Мышьяк, висмут и сурьма

Характеристика мышьяка, висмута и сурьмы исходя из их положения в периодической системе. Содержание в организме. Биологическая роль. Симптомы передозировки и дефицита мышьяка. Противопоказания. Взаимодействие с другими веществами. Применение в медицине.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 18.12.2015
Размер файла 167,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Гидроксид сурьмы(III), сурьмянистая кислота, получается в виде белого осадка при действии щелочей на соли сурьмы(III):

SbCl3 + 3NаОН = Sb (OH)3 +3NaCl

Осадок легко растворяется как в избытке щелочи, так и в кислотах. При стоянии даже в воде легко переходит в кристаллический Sb2O3.

Сурьмяная кислота, существует в растворе в нескольких формах, например гексагидроксосурьмяная: H[Sb(OH)6]. При осаждении получают гель с переменным содержанием воды, при длительном высушивании - нерастворимую метасурьмяную кислоту HSbO3. Соли сурьмяной кислоты называются антимонатами.

Стибин, или гидрид сурьмы, SbH3 - ядовитый газ, образующийся в тех же условиях, что и арсин. При нагревании он еще легче, чем арсин, разлагается на сурьму и водород. Сурьма образует соединения с металлами - антимониды, которые можно рассматривать как продукты замещения водорода в стибине атомами металла. В этих соединениях сурьма, как и в SbH3, имеет степень окисления -3. Некоторые из антимонидов, в частности AlSb, GaSb и InSb, обладают полупроводниковыми свойствами и используются в электронной промышленности.

Соли сурьмы (III), в водном растворе подвергаются гидролизу с образованием основных солей:

SbCl3 + 2H2O = Sb(OH)2Cl

Образующаяся основная соль неустойчива и разлагается с отщеплением молекулы воды:

Sb(OH)2Cl = SbOCl + H2O

В соли SbOCl группа SbO играет роль одновалентного металла; эту группу называют антимонилом. Полученная соль называется или хлоридом антимонила, или оксохлоридом сурьмы.

Пентахлорид сурьмы SbCl5 дымящая на воздухе жидкость, растворим в воде с гидролизом. Применение: хлорирующий агент, катализатор полимеризации.

Сульфиды сурьмы Sb2S3 и Sb2S5 по свойствам аналогичны сульфидам мышьяка. Они представляют собой вещества оранжево-красного цвета, растворяющиеся в сульфидах щелочных металлов и аммония с образованием тиосолей. Сульфиды сурьмы используются при производстве спичек и в резиновой промышленности, компоненты пиротехнических составов.

Физические и химические свойства

Сурьма известна в кристаллической форме и трех аморфных модификациях (взрывчатая, черная и желтая). По внешнему виду кристаллическая, или серая, сурьма (это ее основная модификация) -- типичный блестящий металл серебристо-белого цвета с легким синеватым оттенком, который тем сильнее, чем больше примесей (чистый элемент в свободном состоянии образует игольчатые кристаллы, напоминающие форму звезд).

При резком охлаждении паров серой сурьмы образуется, так называемая, черная сурьма (плотность 5,3 г/см3), которая при нагреве до 400 °С без доступа воздуха снова переходит в серую сурьму. Черная сурьма обладает полупроводниковыми свойствами. Желтая сурьма образуется при действии кислорода на жидкийстибин SbH3 и содержит незначительные количества химически связанного водорода. При нагревании, а также при освещении видимым светом желтая сурьма переходит в черную сурьму. Взрывчатая сурьма внешне похожа на графит (плотность 5,64--5,97 г/см3) взрывается при ударе и трении. Данная модификация образуется при электролизе раствора SbCl3 в соляной кислоте при малой плотности тока, содержит связанный хлор. Взрывчатая сурьма при растирании или ударе с взрывом превращается в металлическую сурьму.

Однозначно утверждать, что сурьма -- металл, нельзя. Еще средневековые алхимики причислили ее (впрочем, как и некоторые истинные металлы: цинк и висмут, например) к группе «полуметаллов», ведь они хуже ковались, а ковкость считалась основным признаком металла, кроме того, по алхимическим представлениям, каждый металл был связан с каким-либо небесным телом. К тому моменту все известные небесные тела были уже распределены (Солнце связывали с золотом, Луна олицетворяла серебро, Меркурий -- ртуть, Венера -- медь, Марс -- железо, Юпитер -- олово и Сатурн -- свинец), следовательно, самостоятельных металлов, по мнению алхимиков, больше не существовало.

