Седьмая группа элементов периодической системы

Главная подгруппа седьмой группы, особенности галогенов. Историческая справка, распространение, физические и химические свойства таких элементов как фтор, хлор, бром, йод, астат. Побочная подгруппа седьмой группы: марганец, технеций, рений, борий.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 16.03.2015
Размер файла 74,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1.6 Астат

Астат (лат. Astatium) , астатин, At, радиоактивный химический элемент VII группы периодической системы Менделеева, атомный номер 85. Стабильных изотопов у Астата нет; известно не менее 20 радиоактивных изотопов Астата, из которых наиболее долгоживущий 210At имеет период полураспада ТЅ 8,3 ч. Многократные попытки ученых разных стран открыть элемент № 85 всевозможными химическими и физическими способами в природных объектах были неудачны. В 1940 году Э. Сегре, T. Корсон и У. Мак-Кензи получили на циклотроне в Беркли (США) первый изотоп 211At, бомбардируя висмут б-частицами. Название "Астат" дано от греч. astatos- неустойчивый. Лишь после этого искусственного получения Астата было показано, что 4 его изотопа (215At, 216At, 218At и 219At) образуются в очень маловероятных (5·10-5-0,02%) ответвлениях трех природных рядов радиоактивного распада урана и тория. Астат хорошо адсорбируется на металлах (Ag, Au, Pt), легко испаряется в обычных условиях и в вакууме. Благодаря этому удается выделить Астат (до 85%) из продуктов облучения висмута путем их вакуумной дистилляции с поглощением Астата серебром или платиной. Химические свойства Астата очень интересны и своеобразны; он близок как к иоду, так и к полонию, то есть проявляет свойства и неметалла (галогена) и металла. Такое сочетание свойств обусловлено положением Астата в периодической системе: он является наиболее тяжелым (и следовательно, наиболее "металлическим") элементом группы галогенов. Подобно галогенам Астат дает нерастворимую соль AgAt; подобно иоду окисляется до 5-валентного состояния (соль AgAtO3аналогична AgJO3). Однако, как и типичные металлы, Астат осаждается сероводородом даже из сильно кислых растворов, вытесняется цинком из сернокислых растворов, а при электролизе осаждается на катоде. Присутствие Астата определяют по характерному б-излучению.

2. Побочная подгруппа седьмой группы. Подгруппа марганца

Подгрумппа мамрганца -- химические элементы 7-й группы периодической таблицы химических элементов (по устаревшей классификации -- элементы побочной подгруппы VII группы). В группу входят переходные металлы марганец Mn, технеций Tc и рений Re. На основании электронной конфигурации атома к этой же группе относится и элемент борий Bh, искусственно синтезированный в 1976 г. группой Юрия Оганесяна из Объединённого института ядерных исследований в Дубне.

Как и в других группах, члены этого семейства элементов проявляют закономерности электронной конфигурации, особенно внешних оболочек, в результате проявляется сходство физических свойств и химического поведения:

Таблица 2. Некоторые свойства элементов побочной подгруппы седьмой группы

Атомный
номер

Химический
элемент

Электронная
оболочка

Атомный
радиус,
нм

p,
г/см
і

tпл,
°C

tкип,
°C

ЭО

25

марганец, Mn

2, 8, 13, 2

0,131

7,45

1244

1962

1,6

43

технеций, Tc

2, 8, 18, 13, 2

0,136

11,5

2172

4876

1,36

75

рений, Re

2, 8, 18, 32, 13, 2

0,137

20,53

3180

5600

1,46

107

борий, Bh

2, 8, 18, 32, 32, 13, 2

Элементы группы 7 имеют по 7 валентных электронов. Все они являются серебристо-белыми тугоплавкими металлами. В ряду Mn -- Tc -- Re химическая активность понижается. Электропроводность рения приблизительно в 4 раза меньше, чем вольфрама. Металл этот представляет собой прекрасный материал для изготовления нитей электроламп, более прочных и долговечных, чем обычные вольфрамовые. На воздухе компактный металлический марганец покрывается тончайшей пленкой окисла, которая предохраняет его от дальнейшего окисления даже при нагревании. Напротив, в мелко раздробленном состоянии он окисляется довольно легко.

2.1 Марганец

Марганец (лат. Manganum), Mn, химический элемент VII группы периодической системы Менделеева; атомный номер 25, атомная масса 54,9380; тяжелый серебристо-белый металл. В природе элемент представлен одним стабильным изотопом 35Мn.

