Девятиэтажный жилой дом с встроенными помещениями

Объемно-планировочное решение жилого дома. Основания и фундаменты. Технология строительного производства. Расчёт железобетонных ленточных ростверков свайных фундаментов для наружных стен. Отопление, водоснабжение. Технико-экономические показатели зданий.

Рубрика Строительство и архитектура
Вид дипломная работа
Язык русский
Дата добавления 20.12.2008
Размер файла 190,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

EP - расчетная энергия удара [кДж]

FV - расчетная нагрузка, допускаемая на сваю, [кН]

m1 - масса молота, [т]

m2 - масса сваи и наголовника, [т]

m3 - масса подбабка, [т]

- коэффициент восстановления удара, принимаемый при забивке железобетонных свай 2 = 0.2

Список использованной литературы:

“Основания и фундаменты”. - Берлинов МВ.

“Расчеты осадок и прочности оснований зданий и сооружений” Гольдштейн. МН

“Справочник проектировщика”, под ред. Трофименкова.

“Проектирование оснований и фундаментов” Веселов В.А.

“Руководство по проектированию свайных фундаментов”.

Методические указания ”Примеры проектирования свайных фундаментов” Ющуба С.В.

СНиП 2.02.03 - 85 “Свайные фундаменты”.

СНиП 2.02.01 - 83 ”Основание зданий и сооружений”.

3. Технология строительного производства.

3.1 Введение.

Земляные работы выполняются при постройке любого здания или сооружения и составляют значительную часть их стоимости и трудоемкости. Земляные сооружения создаются путем образования выемок в грунте или возведения из него насыпей. Выемки, разрабатываемые только для добычи грунта, называются разрезом, а насыпи, образованные при отсыпке излишнего грунта - отвалом.

В гражданском и промышленном строительстве земляные работы выполняются при устройстве траншей и котлованов. Выполнение таких объемов работ возможно лишь с применением высокопроизводительных машин.

В современном строительстве широко применяются монолитные бетонные конструкции. Бетонные работы всё еще содержат ряд тяжелых и трудоемких процессов. В последнее время появились технические решения, направленные на снижение трудоемкости работ, повышение качества конструкции из монолитного бетона. Монолитные жилые и общественные здания придают большую выразительность районам, позволяют снизить стоимость строительства на 10-15%.

3.2 Исходные данные.

Жилое здание выполняется из кирпича. Фундаменты свайные трех типов:

С10-30 x 30, т.е. длина сваи 10 м с сечением 30 х 30 см

С7-30 х 30 - длиной 7 м с сечением 30 х 30, принимается под среднюю стену

С5-30 х 30 - принять конструктивно расположенными под внешней стеной магазина - за счет малых нагрузок.

п/п

Длина сваи, м

Сечение,

см

1

С-10

30х30

2

С-7

30х30

3

С-5

30х30

В плане здание имеет сложное строение, поэтому расчет будет производиться для намеченных блок секций.

3.3 Земляные работы.

При возведении фундаментов под многоэтажные здания разрабатываются котлованы

НК = Нр + Нпод

Нр = 0,6 м

Нпод = 2 м

НК = 2,72 + 0,6 - 0,9

НК = 2,4 м

Принимаем y = 0,8

a = L1 + L2 + L3 + 0,83 + 0,83 + 0,8 + 0,8 = 6,9 + 5,1 + 6,3 + 0,83 + 0,83 + 0,8 + 0,8

a = 21,5

a1 = a + 2 c, где

а - ширина низа котлована

а1 - ширина верха котлована

с - заложение откоса

НК - высота котлована

m - коэффициент откоса, равный 0,72

с = 2,4 0,72 = 1,75 м

а1 = 21,5 + 1,75 2 = 25 м

VK - объём котлована

VK = (h / 6) [a b + c d + (a + c) (b + d)], м3, где:

a и b - ширина и длина подошвы котлована

c и d - ширина и длина по верху котлована

h - глубина котлована

VK = (2,4 / 6) [21,5 505 + 25 508,5 + (21,5 + 25) (505 + 508,5)]

На выбор типа экскаватора влияют:

· Объем выработки;

· Тип земляного сооружения.

Выбираем комплект машин для разработки котлованов. Выбор производится в два этапа:

· Выбирается тип экскаватора (прямая лопата, обратная лопата);

· Выбирается марка экскаватора.

Оптимальная глубина разработки экскаватора Нопт = 0,65-0,75 от максимальной глубины разработки Нмах.

Нмах = 5,8 м, тогда Нопт = 0,7 5,8 = 4,06 м

Выбираем экскаватор ЭО4121А “обратная лопата” с характеристиками:

Вместимость ковша - 0,65 м3

Наибольшая глубина копания - 5,8 м

Наибольший радиус копания Rмах = 9 м

Наибольшая высота выгрузки - 5 м

Масса экскаватора - 19,2 т

Выбор оптимального типа и количества автосамосвалов для отвоза грунта в отвал при разработке экскаватором “обратная лопата”. Принимаем два автосамосвала марки КРАЗ-222, грузоподъемностью 10т и емкостью кузова 8м3.

Выбор метода разработки грунта “недобора”.

Для разработки недобора применяются бульдозеры с подчистным устройством. Допустимая величина недобора - 15 м3. Проектирование схем разработки грунта в котловане - одноковшовым экскаватором “ОЛ”. Разработка грунта осуществляется лобовыми и боковыми проходками.

Нзабоя = нк - НЕДОБОР = 2,4 - 0,15 = 2,25 м

Экскаватор “ОЛ” - ЭО 4121А с VКОВША = 0,65 м3

amax = 9 м

R0 - оптимальный радиус резанья, R0 = 0,8 Rmax = 0,8 9 = 7,2 м

B = (1,5 - 1,7) Rmax = 1,6 9 = 14,4 м

Калькуляция затрат труда и заработной платы на земельные работы

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел.час на 100м3

Затраты труда на весь V чел.час на 100м3

Расценка за 1 изм. р-к на 100м3

Зарплата на весь V работ р-к на 100м3

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е2-I-II 4-6 табл.2

Разработка грунта экскаватором “ОЛ” ЭО4121А

100м3

315,229

2,3

725,027

2-44

769-158

машинист 6р-1

Е2-I-22 табл.2 стр.86

Разработка недобора бульдозером

100м3

16,2863

0,55

8,9574

0-58,3

9-49

машинист 6р-1

Е2-I-34

Обратная засыпка

100м3

73,03

0,31

22,63

0-32,9

24-02

машинист 6р-1

Е2-I-34

срезка растительного слоя бульдозером

1000м2

12,713

0,69

8,77

0-73,1

9-29

машинист 6р-1

Для разработки недобора принимаем бульдозер Д3-19 на базе трактора Т-100.

3.4 Технология забивки свай.

Сваи предназначаются для передачи нагрузки от здания или сооружения на грунты. По характеру работы в грунта, сваи подразделяются на сваи - стойки и висячие сваи. Висячими называют сваи, передающие нагрузку от здания за счет трения в грунте.

Расположение свай в плане зависит от вида сооружения, от веса и места приложения нагрузки. Погружение в грунт заранее изготовленных свай осуществляется при помощи молотов разной конструкции, представляющих собой тяжелые металлические оголовки, подвешенные на тросах копров, которые поднимаются на необходимую высоту при помощи лебедок этих механизмов и свободно падают на голову свае.

Марка сваи

Масса, т

Кол-во

Суммарная

1-го элемента

общая

длина, м

1

С10 - 30

2,28

10351,3

4540

45400

2

С7 - 30

1,60

1536

960

6720

3

С5 - 30

1,15

404,8

352

1760

Итого:

12292

5852

53880

Область применения.

