, a также почвенные бактерии, близкие к Pseudomonas, актиномицеты из корневых клубеньков ольхи (Ainus, Ceanothus, Myrica и другие). Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. 3. Фосфор необходим для питания живых организмов, играет важнейшую роль в росте и развитии растений. Резервуаром фосфора, в отличие от азота, служит не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые геологические эпохи. Он попадает в гидросферу в ходе их эрозии, отлагается в виде осадков на мелководьях, частично осаждается в глубоководных илах. В результате разложения мертвых организмов и минерализации органических соединений фосфор в виде фосфатов (солей ортофосфорной кислоты) вновь используется растениями и тем самым снова вовлекается в круговорот. Выведение фосфора из круговорота происходит вследствие его накопления в донных осадках. Круговорот фосфора является примером простого осадочного цикла с недостаточной "забуференностью" и нарушенными механизмами саморегуляции вследствие антропогенного воздействия на окружающую среду. Существует мнение, что механизмы возвращения фосфора в круговорот недостаточны и не возмещают потерь, связанных с техногенезом. Фосфор широко используется в агротехнике в виде фосфорных (минеральных) удобрений с целью повышения плодородия почвы и урожайности сельскохозяйственных культур. Таким образом, минеральный фосфор попадает в водные и наземные экосистемы - вследствие выноса растворенных фосфатов с сельскохозяйственными сточными водами и стока с полей, где применялись фосфорные удобрения, а также сброса городских и промышленных сточных вод.4. Минеральная сера попадает в почву в результате естественного разложения серного и медного колчеданов в горных породах. Она переносится с атмосферными осадками и попадает в наземные и водные экосистемы. Для круговорота серы характерен обширный резервный фонд в почве и отложениях и меньший фонд - в атмосфере. В быстро обменивающемся фонде серы ключевую роль играют специализированные группы микроорганизмов (сульфатокисляющих и сульфатредуцирующих). В организм животных сера попадает с растительной пищей. "Кольцо" в центре схемы иллюстрирует процессы окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата (SO4) и фондом сульфидов железа в почве и в осадках. Специализированные микроорганизмы выполняют реакции: H2S ®S2 ®SO4 - бесцветные, зеленые и пурпурные серобактерии; SO4 ®H2 S (анаэробное восстановление сульфата) - Desulfovibrio; H2S ®SO4 (аэробное окисление сульфида) - тиобациллы; органическая S в SO4 и H2 S - аэробные и анаэробные гетеротрофные микроорганизмы соответственно. Первичная продукция, разумеется, обеспечивает включение сульфата в органическое вещество, а экскреция животными служит путем возвращения сульфата в круговорот. Двуокись серы (SO2), выделяющаяся в атмосферу при сжигании горючих ископаемых, особенно угля, является одним из самых опасных компонентов промышленных выбросов.

6СО2 + 6H2O + энергия света = С6Н12О6 + 6О2

стадий: световой и темновой. Сначала на свету с помощью особого Mg-содержащего белка хлорофилла вода расщепляется на кислород и водород, а энергия водорода передается на синтез АТФ. Только потом, в темновой стадии, водород соединяется с углекислым газом и образуется глюкоза. При этом часть АТФ расщепляется, отдавая энергию глюкозе. Глюкоза вместе с минеральными веществами, поступающими в растение из почвы (азот, сера, фосфор, железо, магний, кальций, калий, натрий и др.), становится основой для более сложных синтезов - образуются полисахариды, липиды, белки, нуклеиновые кислоты, из которых строятся рабочие структуры клеток. Но и эти синтезы, как и синтез глюкозы, требуют энергетических затрат. Прямое использование света здесь невозможно (эволюция не создала таких энергетических переходов), поэтому некоторая часть глюкозы тратится как энергетический субстрат, то есть глюкоза становится вторичным источником энергии. Глюкоза расщепляется и отдает энергию - сначала на синтез АТФ, а после расщепления АТФ - на биосинтезы макромолекул. Значительная часть АТФ, как уже сказано выше, расходуется на другую работу - транспорт веществ, движение клетки и др. Наиболее эффективно глюкоза расщепляется с участием кислорода: C6H12O6 + 6O2 = 6CO2 + 6H2O + энергия. По химической сути это - полное окисление (горение!) глюкозы. Поскольку кислород для окисления мы вдыхаем с атмосферным воздухом, то и на химическом уровне окисление глюкозы кислородом называют дыханием.