Историческая справка. Минералы Марганца известны издавна. Древнеримский натуралист Плиний упоминает о черном камне, который использовали для обесцвечивания жидкой стеклянной массы; речь шла о минерале пиролюзите МnО2. В Грузии пиролюзит с древнейших времен служил присадочным материалом при получении железа. Долгое время пиролюзит называли черной магнезией и считали разновидностью магнитного железняка (магнетита). В 1774 году К. Шееле показал, что это соединение неизвестного металла, а другой шведский ученый Ю. Ган, сильно нагревая смесь пиролюзита с углем, получил Марганец, загрязненный углеродом. Название Марганец традиционно производят от немецкого Manganerz - марганцевая руда.

Распространение Марганца в природе. Среднее содержание Марганец в земной коре 0,1%, в большинстве изверженных пород 0,06-0,2% по массе, где он находится в рассеянном состоянии в форме Мn2+ (аналог Fe2+). На земной поверхности Мn2+ легко окисляется, здесь известны также минералы Мn3+ и Мn4+. В биосфере Марганец энергично мигрирует в восстановительных условиях и малоподвижен в окислительной среде. Наиболее подвижен Марганец в кислых водах тундры и лесных ландшафтов, где он находится в форме Мn2+. Содержание Марганца здесь часто повышено и культурные растения местами страдают от избытка Марганца; в почвах, озерах, болотах образуются железо-марганцевые конкреции, озерные и болотные руды. В сухих степях и пустынях в условиях щелочной окислительной среды Марганец малоподвижен, организмы бедны Марганцем, культурные растения часто нуждаются в марганцевых микроудобрениях. Речные воды бедны Марганцем (10-6-10-5г/л), однако суммарный вынос этого элемента реками огромен, причем основная его масса осаждается в прибрежной зоне. Еще меньше Марганца в воде озер, морей и океанов; во многих местах океанического дна распространены железо-марганцевые конкреции, образовавшиеся в прошлые геологические периоды.

Физические свойства Марганца. Плотность Марганца 7,2-7,4 г/см3; tпл1245 °С; tкип 2150 °С. Марганец имеет 4 полиморфные модификации: б-Мn (кубическая объемноцентрированная решетка с 58 атомами в элементарной ячейке), в-Мn (кубическая объемноцентрированная с 20 атомами в ячейке), г-Мn (тетрагональная с 4 атомами в ячейке) и д-Mn (кубическая объемноцентрированная). Температура превращений: б=в 705 °С; в=г 1090 °С и г=д 1133 °С; б-модификация хрупка; г (и отчасти в) пластична, что имеет важное значение при создании сплавов.

Атомный радиус Марганца 1,30 Е. ионные радиусы (в Е): Mn2+ 0,91, Mn4+ 0,52; Mn7+ 0,46. Прочие физические свойства б-Mn: удельная теплоемкость (при 25°С) 0,478 кДж/(кг·К) [т. е. 0.114 ккал/(г·°С)]; температурный коэффициент линейного расширения (при 20°С) 22,3·10-6град-1; теплопроводность (при 25 °С) 66,57 Вт/(м·К) [т. е. 0,159 кал/(см·сек·°С)]; удельное объемное электрическое сопротивление 1,5-2,6 мком·м (т. е. 150-260 мком·см): температурный коэффициент электрического сопротивления (2-3)·10-4 град-1. Марганец парамагнитен.

Химические свойства Марганца. Химически Марганец достаточно активен, при нагревании энергично взаимодействует с неметаллами - кислородом (образуется смесь оксидов Марганца разной валентности), азотом, серой, углеродом, фосфором и другими. При комнатной температуре Марганец на воздухе не изменяется: очень медленно реагирует с водой. В кислотах (соляной, разбавленной серной) легко растворяется, образуя соли двухвалентного Марганца. При нагревании в вакууме Марганец легко испаряется даже из сплавов.

Марганец образует сплавы со многими химическими элементами; большинство металлов растворяется в отдельных его модификациях и стабилизирует их. Так, Cu, Fe, Co, Ni и другие стабилизируют г-модификацию. Al, Ag и другие расширяют области в- и у-Mn в двойных сплавах. Это имеет важное значение для получения сплавов на основе Марганца, поддающихся пластической деформации (ковке, прокатке, штамповке).

В соединениях Марганец обычно проявляет валентность от 2 до 7 (наиболее устойчивы степени окисления +2, +4 и +7). С увеличением степени окисления возрастают окислительные и кислотные свойства соединений Марганца.

Соединения Mn(+2)- восстановители. Оксид MnO - порошок серо-зеленого цвета; обладает основными свойствами. нерастворим в воде и щелочах, хорошо растворим в кислотах. Гидрооксид Mn(OH)3 - белое вещество, нерастворимое в воде. Соединения Mn(+4) могут выступать и как окислители (а) и как восстановители (б):

MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O (а)

(по этой редакции в лабораториях получают хлор)

MnO2 + KClO3 + 6KOH = 3K2MnO4 + KCl + 3H2O (б)

(реакция идет при сплавлении).