Технологическая карта разработана на погружение забивных свай длиной до 16м при многорядном расположении свай. Номенклатура забивных железобетонных свай принята в соответствии со следующими государственными стандартами:

ГОСТ 19804.1-79* “Сваи забивные железобетонные цельные сплошного квадратного сечения с ненапрягаемой арматурой”;

ГОСТ 19804.2-79* “Сваи забивные железобетонные цельные сплошного квадратного сечения с поперечным армированием ствола и напрягаемой арматурой”; ГОСТ 19804.0-79* “Сваи забивные железобетонные. Общие технические условия”:

ГОСТ 5686-78* “Сваи. Методы полевых испытаний”.

При устройстве свайных фундаментов кроме технологической карты следует руководствоваться следующими нормативными документами:

· СНиП 3.02.01 - 83 “Основания и фундаменты”;

· СНиП П -17 - 77 “Свайные фундаменты”;

· СНиП Ш - 16 -80 “Бетонные и железобетонные конструкции сборные”;

· СНиП Ш - 4 - 80 “Техника безопасности в строительстве”.

Область применения свай указана в обязательном приложении к ГОСТ 19804.0-78*. Технологическая карта разработана для I и II групп.

Устройство свайных фундаментов предусматривается комплексно-механизированным способом с применением серийно выпускаемого оборудования и средств механизации. Калькуляция трудовых затрат, график выполнения работ, схемы погружения свай, материально-технические ресурсы и технико-экономические показатели выполнены для забивных свай длиной 10 и 7 м сечением 30 х 30 см.

В состав работ, рассматриваемых картой, входят:

· Разгрузка свай и складирование в штабели;

· Раскладка и комплектация свай у мест погружения;

· Разметка свай и нанесение горизонтальных рисок;

· Подготовка копра к производству погрузочных работ.

Погружение свай (строповка и подтягивание свай к копру, подъем сваи на копер и заводка в наголовник, наведение сваи на точку погружения, погружение сваи до проектной отметки или отказа).

Срубка голов железобетонных свай.

Приемка работ.

3.5 Организация и технология строительного процесса.

До начала погружения свай должны быть выполнены следующие работы:

· Отрывка котлована и планировка его дна;

· Устройство водостоков и водоотлива с рабочей площадки (дна котлована);

· Проложены подъездные пути, подведена электроэнергия;

· Произведена геодезическая разбивка осей и разметка положения свай и свайных рядов в соответствии с проектом;

· Произведена комплектация и складирование свай;

· Произведена перевозка и монтаж копрового оборудования.

Монтаж копрового оборудования производится на площадке размером не менее 35х15м. После окончания подготовительных работ составляют двухсторонний акт о готовности и приемке строительной площадки, котлована и других объектов, предусмотренных ППР.

Подъем свай при разгрузке производят двухветевым стропом за монтажные петли, а при их отсутствии - петлей “удавкой”. Сваи на строительной площадке разгружают в штабели с рассортировкой по маркам. Высота штабеля не должна превышать 2,5м. Сваи укладывают на деревянные подкладки толщиной 12см с расположением остриями в одну сторону. Раскладку свай в рабочей зоне копра, на расстоянии не более 10м производят с помощью автокрана на подкладке в один ряд. На объекте должен быть запас свай не менее чем на 2-3 дня.

До погружения каждую сваю с помощью стальной рулетки размечают на метры от острия к голове. Метровые отрезки и проектную глубину погружения маркируют яркими карандашными рисками, цифрами (указывающими метры) и буками “ПГ” (проектная глубина погружения). От риски “ПГ” в сторону острия с помощью шаблона наносят риски через 20мм (на отрезке 20 см) для удобства определения отказа (погружения сваи от одного удара молота). Риски на боковой поверхности свайного ряда позволяют видеть глубину забивки сваи в данный момент и определять число ударов молота на каждый метр погружения. С помощью шаблона на сваю наносят вертикальные риски, по которым визуально контролируют вертикальность погружения свай.

Геодезическую разбивку свайного ряда производят по окончании разбивки основных и промежуточных осей здания. При разбивке центров свай по свайному ряду пользуются компарированной рулеткой. Разбивку выполняют в продольном и поперечном направлениях, руководствуясь рабочими чертежами свайных рядов. Места забивки свай фиксируют металлическими штырями длиной 20-30 см. Вертикальные отметки головок свай привязывают к отметке репера.

Погружение свай производят дизель-молотом Ф-859 на базе экскаватора ЭО-6113, оборудованным дизель молотом типа СП-78. Для забивки свай рекомендуется применять Н-образные литые и сварные наголовники с верхней и нижней выемками. Свайные наголовники применяют с двумя деревянными прокладками из твердых пород (дуб, бук, граб, клен), погружение свай производится в следующей последовательности:

· строповка сваи и подтягивание к месту забивки;

· установка сваи в наголовник;

· наведение сваи в точку забивки;

· выверка вертикальности;

· погружение сваи до расчетной отметки или расчетного отказа.

Строповку сваи для подъема на копер производят универсальным стропом, охватывающим сваю петлей “удавкой” в местах расположения штыря. К копру сваи подтягивают рабочим канатом с помощью отводного блока по спланированной или по дну котлована по прямой линии.

Молот поднимают на высоту, обеспечивающую установку сваи. Заводку сваи в наголовник производят путем ее подтягивания к мачте с последующей установкой в вертикальное положение. Поднятую на копер сваю наводят на точку забивки и разворачивают свайным ключом относительно вертикальной оси в проектное положение. Повторную выверку производят после погружения сваи на 1 м и корректируют с помощью механизмов наведения.

Забивку первых 5-20 свай, расположенных в различных точках строительной площадки, производят залогами (число ударов в течение 2 минут) с подсчетом и регистрацией количества ударов на каждый метр погружения сваи. В конце забивки, когда отказ сваи по своей величине близок к расчетному, производят его измерение. Измерение отказов производят с точностью до 1мм и не менее, чем по трем последовательным залогам на последнем метре погружения сваи. За отказ, соответствующий расчетному, следует принимать минимальное значение средних величин отказов для трех последовательных залогов.

Измерения отказов производят с помощью неподвижной реперной обноски. Сваю, не давшую расчетного отказа, подвергают контрольной добивке после ее “отдыха” в грунте в соответствии с ГОСТ 5686-78*. В случае, если отказ при контрольной добивке превышает расчетный, проектная организация устанавливает необходимость контрольных испытаний свай статической нагрузкой и корректировки проекта свайного фундамента. Исполнительными документами при выполнении свайных работ являются журнал забивки свай и сводная ведомость забитых свай.

Срубку голов свай начинают после завершения работ по погружению свай на захвате. В местах срубки голов наносят риски. Срубку выполняют с помощью установки для скручивания голов СП - 61А, смонтированной на автомобильном кране. Работу по срубке голов свай выполняют в следующем порядке:

· установку СП-61А опускают на сваю, при этом ее продольная ось должна быть перпендикулярна плоскости одной из граней;

· держатели и захваты совмещают с риской на свае;

· включают гидроцилиндры установки, которые приводят в движение захваты, разрушающие бетон по риске;

· газовой сваркой производят срезку арматуры сваи.

Погружение свай производят при промерзании грунта не более 0,5 м. При большем промерзании грунта погружение свай производят в лидирующие скважины. Диаметр лидирующих скважин при погружении свай должен быть не более диагонали и не менее стороны поперечного сечения сваи, а глубина - 2/3 глубины промерзания. Проходку лидирующих скважин производят трубчатыми бурами, входящими в состав оборудования копра.

Работу по погружению свай выполняют следующие монтажные звенья:

· разгрузку и раскладку свай - звено № 1: машинист 5р. - 1 чел., такелажники (бетонщики) 3р. - 2 чел.

· разметку, погружение свай - звено № 2: машинист 6 р. - 1 чел., копровщики 5р. - 1 чел., 3 р. - 1 чел.

· срубку голов свай - звено № 3: машинист 5р. - 1 чел., такелажники (бетонщики) 3р. - 2 чел.