Следует обратить внимание на единство процессов энергетического и пластического (строительного) метаболизма клетки. Энергия поглощается из внешней среды, преобразуется в АТФ прежде всего для осуществления строительных процессов, для построения живой материи. Или обратно: построение живой материи, то есть синтез макромолекул из простых неорганических веществ, возможен только с поглощением внешней энергии. Точки пересечения стрелок энергетического и пластического обмена означают места сопряжения энергетического и пластического метаболизма. В живой клетке таких мест очень много. Сопряжение светового потока и синтеза глюкозы (реакция фотосинтеза) происходит в хлоропластах - специальных органоидах растительных клеток, сопряжение дыхания (окисления глюкозы) и синтеза АТФ - в митохондриях, сопряжение распада АТФ и синтеза клеточных белков - в рибосомах и т.д.

Для поддержания круговорота веществ в системе необходимо наличие запаса неорганических молекул в усвояемой форме и трех функционально различных групп организмов: продуцентов, консументов и редуцентов. Продуцентами выступают автотрофные (использующие в качестве источника для построения своего тела неорганические соединения) организмы, способные строить свои тела за счет неорганических соединений. Консументы - это гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующих его в новые формы. Редуценты живут за счет мертвого органического вещества, переводя его в неорганические соединения. Однако ни одна, даже самая крупная, экосистема Земли не имеет полностью замкнутого круговорота. Материки интенсивно обмениваются веществом с океанами, причем большую роль в этих процессах играет атмосфера, и вся наша планета часть материи получает из космического пространства, а часть отдает в космос. Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах возможны только за счет постоянного притока энергии. В конечном итоге вся жизнь на Земле существует за счет энергии солнечного излучения, которое переводится фотосинтезирующими организмами в химические связи органических соединений. Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах - это механизмы передачи энергии от одного организма к другому. В каждом сообществе трофические связи переплетены в сложную сеть. Путь каждой конкретной порции энергии, накопленной зелеными растениями, короток; она может передаваться не более, чем через 4-6 звеньев ряда, состоящего из последовательно питающихся друг другом организмов. Такие ряды, в которых можно проследить пути расходования изначальной дозы энергии, называют цепями питания. Первый трофический уровень - это всегда продуценты, создатели органической массы; растительные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм - к третьему; потребляющие других плотоядных - к четвертому и т.д. Виды с широким спектром питания включаются в пищевые цепи на разных трофических уровнях. Так, например, человек. Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Неусвоенная часть вновь возвращается во внешнюю среду (в виде экскрементов) и в дальнейшем может быть вовлечена в другие цепи питания. Процент усвояемости зависит от состава пищи и набора пищеварительных ферментов организма. У животных усвояемость пищевых материалов варьирует от 12-20% (некоторые сапрофаги) до 75% и более (плотоядные виды). Ассимилированная организмом пища вместе с запасом в ней энергии расходуется двояким образом. Большая часть энергии используется на поддержание рабочих процессов в клетках, а продукты расщепления подлежат удалению из организма в составе экскрементов (мочи, пота, выделений различных желез) и углекислого газа, образующегося при дыхании. В конечном итоге вся энергия, используемая на метаболизм, переходит в тепловую и рассеивается в окружающем пространстве. Таким образом, основная часть потребляемой с пищей энергии идет на поддержание их жизнедеятельности и лишь сравнительно небольшая - на построение тела, рост и размножение. По грубым подсчетам эти потери составляют около 90% при каждом акте передачи энергии через трофическую цепь. Таким образом, запас энергии, накопленной зелеными растениями, в цепях питания стремительно иссякает. Поэтому пищевая цепь включает обычно всего 4-5 звеньев. Потерянная в цепях питания энергия может быть восполнена только поступлением новых ее порций. Поэтому в экосистемах не может быть круговорота энергии, аналогичного круговороту вещества. Энергия, получаемая сообществом и усваемая продуцентами, рассеивается или вместе с их биомассой передается консументам, а затем редуцентам с падением потолка на каждом трофическом уровне; поскольку в обратный поток (от редуцентов к продуцентам) поступает ничтожное количество изначально вовлеченной энергии (максимум 0,35%) говорить о "круговороте энергии" нельзя; существует лишь круговорот веществ, поддерживаемый потоком энергии.