Оксид Марганца (II) MnO2 - черно-бурого цвета, соответствующий гидрооксид Мп(ОН)4 - темно-бурого цвета. Оба соединения в воде нерастворимы, оба амфотсрны с небольшим преобладанием кислотной функции. Соли типа K2MnO4 называются манганитами.

Из соединений Mn(+6) наиболее характерны марганцовистая кислота и ее соли манганаты. Весьма важны соединения Mn(+7) - марганцовая кислота, марганцовый ангидрид и перманганаты.

Получение Марганца. Наиболее чистый Марганец получают в промышленности по способу советского электрохимика Р. И. Агладзе (1939) электролизом водных растворов с добавкой (NH4)2SO4 при рН = 8,0-8,5. Процесс ведут с анодами из свинца и катодами из титанового сплава АТ-3 или нержавеющей стали. Чешуйки Марганца снимают с катодов и, если необходимо, переплавляют. Галогенным процессом, например, хлорированием руды Мn, и восстановлением галогенидов получают Марганец с суммой примесей около 0,1%. Менее чистый Марганец получают алюминотермией по реакции:

3Mn3O4 + 8Al = 9Mn + 4Al2O3

а также электротермией.

Применение Марганца. Основной потребитель Марганец - черная металлургия, расходующая в среднем около 8-9 кг Марганца на 1 т выплавляемой стали. Для введения Марганца в сталь применяют чаще всего его сплавы с железом - ферромарганец (70 - 80% Марганец, 0,5 - 7,0% углерода, остальное железо и примеси). Выплавляют его в доменных и электрических печах. Высокоуглеродистый ферромарганец служит для раскисления и десульфурации стали; средне- и малоуглеродистый - для легирования стали. Малолегированная конструкционная и рельсовая сталь содержит 0,9 - 1,6% Mn; высоколегированная, очень износоустойчивая сталь с 15% Mn и 1,25% С (изобретена английским металлургом Р. Гейрилдом в 1883 году) была одной из первых легированных сталей. В СССР производится безникелевая нержавеющая сталь, содержащая 14% Сr и 15% Mn.

Марганец используется также в сплавах на нежелезной основе. Сплавы меди с Марганцем применяют для изготовления турбинных лопаток; марганцовые бронзы - при производстве пропеллеров и других деталей, где необходимо сочетание прочности и коррозионной устойчивости. Почти все промышленные алюминиевые сплавы и магниевые сплавы содержат Марганец. Разработаны деформируемые сплавы на основе Марганца, легированные медью, никелем и других элементами. Гальваническое покрытие Марганца применяется для защиты металлических изделий от коррозии.

Соединения Марганца применяют и при изготовлении гальванических элементов; в производстве стекла и в керамической промышленности; в красильной и полиграфической промышленности, в сельском хозяйстве и т. д.

Марганец в организме. Марганец широко распространен в природе, являясь постоянной составной частью растительных и животных организмов. Содержание Марганца в растениях составляет десятитысячные-сотые, а в животных - стотысячные-тысячные доли процента. Беспозвоночные животные богаче Марганцем, чем позвоночные. Среди растений значительное количество Марганца накапливают некоторые ржавчинные грибы, водяной орех, ряска, бактерии родов Leptothrix, Crenothrix и некоторые диатомовые водоросли (Cocconeis) (до нескольких процентов в золе), среди животных - рыжие муравьи, некоторые моллюски и ракообразные (до сотых долей процента). Марганец - активатор ряда ферментов, участвует в процессах дыхания, фотосинтезе, биосинтезе нуклеиновых кислот и других, усиливает действие инсулина и других гормонов, влияет на кроветворение и минеральный обмен. Недостаток Марганца у растений вызывает некрозы, хлороз яблони и цитрусовых, пятнистость злаков, ожоги у картофеля, ячменя и т. п. Марганец обнаружен во всех органах и тканях человека (наиболее богаты им печень, скелет и щитовидная железа). Суточная потребность животных и человека в Марганце - несколько мг (ежедневно с пищей человек получает 3-8 мг Марганца). Потребность в Марганце повышается при физической нагрузке, при недостатке солнечного света; дети нуждаются в большем количестве Марганца, чем взрослые. Показано, что недостаток Марганца в пище животных отрицательно влияет на их рост и развитие, вызывает анемию, так называемых лактационную тетанию, нарушение минерального обмена костной ткани. Для предотвращения указанных заболеваний в корм вводят соли Марганца.

В медицине некоторые соли Марганца (например, KMnO4) применяют как дезинфицирующие средства. Соединения Марганца, применяемые во многих отраслях промышленности, могут оказывать токсическое действие на организм. Поступая в организм главным образом через дыхательные пути, Марганец накапливается в паренхиматозных органах (печень, селезенка), костях и мышцах и выводится медленно, в течение многих лет. Предельно допустимая концентрация соединений Марганец в воздухе - 0,3 мг/м3. При выраженных отравлениях наблюдается поражение нервной системы с характерным синдромом марганцевого паркинсонизма. Лечение: витаминотерапия, холинолитические средства и другие. Профилактика: соблюдение правил гигиены труда.