· срезку стержней арматуры - звено № 4: газорезчик 4р. - 1 чел.

Все звенья, работающие на погружении свай включают в комплексную бригаду конечной продукции.

В технологической карте предусматривается повышение производительности труда в среднем на 15% за счет максимального использования фронта работ, внедрения комплексной механизации и наиболее производительных машин, комплектной поставки, рациональных решений по организации и технологии производства работ.

Работы по погружению свай должны выполняться в соответствии со СНиП Ш-16-80, СНиП Ш-4-80 и “Правилами устройства и безопасной эксплуатации грузоподъемных кранов”. Между машинистом копра и помощником должна быть установлена надежная сигнальная связь. Каждый сигнал должен иметь только одно значение и подаваться одним лицом. При погружении свай запрещается находиться в зоне работы копрового оборудования, радиус которой превышает высоту мачты на 5 м. Сваи рекомендуется подтягивать по прямой линии в пределах видимости машиниста копра только через отводной блок, закрепленный у основания копра. Зона работ по срубке голов свай должна быть временно ограждена. Газовую резку арматуры необходимо выполнять с соблюдением соответствующих требований СНиП Ш-4-80.32

Калькуляция трудовых затрат на свайные работы

Обосн-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел. час,маш.смена

Затраты труда на весь V, чел. день

Расценка за 1 изм. р-к

Зарплата на весь V работ р-к

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е12 - 52 - 4

Разгрузка свай и укладка их в штабеля

100 свай

58,52

21,3

7,1

152

50,66

12-87

4-98

753-152

291-42

такелажники 3р-2

машинист 5р-1

Е12 - 52

Переворачивание свай для разметки рисок

100 свай

58,52

28,4

9,47

202,6

67,58

17-15

6-65

1003-61

389-158

такелажники 3р-2

машинист 5р-1

Е12 - 52 -3

Раскладка свай у мест погружения

100 свай

58,52

30,0

10,0

214,18

71,39

18-12

7-02

1060-38

410-81

такелажники 3р-2

машинист 5р-1

Е12 - 66

Разметка свай краской через 1 м

100 свай

53,88

1,2

78,84

0-66,6

358-84

кровельщики 3р-1

5р-1

Е12 -21

Погружение свай

1 свая

5852

3,45

1,15

2462,12

820,7

2-35

0-81

13752-20

4740-12

машинист 6р-1

Е12 -21

Срубка голов ж/б свай

1 свая

5852

0,351

0,117

250,49

83,498

0-21,2

0-08,2

1240-62

479-86

такелажники 3р-2

машинист 5р-1

Е12 -21

Срезка стержней арматуры

10 перерезов

23408

0,07

199,82

0-04,4

102-99

газорезчик 4р-1

Итого:

4741,99

1093,82

19198-75

6311-36

3.6 Технология возведения монолитных железобетонных фундаментов.

Общие сведения.

Процесс возведения монолитных железобетонных фундаментов является комплексным процессом, в который входят:

· Устройство опалубки;

· Установка арматурных каркасов;

· Подача и укладка бетонной смеси в опалубку;

· Выдерживание и уход за бетоном;

· Снятие опалубки после достижения бетоном фундамента определенной прочности.

Вспомогательный процесс - транспортирование арматурных каркасов, опалубки и бетонной смеси.

Опалубка - временная вспомогательная конструкция, обеспечивающая заданные геометрические размеры и очертания бетонного элемента конструкции. Опалубка должна отвечать следующим требованиям:

· Быть достаточно прочной.

· Не изменять форму в рабочем положении.

· Воспринимать технологические нагрузки и давление бетонной смеси без изменения основных геометрических размеров.

· Быть технологичной, т.е. легко устанавливаться и разбираться.

Принимаем металлическую инвентарную (унифицированную) опалубку, состоящую из инвентарных щитов (см. спецификацию элементов опалубки).

Марка

Кол-во

Масса, кг

Площадь, м

Размеры

щитов

1-го эл-та

общая

1-го эл-та

общая

опалубки

Щ-1

20

71

1420

0,9

18

0,6 х 1,5

Щ-2

48

57

2736

0,72

34,56

0,6 х 1,2

Щ-3

82

52,250

4284,5

0,66

54,12

0,6 х 1,1

Щ-4

40

85,5

3420

1,08

43,2

0,6 х 1,8

Техника безопасности.

Не допускается размещение на опалубке оборудования и материалов, не предусмотренных проектом, а также пребывание людей, не участвующих в процессе производства работ.

Монтируемые элементы опалубки освобождают от крюка подъемного механизма только после их полного закрепления.

На рабочем месте опалубников должны быть созданы безопасные условия труда.

В местах складирования опалубки ширина проходов должна быть не менее 1м.

Армирование фундаментов.

Армируются фундаменты плоскими каркасами, которые доставляются на площадку из ЖБК и ДСК.

На строительной площадке их сваривают в пространственные каркасы. Монтаж арматурных изделий состоит из следующих технологических операций:

· Разгрузка и подача изделий непосредственно в сооружения или на площадку временного складирования.

· Установка в проектное положение и закрепление стыков электросваркой.

Проверка выполненных работ и сдача их мастеру.

Бетонирование.

Способы транспортирования бетонной смеси в зависимости от применяемых средств могут быть порционными и непрерывными. Порционное транспортирование осуществляется с использованием автосамосвалов.

Оборудование подачи и распределения бетонной смеси.

Для интенсификации выгрузки бетонной смеси используем поворотную бадью. Загружаем ее при помощи самосвала. Затем, кран поднимает бадью в вертикальной плоскости и подает ее к месту выгрузки. Корпус бадьи снабжен полозьями, которые служат направляющими при подъеме бадьи в вертикальное положение. Для предотвращения зависания бетонной смеси на корпус бадьи устанавливают навесной вибратор.

При подаче бетонной смеси краном, принимаются меры против самопроизвольного открывания затворов бадей. При выгрузке бетонной смеси из бадьи уровень низа бадьи должен находиться не выше 1м от бетонируемой поверхностью Запрещается стоять под бадьей во время ее установки и перемещения.

Калькуляция трудовых затрат на бетонные работы

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел. час ,маш. см.

Затраты труда на весь V, чел.день

Расценка за 1 изм. р-к

Зарплата на весь V работ р-к

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е4-I-44

Установка арматурных сеток и плоских каркасов

1 каркас

1860

1,3

2418

0-88,1

1638,66

арматурщик 3р-1, 2р-1

Е4-I-37

Устновка металлической инвентарной опалубки

1 м2

4309,76

0,39

1680,8

0-29,1

1254,14

слесарь - строитель4р-1, 3р-1

Е4-I-37

Укладка бетонной смеси в фундамент

1 м3

2677,72

0,33

883,64

0-19,9

532,86

бетонщик 4р-1, 2р-1

Е4-24-13

Подача бетонной смеси стреловым краном в бадьях

1 т

6694,3

0,225

1506,21

0-149

997,45

машинист 6р-1

Е4-I-42

Приемка бетонной смеси из автосамосвала в поворотную бадью

1 м3

2677,72

0,085

227,66

0-042

112,46

бетонщик 4р-1, 2р-1

Е4-I-42

Частичная перекидка бетонной смеси в конструкцию вручную

1 м3

133,88

0,75

100,41

0-40

53,95

бетонщик 4р-1, 2р-1

Е4-I-54

Покрытие бетонной поверхности опилками слоем до 0,1 м

1 м3

446,94

0,27

120,67

0-17,3

77,32

бетонщик 2р-1

Е4-I-54

Поливка бетонной поверхности из брансбойта

100 м2

4469,4

0,14

6,256

0-09

4,02

бетонщик 2р-1

Е4-I-57

Распалубливание

1 м3

4309,76

0,21

905,04

0-14,1

607,67

слесарь - строитель2р-1, 3р-1

Итого:

7848,63

5278,53

Укладка бетонной смеси.