9. Ноосфера

Термин «ноосфера» был предложен в 1927 году французским математиком и философом Э. Леруа. «Noos» - древнегреческое название человеческого разума [3]. Условия, необходимых для становления и существования ноосферы: заселение человеком всей планеты; резкое преобразование средств связи и обмена между странами; усиление связей, в том числе политических, между всеми странами Земли; начало преобладания геологической роли человека над другими геологическими процессами, протекающими в биосфере; расширение границ биосферы и выход в космос; открытие новых источников энергии; равенство людей всех рас и религий; увеличение роли народных масс в решении вопросов внешней и внутренней политики; свобода научной мысли и научного искания от давления религиозных, философских и политических построений и создание в государственном строе условий, благоприятных для свободной научной мысли; продуманная система народного образования и подъем благосостояния трудящихся. Создание реальной возможности не допустить недоедания и голода, нищеты и чрезвычайно ослабить болезни; разумное преобразование первичной природы Земли с целью сделать ее способной удовлетворить все материальные, эстетические и духовные потребности численно возрастающего населения; исключение войн из жизни общества.

Исторические этапы изменения биосферы человеком.

1. Воздействие людей на биосферу как обычных биологических видов.

2. Сверхинтенсивная охота без резкого изменения экосистемы.

3. Создание аграрных экосистем с коренным преобразованием части природных экосистем, но без существенного нарушения вещественно-энергетического баланса биосферы;

4. Глобальные изменения всех компонентов биосферы, нарушения круговоротов вещества и энергии биосферы в связи с интенсивной промышленной деятельностью и ростом народонаселения. Первая созданная человеком культура-палеолит (каменный век) - продолжалась примерно 20-30 тысяч лет. Она совпадала с длительным периодом оледенения. Экономической основой жизни человеческого общества была охота на крупных животных: благородного и северного оленя, шерстистого носорога, осла, лошадь, мамонта, тура. На стоянках человека каменного века находят многочисленные кости диких животных - свидетельство успешной охоты. Интенсивное истребление крупных травоядных животных привело к сравнительно быстрому сокращению их численности и исчезновению многих видов. Если мелкие травоядные могли восполнить потери от преследования охотниками высокой рождаемостью, то крупные животные в силу эволюционной истории были лишены этой возможности. Дополнительные трудности возникли вследствие изменения природных условий в конце палеолита. 10-12 тысяч лет назад наступило резкое потепление, отступил ледник, леса распространились в Европе, вымерли крупные животные. Это создало новые условия жизни, разрушило сложившуюся экономическую базу человеческого общества. Закончился период его развития, характеризовавшийся только использованием пищи, т.е. чисто потребительским отношением к окружающей среде.

В следующую эпоху - эпоху неолита (новый каменный век) - наряду с охотой, рыбной ловлей и собирательством все большее значение приобретает процесс производства пищи. Делаются первые попытки одомашнивания животных и разведения растений, зарождается производство керамики. Уже 9-10 тысяч лет назад существовали поселения, среди остатков которых обнаруживают пшеницу, ячмень, чечевицу, кости домашних животных - коз, свиней, овец. Развиваются зачатки земледельческого и скотоводческого хозяйства.