Как оказалось позже -- частично средневековые химики были правы, что подтверждается анализом ряда физических и химических свойств сурьмы. В отличие от большинства металлов, сурьма, во-первых, очень хрупка и легко истирается в порошок (это легко сделать в фарфоровой ступке фарфоровым пестиком), а во-вторых, значительно хуже проводит электричество и тепло (при 0 °C ее электропроводность составляет лишь 3,76 % электропроводности серебра). В то же время, кристаллическая сурьма имеет характерный металлический блеск, выше 310 °С становится пластичной, кроме того, монокристаллы высокой чистоты тоже пластичны. С серной кислотой сурьма образует сульфат Sb2(SO4)3 и тем самым утверждает себя в металлическом качестве, а азотная кислота окисляет сурьму до высшего оксида, образующегося в виде гидратированного соединения xSb2O5*уН2О, доказывая ее характер неметалла. Получается, что металлические свойства выражены у сурьмы довольно слабо, однако и свойства неметалла присущи ей далеко не в полной мере.

В своих соединениях сурьма обнаруживает большое сходство с мышьяком, однако отличается от него более сильно выраженными металлическими свойствами, проявляет главным образом степени окисления +5, +3 и -3. Вообще, в химическом отношении пятьдесят первый элемент малоактивен -- на воздухе при комнатной температуре металлическая сурьма устойчива, начинает окисляться лишь при температурах близких к точке плавления (~600 °С) с образованием оксида сурьмы (III), или сурьмянистого ангидрида -- Sb2O3:

4Sb + 3O2 > 2Sb2O3

выше температуры плавления сурьма загорается. Оксид сурьмы (III) -- типичный амфотерный оксид с некоторым преобладанием основных свойств, нерастворим, образует минералы. Реагирует со щелочами и кислотами, причем в сильных кислотах, например серной и соляной, оксид сурьмы (III) растворяется с образованием солей сурьмы (III), в щелочах с образованием солей сурьмянистой H3SbO3 или метасурьмянистой HSbO2 кислоты:

Sb2O3 + 2NaOH > 2NaSbO2 + Н2О

Sb2O3 + 6HCl > 2SbCl3 + 3H2O

При нагревании Sb2O3 выше 700 °C в кислороде образуется оксид состава Sb2O4:

2Sb2O3 + O2 > 2Sb2O4

Sb2O4 одновременно содержит трех- и пятивалентную сурьму. В его структуре соединены друг с другом октаэдрические группировки [Sb(III)O6] и [Sb(V)O6]. Этот окисел сурьмы самый устойчивый.

Измельченная порошкообразная сурьма горит в атмосфере хлора, пятьдесят первый элемент активно реагирует и с другими галогенами, образуя галогениды сурьмы. С азотом и водородом у металлической сурьмы реакции не возникает, также как с кремнием и бором, углерод незначительно растворяется в расплавленной сурьме. С серой, фосфором, мышьяком и со многими металлами сурьма соединяется при сплавлении. Соединяясь с металлами, сурьма образует антимониды, например, антимонид олова SnSb, никеля Ni2Sb3, NiSb, Ni5Sb2 и Ni4Sb. Антимониды можно рассматривать как продукты замещения водорода в стибине (SbН3) атомами металла. Некоторые антимониды, в частности AlSb, GaSb, InSb, обладают полупроводниковыми свойствами.

Сурьма устойчива по отношению к воде и разбавленным кислотам. Так, например, в соляной кислоте и в разбавленной серной кислоте сурьма не растворяется. Не реагирует она и с фтористоводородной и плавиковой кислотами. Однако концентрированные соляная и серная кислоты медленно растворяют сурьму с образованием хлорида SbCl3 и сульфата Sb2(SO4)3. С концентрированной азотной кислотой образуется плохо растворимая в-сурьмяная кислота HSbO3:

3Sb + 5HNO3 > 3HSbO3 + 5NO + H2O

Сурьма легко растворяется в царской водке, в смеси азотной и винной кислот. Растворы щелочей и NH3 на сурьму не действуют, расплавленные щелочи растворяют сурьму с образованием антимонатов.

При нагревании с нитратами или хлоратами щелочных металлов порошкообразная сурьма со вспышкой образует соли сурьмяной кислоты. Практический интерес представляют труднорастворимые соли сурьмяной кислоты -- антимонаты (MeSbO3*3H2O, где Me -- Na, К) и соли не выделенной метасурьмянистой кислоты -- метаантимониты (MeSbO2*3H2O), обладающие восстановительными свойствами. Антимонаты (III) щелочных металлов, в особенности калия, растворимы в воде, в отличие от остальных антимонатов. При нагревании на воздухе окисляются до антимонатов (V). Известны метаантимонаты (III), например КSbО2, ортоантимонаты (III), как Na3SbO3, и полиантимонаты, например NaSb5O8, Na2Sb4O7. Для редкоземельных элементов характерно образование ортоантимонатов LnSbO3, а также Ln3Sb5O12. Антимонаты никеля, марганца -- катализаторы в органическом синтезе (реакции окисления и поликонденсации), антимонаты редкоземельных элементов -- люминофоры.