Технологический процесс бетонирования состоит из подготовительных, вспомогательных и основных операций.

Подготовительные операции - перед приемом бетонной смеси подготавлиают территорию объекта, подъездные пути, места разгрузки, емкости для приема бетона.

Вспомогательные операции - арматуру, закладные детали, анкерные болты очищают от грязи и от отслаивающейся ржавчины.

Основные операции: укладывают смесь слоями в соответствии с указаниями проекта, т.е. толщиной ~ 0,3м, при этом толщина каждого слоя должна быть не более глубины проработки вибратора; укладку и уплотнение бетонной смеси необходимо осуществлять в непрерывной последовательности.

Область применения.

Типовая технологическая карта принимается при проектировании организации бетонирования ленточных фундаментов. Подача бетонной смеси призводится стреловым краном (Q = 5 - 12 т) в бадьях, емкостью 1 -2 м3 в зависимости от грузоподъемности. Укладку 100 м3 бетона звено из 9 человек произведет за 2,12 смены, при работе со стреловым краном.

Организация и технология строительного производства.

До начала бетонирования должны быть выполнены по фронту и приняты по акту опалубка и арматура фундаментов в количестве, достаточном для бесперебойного бетонирования в течение 1-2 смен, а также опробованы все приспособления для подачи и уплотнения бетона.

Прием и подачи бетонной смеси к месту укладки производится в поворотных бадьях, емкостью 1 м3 при грузоподъемности крана 5 т на рабочем вылете стрелы 3 м. Бадьи под загрузку устанавливаются на переносной настил для предотвращения потерь раствора.

Бетонирование ростверка осуществляется стреловым краном.

Уплотнение бетонной смеси производится с соблюдением требованием СНиП III-ВI-62 п.п. 4.35 ~ 4.43.

При длительных перерывах в укладке бетонной смеси цементную пленку в рабочих швах фундамента удаляют с помощью водовоздушной форсунки струей воды под напором 3 - 5 атмосфер или прведенной металической сеткой.

Контроль качества и приемка работ.

В процессе бетонирования мастер или прораб должны вести наблюдение за производством работ согласно СНиП III-ВI-62 п.п. 5.11 ~ 5.12, а результаты наблюдения записывать в журнал бетонных работ в установленой форме.

При исправлении дефектов в раковинах больших размеров отбивается весь рыхлый бетон, а поверхность здорового бетона очищается проволочной щеткой и промывается водой. Затем раковины заделываются бетонной смесью с мелким щебнем или гравием.

Уплотнение бетонной смеси.

Уплотнение бетонной смеси при укладке ее в конструкции делается для получения плотного, прочного и долговечного бетона. Уплотнение бетонной смеси производится, как правило, вибрированием, для чего в свежеуплотненную бетонную смесь погружается вибратор, который передает смеси свои колебания. Под действием колебаний бетонная смесь разрушается и начинает течь, хорошо заполняя опалубку; при этом вытесняется воздух из смеси. В результате получается плотный бетон. Уплотнение бетонной смеси может производиться глубинными и поверхностными вибраторами. Для уплотнения бетонной смеси в ленточных фундаментах, как правило, применяется глубинный вибратор с гибким валом со встроенным электродвигателем.

Глубинный вибратор выбирают по диаметру вибронаконечника, в зависимости от густоты армирования. Шаг перестановки вибратора не должен превышать 1,5 радиуса его действия.

R - радиус действия вибратора.

Выбираем глубинный вибратор ИВ-47. Показатели:

· Наружный диаметр корпуса - 76 мм;

· Длина корпуса - 440 мм;

· Радиус действия - 25 ~ 30 см;

· Напряжение электродвигателя - 36 В;

· Мощность электродвигателя - 1,2 кВт;

· Длина гибкого вала - 3400 мм;

· Масса вибратора - 39 кг;

· Частота тока - 50 Гц.

Количество транспортных средств для доставки бетонной смеси на объект.

После определения ведущей машины комплекта кран-бадья и типа транспортных средств по сметной эксплуатационной производительности ведущей машины определяют количество транспортных средств, необходимых для бесперебойной доставки бетонной смеси на объект.

Число автотранспортных единиц в смену определяется по формуле:

КР ПЭ 1,08 75

N = = = 6,67 7 машин.

ПА 12,1

КР - коэффициент, учитывающий резерв производительности ведущей машины, КР = 1,08

ПЭ - сметная эксплуатационная производительность ведущих машин, ПЭ = 75 м3 в смену,

ПА - сметная эксплуатационная производительность автотранспортной единицы, м3 в смену, определяется по формуле:

60 V tCM KB 0 3 0,885 8,2

ПА = = = 12,1

tЦ 108,35

V - объем бетонной смеси, загружаемую в транспортную единицу, м3,

tCM - продолжительность смены - 8,2 часа,

KB - коэффициент использования транспортной единицы во времени, KB =0,885

tЦ - продолжительность транспортного цикла для транспортного средства:

2 L 60 2 15 60

tЦ = tЗ + + tР = 6 + + 3,5 = 108,35 мин, [1 час 50 мин.]

VСР (15+20) / 2

tЗ - время загрузки транспортной единицы бетонной смесью на заводе, 6 мин.

L - расстояние перевозки от БСЦ, 15 км.

VСР - средняя скорость движения транспортной единицы в груженом (15 км/ч) и порожнем (20 км/ч) направлении.

V - объем смеси, перевозимой за одну поездку, м3

tР - разгрузка бетонной смеси из транспортной единицы в бадьи, 3,5 мин.

Список использованной литературы:

“Бетонные работы” Балицкий В.С.

“Технология монолитного бетона и железобетона” Евдокимов.

“Технология строительного производства” под ред. Вареника Е.И.

“Справочник молодого арматурщика, бетонщика” Ждановский Б.В.

“Строительные краны. Справочник” Сташевский В.П.

“Комплексная механизация в жилищном строительстве” Ламцов В.А.

“Комплексная механизация трудоемких работ в строительстве” Казанока Н.С.

“Бетонные работы” Афанасьев А.А.

ЕНиР сборник 4, выпуск 1 “Монтаж сборных и устройство монолитных железобетонных конструкций.

ЕНиР сборник 2, выпуск 1 “Земляные работы”.

ЕНиР сборник 12 “Свайные работы”.

Типовая технологическая карта на свайные работы и искусственное закрепление грунтов”.

4. Расчётно-конструктивный раздел.

4.1 Расчёт железобетонных ленточных ростверков свайных фундаментов для наружных стен.

Ростверки под стенами кирпичных зданий, опирающиеся на железобетонные сваи, расположенные в два ряда, должны рассчитываться на эксплуатационные нагрузки и на нагрузки, возникающие в период строительства. Расчёт ростверка на эксплуатационные нагрузки следует вести из условия распределения нагрузки в виде треугольников с наибольшей ординатой Р, тс/м, над осью сваи, которая определяется по формуле:

q0 L

P = , где:

a

L - расстояние между осями свай по линии ряда или рядов, [м]

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка, [кН/м]

a - длина полуоснования эпюры нагрузки [м], определяемая по формуле:

3 Ep Ip

a = 3,14 , где:

Ek bk

Ep - модуль упругости бетона ростверка [МПа].

Ip - момент инерции сечения ростверка.