Широко используется огонь и для уничтожения растительности в условиях подсечного земледелия, и как средство охоты. Начинается освоение минеральных ресурсов, зарождается металлургия

Возникновение антропоценозов. Рост населения, качественный скачок в развитии науки и техники за последние два столетия, и особенно в наши дни, привели к тому, что деятельность человека стала фактором планетарного масштаба, направляющей силой дальнейшей эволюции биосферы. Возникли антропоценозы (от греческого anthropos - человек, koinos - общий, общность) - сообщества организмов, в которых человек является доминирующим видом, а его деятельность - определяющей состояние всей системы. В.И. Вернадский считал, что влияние научной мысли и человеческого труда обусловили переход биосферы в новое состояние - ноосферу (сферу разума). Сейчас человечество использует для своих нужд все большую часть территории планеты и все большие количества минеральных ресурсов.

Эта новая сила, по мощности воздействия не уступающая суммарному действию живых организмов (человечество), с его социальными законами развития и мощной техникой, позволяющей влиять на вековой ход биосферных процессов. Современное человечество использует не только огромные энергетические ресурсы биосферы, но и небиосферные источники энергии (например, атомной), ускоряя геохимические преобразования природы. Некоторые процессы, вызванные технической деятельностью человека, направлены противоположно по отношению к естественному ходу их в биосфере (рассеивание металлов, руд, углерода и др. биогенных элементов, торможение минерализации и гумификации, освобождение законсервированного углерода и его окисление, нарушение крупномасштабных процессов в атмосфере, влияющих на климат и т.п.). Вернадский считал возможным говорить даже об автотрофной роли человека, понимая под этим возрастающие масштабы искусственного синтеза органических веществ, часто даже не имеющих аналогов в живой природе. Современная деятельность человека во многом нанесла непредвиденный ущерб окружающей среде, что в конечном итоге угрожает дальнейшему развитию самого человечества. Эти изменения на данном этапе еще не являются непоправимыми. Поэтому одна из задач современной экологии - это изучение регуляторных процессов в биосфере, создание научного фундамента ее рационального использования.