Из наиболее важных соединений сурьмы, кроме выше описанного оксида (III) выделяют также: гидрид (стибин) SbН3 -- бесцветный ядовитый газ, образующийся действием HCl на антимониды магния или цинка или солянокислого раствора SbCl3 на NaBH4. Стибин медленно разлагается при комнатной температуре на сурьму и водород, процесс значительно ускоряется при нагреве до 150 °C; он легко окисляется, горит на воздухе; мало растворим в воде; используют для получения сурьмы высокой чистоты. Другое важное соединение пятьдесят первого элемента -- оксид сурьмы (V) или сурьмяный ангидрид, Sb2O5 (желтые кристаллы, растворяется в воде, образуя сурьмяную кислоту) обладает главным образом кислотными свойствами.

Заключение

В заключение хочется отметить, что соединения v группы побочной подгруппы-мышьяк, сурьма и висмут изучены недостаточно точно, но области их применения весьма разнообразны. Так неорганические и органические производные мышьяка применяют в сельском хозяйстве для борьбы с вредными насекомыми и грызунами, а в медицине в качестве лекарственных препаратов. Арсениды галлия и р-элементов используются в электронике как полупроводниковые материалы. Сурьму и висмут применяют в составе разнообразных сплавов для придания им специфических физических и химических свойств. Так олово, содержащее небольшие количества сурьмы, устойчиво к «оловянной чуме», а присадки сурьмы в свинце повышают его коррозионную стойкость. Сурьма и висмут входят в состав многих легкоплавких сплавов (припоев). Оксиды элементов находят применение в производстве керамики и стекла. Галогениды мышьяка и сурьмы применяют как катализаторы при получении многих органических веществ.

Физиологическая роль сурьмы, очевидно, подобна мышьяку.

Сурьму и висмут относят к той группе микроэлементов, которые постоянно находятся в живых организмах, но физиологическая и биохимическая роль которых практически не выяснена.

В относительно больших дозах данные соединения очень ядовиты, но все же в не больших количествах эти элементы оказывают на организм благоприятное воздействие. Кроме того, мышьяк является жизненно необходимым веществом для организма.

Значение этих веществ изучено не до конца, разрабатываются методы изучения и применения этих элементов в медицинской сфере, их биологическую роль предстоит выяснить.

Литература

1.Википедия-свободная энциклопедия. Висмут

2.Википедия-свободная энциклопедия. Мышьяк

3.Википедия-свободная энциклопедия. Сурьма

4.Влияние висмута на организм и жизнь человека http://www.bestreferat.ru

5. Глембоцкий В. А., Соколов Е. С, Соложенкин П. М. Висмут: Обогащение висмутсодержащих руд, М, 2001.

6. Глинка Н. Л. Общая химия. - Л.: Химия, 2004. - 702 с.

7. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. - М.: Металлургия, 2002.

КЛИНИЧЕСКАЯ ФАРМАКОЛОГИЯ 53-я ЛЕКЦИЯ. Препараты Сурьмы (Antimonium)

8. Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. -- М, 2000.-- Т. 1. -- С. 379-380. -- 623 с. -- 100 000 экз.

Мышьяк и его свойства. http://otherreferats.allbest.ru

9. Некрасов Б. В. Основы общей химии т.1. - М.: Химия, 2006.

10. Определение малых концентраций элементов. Под ред. Ю. Ю. Лурье. - М.: Наука, 200.

11.Самсонов Г. В., Абдусалямова М. Н., Черногоренко В. Б. Металлургия висмута, А.-А., 2010.

Сурьма i-Think.ru

12.Федоров П.И. Висмутиды, К., 2007.

13.Химия и технология редких и рассеянных элементов. Ч. ІІІ. - М.: Высшая школа, 2001, - 320 с.

14 Химия: Справочное издание/ под ред. В. Шретер, К.-Х, Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 2003.- 648 с.

15. Ягодин Г.А., Синегрибова О.А., Чекмарев А.М. Технология редких металлов в атомной технике. - М.: Атомиздат, 2010.

Приложения

Сравнительная таблица

Название элемента

Биологическое действие элементов на организм

Лекарственные препараты применяемые в медицине

Мышьяк

Улучшение усвоения фосфора и азота. Стимулирование кроветворения. Ослабление окислительных процессов.