Ek - модуль упругости блоков бетона над ростверком.

bk - ширина стены блоков, опирающихся на ростверк.

bр h3р1,5 0,63

Ip = = = 0,027 м4

bр - ширина ростверка, равна 1,5 м

hр - высота ростверка, равна 0,6 м

Подставим значения в вышеприведённую формулу:

3 2,7 0,027 3_______

a = 3,14 = 3,14 0,03698 = 3,14 0,33316 = 1,046 1,1 м

2,7 0,77

тогда:

q0 L 1696,36 1,3

P = = = 2004,78

a 1,1

Расчётные изгибающие моменты Моп и Мпр определяются по формулам:

q0 L2p 1696,36 0,842

Моп = - = - = - 99,74 кНм2

12 12

q0 L2p 1696,36 0,842

Мпр = = = 49,87 кНм2

24 24

Поперечную перерезывающую силу в ростверке на грани сваи можно определить по формуле:

q0 Lp 1696,36 084

Q = = = 712,47 кН, где:

2 2

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка

Lp - расчётный пролёт [м]

Определим характеристики прочности бетона.

Rв - расчётное сопротивление бетона класса В-20,

Rв = 11,5 МПа.

Расчёт прочности ростверка по сечениям нормальным к продольной оси. Подбор продольной арматуры произведём согласно СНиП 2.03.01-84 п. 3.18. Вычисляем коэффициент m:

M

m = , где:

Rb b h20

М - момент в пролёте.

b - ширина прямоугольного сечения [м]

h0 - рабочая высота [м],

h0 = 600 - 50 =550 мм.

49,87 106

m = = 0,01

11,5 103 1,5 0,552

При m = 0,01 находим = 0,977, тогда требуемую площадь растянутой арматуры определим по формуле:

M

As = , где:

Rs h0

М - момент в пролёте

Rs - рассчётное сопротивление арматуры

49,87 106

As = = 254 мм2

365 0,977 0,55

Принимаем арматуру класса А -III 87 мм (As = 308 мм2). Так как диаметр арматуры меньше 10 мм, то конструктивно принимаем арматуру 12 мм, где As = 905 мм2.

Сечение на опоре:

Момент на опоре равен - 99,74 кНм

Рабочая высота h0 = 600 - 50 = 550 мм

Вычисляем коэффициент m:

М 99,74 106

m = = = 0,019

Rb b h20 11,5 103 1,5 0,55

Находим = 0,99, тогда требуемую площадь растянутой арматуры определим по формуле, принимая арматуру класса А-III, Rs = 360 МПа:

M 99,74 106

As = = = 501,85 мм2

Rs h0 360 0,99 550

Принимаем стержни из арматуры А-III, 810 мм (As = 628 мм2).

Расчёт поперечных стержней.

Расчёт ведут по наклонному сечению. Диаметр поперечных стержней задают из условия сварки, так, чтобы отношение диаметра поперечного стержня к диаметру продольного составляло 1/4, поэтому диаметр поперечных стержней принимаем равным 4 мм, арматура класса А-I с шагом S = 310мм.

Расчёт на продавливание.

Расчёт на продавливание конструкций от действия сил, равномерно распределённых на огромной площади должен производиться из условия:

F Rbt Um h0

F - продавливающая сила

- коэффициент, принимаемый равным 1

Um - среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании.

При определении Um предполагается, что продавливание происходит по боковой поверхности пирамиды, а боковые грани наклонены под углом 45О к горизонтали. При установке в пределах пирамиды продавливания хомутов, расчёт должен производиться из условия:

F = Fd + 0,8 Fsw = 1696,36 + 0,8 6,615 =1701,65

Fd = F

Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани расчётной пирамиды продавливания по формуле:

Fsw = Rsw Asw, где:

Rsw - расчётное сопротивление арматуры, не должно превышать значения, соответствующего арматуре класса А-I. При учёте поперечной арматуры значение Fsw должно быть не менее 0,5 Fb

Asw - площадь поперечного сечения арматуры хомутов, равна 12,6 мм2

Fsw = 3 175 103 0,0000126 = 6,615

F 10,9 2 0,55 = 990 кН = Р

F = 1696,36 > Р = 990 кН, что удовлетворяет условию расчёта на продавливание.

4.2 Расчёт железобетонных ленточных ростверков свайных фундаментов для внутренних стен.

Ростверки под стенами кирпичных зданий, опирающиеся на железобетонные сваи, расположенные в два ряда, должны рассчитываться на эксплуатационные нагрузки и на нагрузки, возникающие в период строительства. Расчёт ростверка на эксплуатационные нагрузки следует вести из условия распределения нагрузки в виде треугольников с наибольшей ординатой Р, тс/м, над осью сваи, которая определяется по формуле:

q0 L

P = , где:

a

L - расстояние между осями свай по линии ряда или рядов, [м]

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка, [кН/м]

a - длина полуоснования эпюры нагрузки [м], определяемая по формуле:

3 Ep Ip

a = 3,14 , где:

Ek bk

Ep - модуль упругости бетона ростверка [МПа].

Ip - момент инерции сечения ростверка.

Ek - модуль упругости блоков бетона над ростверком.

bk - ширина стены блоков, опирающихся на ростверк.

bр h3р 1,5 0,63

Ip = = = 0,027 м4

12 12

bр - ширина ростверка, равна 1,5 м

hр - высота ростверка, равна 0,6 м

Подставим значения в вышеприведённую формулу:

3 2,7 0,027 3_____

a = 3,14 = 3,14 0,045 = 3,14 0,35569 1,1 м

2,7 0,60

тогда:

q0 L 633,4 1,3

P = = = 748,56

a 1,1.

Определим характеристики прочности бетона.

Rв - расчётное сопротивление бетона класса В-20,

Rв = 11,5 МПа.

Расчёт прочности ростверка по сечениям нормальным к продольной оси. Подбор продольной арматуры произведём согласно СНиП 2.03.01 - 84 п. 3.18. Вычисляем коэффициент m:

M

m = , где:

Rb b h20

М - момент в пролёте.

b - ширина прямоугольного сечения [м]

h0 - рабочая высота [м],

h0 = 600 - 50 =550 мм.

19,0 106

m = = 0,01

11,5 103 1,5 0,552

При m = 0,01 находим = 0,995, тогда требуемую площадь растянутой арматуры определим по формуле:

M

As = , где:

Rs h0

М - момент в пролёте

Rs - расчётное сопротивление арматуры

19 106

As = = 117,5 мм2

365 0,995 0,55

Принимаем арматуру класса А -III 87 мм (As = 308 мм2). Так - как диаметр арматуры меньше 10 мм, то конструктивно принимаем арматуру 12 мм, где As = 905 мм2.

Сечение на опоре:

Момент на опоре равен - 37,0 кНм

Рабочая высота h0 = 600 - 50 = 550 мм

Вычисляем коэффициент m:

М 3 106

m = = = 0,01

Rb b h20 11,5 103 1,5 0,55

Находим = 0,995, тогда требуемую площадь растянутой арматуры определим по формуле, принимая арматуру класса А-III, Rs = 360 МПа:

M 37 106

As = = = 235 мм2

Rs h0 360 0,995 550

Принимаем стержни из арматуры А-III, 810 мм (As = 628 мм2).

Расчёт поперечных стержней.

Расчёт ведут по наклонному сечению. Диаметр поперечных стержней задают из условия сварки, так, чтобы отношение диаметра поперечного стержня к диаметру продольного составляло 1/4, поэтому диаметр поперечных стержней принимаем равным 4 мм, арматура класса А-I с шагом S = 310мм.

Расчёт на продавливание.

Расчёт на продавливание конструкций от действия сил, равномерно распределённых на огромной площади должен производиться из условия:

F Rbt Um h0

F - продавливающая сила

- коэффициент, принимаемый равным 1.

Um - среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании.

При определении Um предполагается, что продавливание происходит по боковой поверхности пирамиды, а боковые грани наклонены под углом 45О к горизонтали. При установке в пределах пирамиды продавливания хомутов, расчёт должен производиться из условия:

F = Fd + 0,8 Fsw = 633,4 + 0,8 6,615 =638,39

Fd = F

Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани расчётной пирамиды продавливания по формуле:

Fsw = Rsw Asw , где:

Rsw - расчётное сопротивление арматуры, не должно превышать значения, соответствующего арматуре класса А - I. При учёте поперечной арматуры значение Fsw должно быть не менее 0,5 Fb

Asw - площадь поперечного сечения арматуры хомутов, равна 12,6 мм2

Fsw = 3 175 103 0,0000126 = 6,615

F = 633,4 < 990, что удовлетворяет условию расчёта на продавливание.