10. Повышение продуктивности биосферы

Мировое распределение первичной биологической продукции крайне неравномерно. Самый большой абсолютный прирост растительного мира достигает в среднем 25 г в день в очень благоприятных условиях. На больших площадях продуктивность не превышает 0,1 г/м (жаркие пустыни и полярные пустыни). Общая годовая продукция сухого органического вещества на Земле составляет 150-200 млрд. тонн. Около трети его образуется в океанах, около двух третей - на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, органических осадках водоемов и гумосе почв. Эффективность связывания растительностью солнечной радиации снижается при недостатке тепла и влаги, при неблагоприятных физических и химических свойствах почвы и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны. Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятные. Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими приблизительно 10% площади суши (около 1,4 млрд. га). Общий годовой прирост культурных растений составляет около 16% от всей продуктивности суши, большая часть которой приходится на леса. Приблизительно 1/2 урожая идет непосредственно на питание людей, остальная часть - на корм домашним животным, используется в промышленности и теряется в отбросах. Всего человек потребляет около 0,2% первичной продукции Земли. Растительная пища обходится для людей энергетически дешевле, чем животная. Сельскохозяйственные площади при рациональном использовании и распределении продукции могли бы обеспечить примерно вдвое большее население Земли, чем существующее. Но это требует больших затрат труда и капиталовложений. Для повышения продуктивности сельского хозяйства громадное значение имеет правильная агротехника и осуществление специальных мероприятий по охране почвы. Например, борьба с оврагами успешно ведется путем посадки растений - деревьев, кустарников, трав. Растения защищают почвы от смыва и уменьшают скорость течения воды. Окультуривание оврагов позволяет использовать их в хозяйственных целях. Посев завезенной из Америки аморфы, имеющей мощную корневую систему, не только эффективно предотвращает смыв почвы: само растение дает бобы, имеющие высокую кормовую ценность. Разнообразие посадок и посевов по оврагу способствует образование стойких биоценозов. В зарослях поселяются птицы, что имеет немаловажное значение для борьбы с вредителями. Защитные лесонасаждения в степях препятствуют водной и ветровой эрозии полей. Развитие биологических методов борьбы с вредителями позволяет сократить использование в сельском хозяйстве пестицидов. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно около 50% потребностей современного населения Земли. Большая часть населения Земли находится, таким образом, в состоянии белкового голодания, а значительная часть людей страдает также и от общего недоедания. Таким образом, увеличение биопродуктивности экосистем, и особенно вторичной продукции, является одной из основных задач, стоящих перед человечеством. Биологические методы 1) борьбы с вредителями - это использование живых организмов для сокращения численности видов, наносящих ущерб человеку или сельскохозяйственным животным и культурам. Таким образом, за счет отдельных видов стараются изменить соотношение популяций в экосистемах. 2) использование насекомых-паразитов и хищников (первым видом-хищником была австралийская божья коровка, сдерживающая размножение апельсинового червя). 3) использование патогенных микроорганизмов, которые характеризуются избирательной активность. Например, токсины, которые вырабатывает бактерия Ваcillus thurinensis, являются безвредными для позвоночных и многих насекомых. Вместе с тем они являются губительными для гусениц и бабочек. Обнаруживается, что кристаллы белка, вырабатываемого бактериями, растворяются лишь в щелочной среде кишечника гусениц (рН выше 9). К таким болезнетворным организмам принадлежат, прежде всего, вирусные, грибковые, протозойные возбудители болезней насекомых. 4) автоцидный (самоубийственный), состоящий в разведении и распространении стерильных особей (мужского пола), которые при размножении оставляют самок стерильными. Этот метод более эффективен, чем инсектицидный борьбы с сорняками. В 1912 г. в Австралию был завезен один из видов кактусов опунция. Конец этому положил мотылек - кактусовая огневка. Также используют интегрированные методы борьбы; оптимальное одновременное объединение химических и биологических методов.

11. Организм, как среда обитания

Постоянство внутренних параметров организма (гомеостаз) позволяет использование его другими организмами в качестве среды постоянного или временного обитания. Таким образом, живые организмы как бы создают для себя в биосфере еще одну, биотическую, среду обитания.

Группа живых организмов, наиболее полно освоивших эту среду обитания - вирусы. Как приспособление к данной среде обитания в ходе эволюции у них усложнился генетический аппарат и крайне упростилось строение, что обусловило невозможность самостоятельного существования.

Сходными приспособлениями (простота строения, гипертрофия аппарата размножения) обладают паразиты из различных систематических групп (черви, насекомые, грибы и т.п.).

Помимо паразитов, различные симбионты ("совместно существующие") обитают в (на) теле живых организмов (кишечные бактерии, микроорганизмы кожи и т.п.), что приносит взаимную или одностороннюю выгоду взаимодействующим видам.

Возможность использования живого как среды обитания словно замыкает круг всеобщей взаимосвязи в биосфере - мельчайшее звено в биосферном круговороте веществ - организм - выступает как экосистема, в которой в свою очередь формируются достаточно разнообразные сообщества живых организмов.

12. Абиотические факторы среды и их влияние на живые организмы

Экосистемы испытывают воздействие таких внешних по отношению к ним физических факторов, как:

1. Солнечная радиация относится к числу факторов, сыгравших ключевую историческую роль в эволюции биосферы. Солнечный свет представляет собой электромагнитное излучение с различными длинами волн от 0,05 до 3000 нм (1 нм = 10-9 м) и более. Важной характеристикой солнечного излучения является его интенсивность. Фактический приток солнечной радиации к поверхности Земли меньше, чем на верхней границе атмосферы, вследствие отражения и поглощения энергии света в атмосфере, т.к. рассеивается молекулами газов атмосферы и водяными парами, часть отражается от облаков. Энергия радиации, поступающая в экосистему с интенсивностью R, претерпев ряд промежуточных превращений, расходуется в экосистеме на нагревание, турбулентную теплопередачу в атмосферу, фотосинтез, транспирацию Животные и растения реагируют на различные области спектра. Так, у разных животных по-разному устроен зрительный аппарат, у них различное "цветовое" зрение. Процесс фотосинтеза у растений. Растения приспособились к условиям светового излучения путем создания пигментов, наборы которых сильно отличаются у разных представителей растительного мира. Наиболее значительные отличия имеют место у наземных и водных растений. Проходя через слой воды, получающийся зеленоватый свет слабо поглощается хлорофиллом. Красные морские водоросли (Rhodophyta) имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать энергию Солнца и в этом диапазоне длин волн. Благодаря такому приспособлению они могут жить на больших глубинах, чем зеленые водоросли. И у наземных, и у водных растений интенсивность фотосинтеза линейно зависит от интенсивности солнечной радиации.


Подобные документы

  • Понятие, состав биосферы. Биологический круговорот веществ. Классификация живых организмов по типу питания. Механизмы адаптации к температурному фактору организмов наземно-воздушной среды. Экология как научная основа рационального природопользования.

    реферат [19,2 K], добавлен 25.02.2009

  • Роль растительного мира в создании органического вещества. Распределение органического вещества по планете. Пространственная неоднородность биосферы. Влияние человека на флору Земли. Исчезновение и охрана растительного мира. Биологический круговорот.

    курсовая работа [40,0 K], добавлен 13.07.2013

  • Понятие биосферы, ее компоненты. Схема распределения живых организмов в биосфере. Загрязнение экосистем сточными водами. Преобладающие загрязняющие вещества водных экосистем по отраслям промышленности. Принципы государственной экологической экспертизы.

    контрольная работа [201,2 K], добавлен 06.08.2013

  • Изменения биосферы под влиянием хозяйственной деятельности человека. Темпы материального производства. Природное и антропогенное загрязнения биосферы. Химическое загрязнение биосферы. Складирование и хранение радиоактивных отходов военной промышленности.

    реферат [67,6 K], добавлен 28.01.2011

  • Экология, наука, изучающая отношение организмов с окружающей средой. Сущность и структура биосферы. Характеристика главных типов веществ биосферы. Процесс развития биосферы. Атмосфера – наиболее легкая оболочка Земли. Гидросфера – водная оболочка Земли.

    реферат [33,0 K], добавлен 15.01.2009

  • Структура, границы и характерные особенности биосферы. Ограничивающие или лимитирующие факторы, их характеристика. Фотопериодизм как реакция организмов на суточный ритм освещения. Искусственные биоценозы и их характеристика. Природно-охраняемые ландшафты.

    контрольная работа [87,3 K], добавлен 18.09.2016

  • Роль и место академика В.И. Вернадского в изучении биосферы. Биогеоценоз как элементарная структурная единица биосферы. Энергия солнечного света в процессе фотосинтеза. Круговорот элементов в биосфере. Современные глобальные экологические проблемы.

    презентация [5,7 M], добавлен 16.06.2013

  • Понятие экологической ниши организмов и межвидовой конкуренции. Причины выпадения кислотных осадков. Мероприятия природоохранной деятельности в России. Воздействие человека на животных и причины их вымирания. Структура биосферы и факторы ее загрязнения.

    контрольная работа [78,1 K], добавлен 01.02.2011

  • Характеристика биосферы как системы с прямыми и обратными связями, которые обеспечивают механизмы ее функционирования и устойчивости. Характеристика свойств атмосферы как защитного экрана. Классификация экологических факторов: абиотические и биотические.

    реферат [14,4 K], добавлен 05.05.2009

  • Понятие биосферы, принципы ее естественного устройства. Сущность живого вещества и экологического равновесия. Особенности перехода из биосферы в ноосферу. Анализ современного состояния почвы, растений и животных. Зоны экологических бедствий в Казахстане.

    реферат [36,5 K], добавлен 02.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.