Применяется для борьбы с малокровием и рядом тяжелых заболеваний, используется против кариеса, для лечения легкой формы лейкоза.

Аминарсон- применяется для лечения балантидиаза, амёбиаза, трихомонадных вагинитов, иногда -- при размножении трихомонад в кишечнике; миарсенол - вводится внутримышечно для лечения всех форм сифилиса, возвратного тифа, малярии.

Висмут

Используется при лечении воспалительных заболеваний кишечника (колиты, энтериты), а также язвенной болезни желудка и двенадцатиперстной кишки, соли висмута являются единственным активным веществом, способным убить бактерии HelicobacterPylori, вызывающих язвенную болезнь.

Викаир- используют при заболеваниях ЖКТ; викрам-комбинированный препарат, оказывает вяжущее, слабительное и спазмолитическое действие; висмутовая мазь Образует на поверхности слизистой оболочки ЖКТ защитную пленку из денатурированных белков, оказывает сосудосуживающее действие, уменьшает местный воспалительный процесс, подавляет рост и развитие Helicobacter pylori, Нео-Анузол- Противогеморроидальное средство. Обладает противомикробным и вяжущим действием.

Сурьма

Сурьма проявляет раздражающее и кумулятивное действие, накапливается в щитовидной железе, угнетая ее функцию и вызывая эндемический зоб

Длительное время такие соединения сурьмы, как пятисернистая сурьма, винно-сурьмянокалиевая (рвотный камень) и винно-сурьмянонатриевая соли использовались лишь как отхаркивающие и рвотные средства. Соединения сурьмы в настоящее время применяются в медицине для лечения некоторых инфекционных заболеваний человека и животных. В частности, их используют при лечении сонной болезни.

Размещено на Allbest.ru


Подобные документы

  • Свойства элементов подгруппы азота, строение и характеристика атомов. Увеличение металлических свойств при переходе элементов сверху вниз в периодической системе. Распространение азота, фосфора, мышьяка, сурьмы и висмута в природе, их применение.

    реферат [24,0 K], добавлен 15.06.2009

  • Происхождение, методы получения и физико-химические свойства висмута - химического элемента V группы периодической системы Д.И. Менделеева. Содержание в земной коре и в воде, добыча и производство. Применение в промышленности, машиностроении и в медицине.

    курсовая работа [161,6 K], добавлен 01.05.2011

  • История открытия мышьяка и использование в древности. Основные способы его получения: процессы и производство. Совокупность свойств этого химического элемента, его модификации. Опасные и ядовитые соединения на основе мышьяка. Условия безопасного хранения.

    презентация [773,7 K], добавлен 16.12.2013

  • Висмут как элемент Периодической системы, его общая характеристика, основные физические, биологические и химические свойства. Сферы применения, распространенность данного металла в природе и пути добычи висмута. Идентификация и проверка на чистоту.

    курсовая работа [40,3 K], добавлен 25.04.2015

  • Термоэлектрические эффекты в полупроводниках. Применение и свойства термоэлектрических материалов на основе твердых растворов халькогенидов висмута–сурьмы. Синтез полиэдрических органосилсесквиоксанов (ОССО). Пиролизный отжиг полиэдрических частиц ОССО.

    дипломная работа [2,9 M], добавлен 11.06.2013

  • Характеристика брома как химического элемента. История открытия, нахождение в природе. Физические и химические свойства этого вещества, его взаимодействие с металлами. Получение брома и его применение в медицине. Биологическая роль его в организме.

    презентация [2,0 M], добавлен 16.02.2014

  • Классификация химических элементов, их положение в периодической системе. Отличия элементов по степени заполнения различных электронных орбиталей (s, p, d, f) электронами. Биологическая роль исследуемых элементов и применение их соединений в медицине.

    презентация [355,5 K], добавлен 01.10.2014

  • Химические свойства элементов d-блока периодической системы, их содержание и биологическая роль в организме. Рассмотрение кислотно-основных и окислительно-восстановительных реакций 3d-элементов. Механизмы действия карбоангидраза и алькогольдегидрогеназа.

    реферат [979,7 K], добавлен 26.11.2010

  • Методика определения состава и происхождения неизвестного минерала при помощи макроскопического и качественного анализов. Перечень правил техники безопасности при работе в химических лабораториях. Описание последствий отравления соединениями мышьяка.

    курсовая работа [911,9 K], добавлен 27.11.2010

  • Характерные особенности и химические свойства d-элементов периодической системы. Виды их существования в организмах. Биологическая роль хрома, молибдена, вольфрама, марганца, железа, меди, серебра, золота, цинка, кадмия и ртути. Их применение в медицине.

    лекция [1,7 M], добавлен 02.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.