Список использованной литературы:

“Железобетонные конструкции”, Байков А.П.

СНиП 2.03.01 - 84 “ЖБК”.

“Руководство по проектированию свайных фундаментов. Учебное пособие”, Бородачёв О.Л.

5. Организация строительства.

5.1 Обоснование срока строительства.

Одной из целей анализа является определения схемы разбивки здания на участки для организации поточного строительства. За участок, как правило, принимают целый пролёт или температурный блок. Желательно, чтобы объект был разбит на участки, количеством не менее 3 и не более 5.

Другой задачей анализа является определение видов конструктивных элементов, их размеров, характеристик для решения вопросов по технологии и организации строительства.

Все данные о сборных элементах, составленных на основании конструктивных чертежей и каталогов типовых конструкций заносятся в таблицу.

Нормативная продолжительность строительства устанавливается по “Нормам продолжительности строительства” (СН-440-79). В них указываются сроки строительства зданий и сооружений в разрезе отраслей промышленности с выделением подготовительного и основного периодов. Продолжительность сроков строительства здания определяется по строке норм, соответствующих конструкции и общей площади квартир всего здания для средней этажности, определяемой по формуле:

(Sn Эn)

Эср = , где:

Sзд

Sn - площадь застройки участка,

Эn - число этажей отдельного участка,

Sзд - площадь застройки всего здания,

n - порядковый номер отдельного участка.

По расчету нормативный срок возведения объекта равен 6 лет.

Наименование

Эскиз элемента

Объём материала

Масса

Общее количество

Расход материала, м3

элементов

в 1 элементе, м3

элемента, т

элементов, шт.

всего

1 блок - секция

Сваи С10-30

0,63

1,60

5852

4849,2

234,5

Блоки стен подвала БС-24.6.6-Т

0,815

1,96

3696

3012,24

125,51

Цокольные блоки ЦБ-2-77

1,338

2,36

949

1269,22

63,46

Перемычки БПБ21-27.п-1

0,114

0,28

13476

1536,26

74,89

Лестничные площадки ИЛП43-2

1,58

0,68

200

316

15,8

Лестничные марши ЛМ28-11

0,58

1.28

340

197,2

9,86

Шахты лифтов ШЛС28-40

1,86

4,65

220

361,6

18,04

Санкабины СК-13

1,307

3,20

720

941,04

47,05

Перекрытия

0,96

2,40

8640

8294,4

414,72

Покрытия

0,96

2,40

960

1198,08

46,08

Перегородки гибсобетонные

1,43

1,79

3322

4750,46

231,66

Кирпичная кладка

0,018

0,003

22292

401,25

1087

Двери

0,828

0,05

5632

4663,29

226,044

Окна

1,86

0,025

3740

5096,4

254,87

Витражи

4,96

0,20

18

106,62

Полы

36200

1810

Обои

154640

7732

Остекление

5096,4

254,82

Кровля

79420

3971

Составление ведомости объёмов и трудоёмкости работ.

В неё включают весь комплекс работ, необходимых для возведения и сдачи объекта в эксплуатацию, начиная с планировки площадки и кончая благоустройством территории.

Объемы общестроительных работ устанавливаются на основании архитектурных и конструктивных чертежей в натуральных единицах измерения.

Объёмы внутренних специальных работ (санитарно-технических и электромонтажных, а также работ по газификации, телефонизации, радиофикации) определяют в денежном выражении, исходя из строительного объёма здания и укрупнённых показателей их стоимости на 1 м3 здания по формуле:

Vс = Cс Vзд , где:

Vс - объём специальных работ в тыс. руб.

Cс - стоимость специальных работ на 1 м3 здания в тыс. руб.

Vзд - строительный объём здания в м3.

Для жилого здания:

Отопление и вентиляция:

Vс = 0,42 186963 = 78524,46 тыс. руб.

Водопровод и канализация:

Vс = 0,48 186963 = 89742,24 тыс. руб.

Электроосвещение:

Vс = 0,2 186963 = 46770,75 тыс. руб.

Телефон, радио:

Vс = 0,11 186963 = 20565,43 тыс. руб.

Для встроенного помещения:

Отопление и вентиляция:

Vс = 6,6 16390 = 9834 тыс. руб.

Водопровод и канализация:

Vс = 0,24 16390 = 3933,6 тыс. руб.

Электроосвещение:

Vс = 0,36 16390 = 5900,4 тыс. руб.

Телефон, радио:

Vс = 0,12 16390 = 1966,8 тыс. руб.

Объём работ по монтажу технического оборудования определяется по формуле:

Vоб = Cзд Vзд К1 К2 , где:

Vоб - объём работ по монтажу технического оборудования, тыс. руб.

Cзд - стоимость СМР 1 м3

Vзд - строительный объём здания.

К1 - коэффициент, учитывающий объём СМР в общей стоимости здания.

К2 - коэффициент, учитывающий удельный вес монтажа технологического оборудования в общей стоимости, К2 = 0,1 ~ 0,15.

Для жилого здания:

Vоб = 33 186963 0,15 0,1 = 92546,68 тыс. руб.

Для встроенного помещения:

Vоб = 23 16390 0,15 0,1 = 5654,55 тыс. руб.

Все расчёты объёмов приведены в таблице “Ведомость объёмов и трудоёмкости работ”.

Наименование

Объём

Выработка

Трудоёмкость

работ

работ

чел/день

маш/см.

чел/день

маш/см.

Планировка площадки бульдозером, м2

всего

1 б/с

12700

635

370

34,32

1,71

Разработка грунта экскаватором, м3

всего

1 б/с

31520

1576

210

150

7,5

Разработка грунта вручную, м3

всего

1 б/с

7

0,35

2,5

2,8

0,14

Забивка свай, м3

всего

1 б/с

9653,52

482,67

2

4826,76

241,3

Устройсво монолитных ростверков, м3

всего

1 б/с

2487,24

124,36

1,1

2261,12

113,05

Общая механинизиро-ванная засыпка, м3

всего

1 б/с

7300

365

270

27,03

1,35

Ручная обратная засыпка, м3

всего

1 б/с

9

0,45

3,5

2,5

0,12

Кирпичная кладка, м3

всего

1 б/с

22292

1087

2

11146

543,5

Монтаж перемычек, м3

всего

1 б/с

11400

567

2

5700

283,5

Монтаж плит покрытия, м3

всего

1 б/с

9600

460,8

2

4800

230,4

Монтаж лестничных площадок, м3

всего

1 б/с

316

15,8

2

158

7,9

Монтаж лестничных маршей, м3

всего

1 б/с

197,2

9,86

2

98,6

4,93

Монтаж гибсобет. перегородок, м3

всего

1 б/с

4750

231,66

7

678,63

33,09

Устройство рулонной кровли, м2

всего

1 б/с

79420

3971

12

6618,33

330,91

Заполнение оконных проёмов, м2

всего

1 б/с

5096,4

254,82

15

339,76

1698

Заполнение дверных проёмов, м2

всего

1 б/с

4663,29

226,04

10

466,32

22,6

Остекление, м2

всего

1 б/с

4100

205

11

372,72

18,63

Витражи, м2

всего

1 б/с

106,624

-

15

7,101

-

Штукатурка, м2

всего

1 б/с

59160

2693

10

5916

269,3

Малярные работы, м2

всего

1 б/с

154640

7732

18

8591,1

429,55

Облицовочные работы, м2

всего

1 б/с

6280

314

5

1256

62,8

Устройство линоле-умных полов, м2

всего

1 б/с

36200

1810

10

3620

181

Устройство мозаичных полов, м2

всего

1 б/с

840

-

9

93,33

-

Сантехнические работы, тыс. руб.

всего

1 б/с

250620

12531

60

4177

208,8

Электромонтажные работы, тыс. руб.

всего

1 б/с

290600

14530

130

2235,38

111,76

Монтаж лифта,

тыс. руб.

всего

1 б/с

211042

10552

49

4306,93

215,3

Благоустройство,

тыс. руб.

всего

1 б/с

527840

26392

0,03

15835,2

791,76

Озеленение,

тыс. руб.

всего

1 б/с

52984

8649

0,015

1589,52

7947

Пред--

Характеристика работ

Бригада

Основные машины

шеств.

Код

Наименование

Объём

Трудоёмкость

профес-

кол-во чел

сменность

наим.

количест-

работы

раб.

работ

чел/дн

маш/см

Дни

сия

в 1 смене

машин

во

-

1

Земляные работы, планировка площадки бульдозером

635

1,71

1,71

машинист экскават.

1

1

бульдозер

1

1

2

Выработка грунта экскаватором

1576

7,504

3,75

машинист экскават.

1

2

экскаватор

1

2

3

Забивка свай

482,67

241,33

4,022

3

1

копер

1

3

4

Устройство монолит-ного ростверка

124,36

113,05

2,35

бетонщик

24

2

вибратор

3

4

5

Устройство стен подвала из блоков

150,612

1,35

1,35

машинист экскават.

1

1

кран

1

5

6

Механизированная засыпка

365

60,24

12,048

монтажник

5

1

кран

1

6

7

Кирпичная кладка 1б/с

1087

543,5

14,08

каменщик

37

1

кран

1

7

8

Монтаж перемычек

76,813

38,4

6,4

монтажник

3

2

кран

1

8

9

Монтаж лестниц

9,86

4,93

0,82

монтажник

3

2

кран

1

9

10

Монтаж лестничных площадок

15,8

7,9

1,3

монтажник

3

2

кран

1

10

11

Устройство гибсобе-тонных перегородок

237,52

33,93

5,65

монтажник

3

2

кран

1

11

12

Устройство перекрытий

414,72

207,36

12,96

монтажник

8

2

кран

1

12

13

Устройство покрытий

46,08

23,04

3,84

монтажник

3

2

кран

1

13

14

Устройство рулонной кровли

3971

330,91

13,23

кровель-щик

5

1

14

15

Заполнение оконных проёмов

254,82

16,988

1,13

плотник

15

1

15

16

Остекление

23,16

1,54

стекольщик

15

1

16

17

Двери

226,044

22,60

1,50

плотник

15

1

17

18

Санузлы

47,05

9,41

3,136

монтажник

3

1

кран

1

18

19

Штукатурка

2958

295,8

14,79

штукатур

20

1

19

20

Малярные работы

7732

429,5

32,37

маляр

25

1

20

21

Облицовочные работы

314

62,8

3,14

20

1

21

22

Устройство линолеумных полов

1810

181

12,06

плотник

15

1

22

23

Устройство мозаичных полов

840

93,33

13,33

мозаичник

7

1

23

24

Сантехнические работы

12531

208,85

13,09

сантехник

15

1

24

25

Электромонтажные работы

14530

111,76

13,97

электро-монтажник

8

1

25

26

Монтаж лифта

10552

215,34

14,35

монтажник

15

1

26

27

Благоустройство

26392

791,76

19,79

бетонщик

20

2

27

28

Озеленение

2649,12

39,73

6,62

бетонщик

6

1

Назначение сроков выполнения работ производится в следующем виде:

Из всей совокупности процессов выбираем ведущий, т.е. кирпичную кладку.

Рассчитываем продолжительность выполнения ведущего процесса:

Qвед

Tвед = , где:

Rвед Пвед

Tвед - продолжительность ведущего процесса,

Qвед, Rвед, Пвед - соответственно, трудоёмкость, состав бригады и сменность ведущего процесса

Tвед = 543,5 / 37 1 = 14,68 дней

Определяем продолжительность выполнения остальных процессов. Сроки их выполнения устанавливаются идентичными продолжительности ведущего процесса.

Tвед = Ti , где:

Ti - продолжительность i-го процесса (i = 1,2,3.....n)

По каждому процессу определяем численный состав бригады, обеспечивающий его выполнение в установленные сроки:

Qi

Ri = , где:

Tвед Пi

Qi, Ri, Пi - соответственно, трудоёмкость, состав бригады и сменность i-го процесса (i = 1,2,3.....n).

Определяем продолжительность работ по участкам ti:

qi

ti = , где:

Ri Пi

qi - трудоёмкость выполнения i-й работы на участке.

Расчёт и построение сетевого графика.

Цель построения безмаштабного сетевого графика сводится к выявлению правильной технологической увязки и последовательности отдельных работ. При этом учитывается принятая схема строительного процесса, количество используемых строительных машин.

Для построения сетевого графика в масштабе времени перестраиваем безмаштабный сетевой график, учитывая при этом принцип непрерывности работ по участкам. Расчёт сетевого графика ведём табличным методом.

Введём следующие условные обозначения:

i, j - код работы,

tij - продолжительность выполнения i, j работы,

tiрjн - раннее начало i, j работы,

tiрjо - раннее окончание i, j работы,

tiпjн - позднее начало i, j работы,

tiпjо - позднее окончание i, j работы,

Riпj - полный резерв времени i, j работы,

Ricj - свободный резерв времени i, j работы,

Kiрjн - календарная дата начала i, j работы.

Для всех работ сетевого графика:

tiрjо = tiрjн + tij

Рассчитаем параметры - tiрjо, tiрjн для всех работ сетевого графика:

tiпjн = tiпjо - tij; t9п10н = t9п10о - t9,10

Определяем параметры - Riпj , Riсj

Riпj = tiпjо - tiрjо; R8п9 = t8п9о - t8р90

Riпj = tiпjн - tiрjн; R8п9 = t8п9н - t8р9н

Для исходной работы дата её начала устанавливается по директивному сроку начала возведения объекта - Kiрjн

Kiрjн = Kирснх + tiрjн + tв

Kирснх - дата начала исходной работы

tв - выходные и праздничные дни.

5.5 Расчёт сетевого графика

Кол-во предш.

Шифр

работ

i

j

tij

tiрjн

tiрjо

tiпjн

tiпjо

Riпj

Ricj

5.6 Разработка генерального плана.

Проектирование расположения подъемно-транспортного оборудования и подкрановых путей.

Расчет положения от подкрановых путей относительно наружных габаритов здания выполняется по формуле:

B = Rпов + Lбез [м3]

В - минимальное расстояние от подкрановых путей до наружной стены здания,

Rпов - необходимый радиус поворота стрелы крана с учётом ограничений в целях безопасности работ, принимаемой по паспорту крана.

Lбез - минимальное расстояние до наиболее выступающих частей здания, табеля от базы крана (не менее 0,7 м)

B = 30 + 1 = 31 м

В случае применения самоходных стреловых кранов значение в формуле относится к оси поворота кабины крана.

B = 16,2 + 1 = 17,2 м

При монтаже башенных кранов на бровке котлована ведётся расчёт расстояния от верхнего обреза котлована до балластной призмы подкрановых путей. Для слабых грунтов е 1,5 h + 0,4 = 4 м.

h - глубина котлована - 2,4 м.

Строящееся здание

Санитарное ограждение

Зона склада за пределом зоны монтажа

Водопроводная колонка

Lбез - минимальное расстояние от базы крана до здания

Вк - ширина колеи подкрановых путей (по паспорту крана)

h - глубина котлована, 2,4 м.

Lб - расстояние от откоса котлована до нижнего края балластной призмы

Lк - расстояние от рельса до края балластной призмы

Расчет длины подкрановых путей

Lnn = Lkp + Hkp + 2 Lтop + 2 Lтуп

Lkp - расстояние между крайними стояками крана по радиусу действия стрелы

Hkp - длина базы крана по паспорту

Lтop - величина тормозного пути, не менее 1,5 м

Lтуп - расстояние от конца рельса до тупиков, 0,5 м

Lnn = 60+6+2 1,5+2 0,5 = 70 м - башенный кран

Lnn = 28+4,4+2 1,5+2 0,5 = 36,4 м - пневмокран

Расчет опасных зон действия кранов

Расчёт ведётся по формуле: Rоп = Rmax + 0,5 Lmax + Lбез , где:

Rmax - максимальный рабочий вылет крюка крана с учётом ограничений поворота

Lmax - половина длины наибольшего перемещаемого груза, 3 м

Lбез - дополнительное расстояние безопасности на случай рассеивания падающего груза, зависящее от вылета стрелы подъёма, 10 м

Rоп = 30+0,53+1 = 32,5 м - башенный кран

Rоп = 12,7+0,53+1 = 15,2 м - пневмокран

Опасные зоны рассчитываются также на случай падения стрелы крана:

Rоп = Rпс + 5 м , где: Rпс - длина стрелы.

Rоп = 30 + 5 = 35 м - башенный кран

Rоп = 12,4 + 5 = 14,4 м - пневмокран

Расчёт площадей временных подкрановых складов.

Для проектирования стройгенплана необходимо рассчитать площади при объектных складских площадок для материалов и конструкций открытого хранения. Для расчёта площади склада предварительно определяют объёмы складируемых материалов.

Робщ

Рскл = Тн К1 К2

Т

Робщ - количество материалов и конструкций, необходимых для выполнения работ в расчётный период, Робщ = 90028,469

Т - продолжительность расчётного периода по календарному плану (в днях)

Тн - норма запасов материалов (на 25 дней)

К1 - коэффициент неравномерности поступления материалов, Кн = 1,1

К2 - коэффициент неравномерности производственного потребления в течении расчётного периода, К2 = 1,3.

90028,489

Рскл = 25 1,1 1,3 = 2031,89

102

Площадь открытого склада на 1 б/с:

Fскл = Pскл q , где:

q - норма складирования на 1 м2 площади пола склада с учётом проездов и проходов.

Кирпичи

Сборный железобетон

Плиты перекрытий

Перемычки

Утеплитель

Fскл = 203,189 2,35 = 477,49

Fскл = 203,189 1,50 = 304,783

Fскл = 203,189 2,00 = 406,378

Fскл = 203,189 2,50 = 507,9

Fскл = 203,189 2,10 = 426,69

Расчёт временного водоснабжения.

Расчёт сводится к определению необходимого расхода воды для производственных, хозяйственно-бытовых, противопожарных нужд строительной площадки и подборов диаметров трубопроводов.

Суммарный расчётный расход воды (в л/сек):

Qобщ = Qпр + Qхоз + Qком = 1,07 + 15 + 120,46 = 136,53

Qпр - расход воды на производственные нужды.

gпр V K1

Qпр = 1,2 , где:

8 3600

1,2 - коэффициент на неучтённые расходы воды

8 - число часов в смену

3600 - число секунд в 1 часе

gпр - удельный производственный расход воды

V - объём работ в смену с расходом воды

K1 - коэффициент неравномерности расхода

gпр = (187,5 + 300 + 6 + 0,75 + 625 + 10)

Qпр = 120,46

Qхоз - потребление воды на хозяйственно-бытовые нужды

N n1 K1 N

Qхоз = + n2 K3 , где:

3600 8,2 3600

N - наибольшее количество рабочих в смену

n - норма потребления воды на одного человека в смену

n2 - норма потребления на приём одного душа

К1 - коэффициент неравномерности потребления воды

К3 - коэффициент пользующихся душем.

Расход воды на пожаротушение определяется из расчёта действий двух струй из гидрантов, устанавливаемых в колодцах водопроводов через 100-150м, по 5 л/с на каждую струю. Расход воды на пожарные цели составляет 15л/с.

Временное электроснабжение.

Расчёт мощности силовых потребителей определяется по формуле:

Pc n Kc

Rсп = , где:

cos

Рс - удельная установленная мощность на одного потребителя

n - число одновременных потребителей

Kc - коэффициент спроса

cos - коэффициент мощности

Rсп = 135,98

Расчёт мощности технологических потребителей электроэнергии производится по формуле:

P V Кт

Rтех = , где:

Tmax cos

P - удельный расход электроэнергии

V - объём работ за год

Кт - коэффициент спроса

Rтех = 8707, 31 кВтч

Освещения не рассчитываем, т.к. данное здание находится на центральной улице города, и площадка освещается уличными фонарями.


Подобные документы

  • Генплан 114-квартирного кирпичного жилого дома. Благоустройство территории. Архитектурно-конструктивное решение. Расчет свай по сечениям и несущей способности, железобетонных ленточных ростверков свайных фундаментов. Характеристика условий строительства.

    дипломная работа [262,1 K], добавлен 09.12.2016

  • Объемно-планировочное решение. Типы квартир и их планировка. Планировочные особенности жилого дома. Конструктивное решение. Архитектурно-художественное решение. Санитарно-техническое и инженерное оборудование. Технико-экономические показатели.

    курсовая работа [123,1 K], добавлен 01.10.2008

  • Архитектурно-планировочное и конструктивное решение четырехэтажного жилого дома со встроенными помещениями. Генеральный план, инженерное и электрооборудование. Теплотехнические расчеты ограждающих конструкций. Материально-технические ресурсы, смета.

    дипломная работа [808,2 K], добавлен 09.12.2016

  • Генеральный план и объемно-планировочные показатели жилого дома, архитектурно-строительное и объемно-планировочное решение. Технико-экономические показатели строительства, внутренняя и наружная отделка, конструктивные решения и теплотехнический расчет.

    курсовая работа [148,3 K], добавлен 15.08.2010

  • Объемно-планировочное и конструктивное решения здания, внешняя и внутренняя отделка. Расчет и конструирование свайных фундаментов и ростверков. Технология и организация строительного процесса. Стройгенплан и методы выполнения строительно-монтажных работ.

    дипломная работа [709,3 K], добавлен 09.11.2016

  • Технико–экономические показатели генплана, объемно–планировочное решение здания. Расчет ограждающих конструкций. Наружная и внутренняя отделка, инженерно-техническое оборудование жилого дома (отопление, вентиляция, водопровод, канализация, газоснабжение).

    курсовая работа [114,6 K], добавлен 17.07.2011

  • Объемно-планировочное решение. Конструктивная схема здания: фундаменты, стены наружные, внутренние, перегородки, покрытия, крыша и кровля. Теплотехнический расчет стен. Отделка наружная и внутренняя. Технико-экономические показатели строительства.

    контрольная работа [19,5 K], добавлен 27.12.2010

  • Объемно-планировочное решение здания жилого дома. Фундаменты, стены, перекрытия и покрытия, перегородки, окна и двери, лестницы, полы. Внутренняя и наружная отделка. Внутреннее электрооборудование, отопление и вентиляция, внутренние слаботочные сети.

    курсовая работа [829,0 K], добавлен 28.10.2014

  • Решение генерального плана застройки. Расчет железобетонных ленточных ростверков свайных фундаментов, сборного железобетонного марша, площадочной плиты, многопустотной плиты перекрытия. Калькуляция затрат труда на земляные, свайные и бетонные работы.

    дипломная работа [312,8 K], добавлен 03.06.2017

  • Объемно-планировочное и конструктивное решение односекционного 9-ти этажного жилого здания. Расчет и конструирование свайных фундаментов. Порядок производства и контроль качества свайных работ. Проектирование и расчет генерального плана строительства.

    дипломная работа [2,2 M], добавлен 09.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.