2.2 Технеций

Технеций (лат. Technetium), Тс, радиоактивный химический элемент VII группы периодической системы Менделеева, атомный номер 43, атомная масса 98, 9062; металл, ковкий и пластичный.

Существование элемента с атомным номером 43 было предсказано Д. И. Менделеевым. Технеций получен искусственно в 1937 году итальянскими учеными Э. Сегре и К. Перрье при бомбардировке ядер молибдена дейтронами; название получил от греч. technetos - искусственный.

Технеций стабильных изотопов не имеет. Из радиоактивных изотопов (около 20) практическое значение имеют два: 99Тс и 99mТс с периодами полураспада соответственно ТЅ = 2,12·105 лет и TЅ = 6,04 ч. В природе элемент находится в незначительных количествах - 10-10 г в 1 т урановой смолки.

Физические свойства Технеция. Металлический Технеций в виде порошка имеет серый цвет (напоминает Re, Mo, Pt); компактный металл (слитки плавленого металла, фольга, проволока) серебристо-серого цвета. Технеций в кристаллическом состоянии имеет гексагональную решетку плотной упаковки (а = 2.735Е, с = 4,391Е); в тонких слоях (менее 150 Е) - кубическую гранецентрированную решетку (а = 3,68Е); плотность Технеция (с гексагональной решеткой) 11,487 г/см3; tпл 2200°С; гкип 4700 °С; удельное электросопротивление 69·10-6 ом·см (100 °С); температура перехода в состояние сверхпроводимости Тс 8,24 К. Технеций парамагнитен; его магнитная восприимчивость при 25°С 2,7·10-4. Конфигурация внешней электронной оболочки атома Тс 4d55s2; атомный радиус 1,358Е; ионный радиус Тс7+ 0,56Е.

Химические свойства Технеция. По химические свойствам Тс близок к Mn и особенно к Re, в соединениях проявляет степени окисления от -1 до +7. Наиболее устойчивы и хорошо изучены соединения Тс в степени окисления +7. При взаимодействии Технеция или его соединений с кислородом образуются оксиды Тс2О7 и ТсО2, с хлором и фтором - галогениды ТсХ6, TcX5, ТсХ4, возможно образование оксигалогенидов, например ТсО3Х (где X - галоген), с серой - сульфиды Tc2S7 и TcS2. Технеций образует также технециевую кислоту НТсО4 и ее соли пертехнаты МТсО4 (где М - металл), карбонильные, комплексные и металлорганические соединения. В ряду напряжений Технеций стоит правее водорода; он не реагирует с соляной кислотой любых концентраций, но легко растворяется в азотной и серной кислотах, царской водке, перекиси водорода, бромной воде.

Получение Технеция. Основным источником Технеция служат отходы атомной промышленности. Выход 99Тс при делении 233U составляет около 6%. Из смеси продуктов деления Технеций в виде пертехнатов, оксидов, сульфидов извлекают экстракцией органических растворителями, методами ионного обмена, осаждением малорастворимых производных. Металл получают восстановлением водородом NH4TcO4, TcO2, Tc2S7 при 600-1000 °С или электролизом.

Применение Технеция. Технеций - перспективный металл в технике; он может найти применение как катализатор, высокотемпературный и сверхпроводящий материал. Соединения Технеция - эффективные ингибиторы коррозии. 99mТс используется в медицине как источник г-излучения. Технеций радиационноопасен, работа с ним требует специальной герметизированной аппаратуры.

2.3 Рений

Рений (Rhenium), Re, химический элемент VII группы периодической системы Менделеева, атомный номер 75, атомная масса 186,207. Светло-серый металл. В природном Рении два изотопа: стабильный 185Re (37,07%) и слаборадиоактивный 187Re (с периодом полураспада ТЅ = 1011 лет). В 1871 году Д. И. Менделеев предсказал существование элемента с атомным весом 190 - аналога марганца - и назвал его "тримарганцем". В последующие годы появлялось много недостоверных сообщений об открытии этого элемента. Но лишь в 1925 году немецкие химики И. и В. Ноддак обнаружили его спектральным методом в минерале колумбите. Название Рений происходит от латинского наименования реки Рейн (Rhenus) в Германии.

Распространение Рения в природе. Рений - типичный рассеянный элемент. Среднее содержание его в земной коре 7·10-8% по массе. Известны три минерала Рения - оксид, сульфид и сульфоренат меди CuReS4 (минерал джезказганит). Как примесь Рений встречается в минералах других элементов; его повышенные концентрации отмечены в колумбитах, танталитах, цирконатах, минералах редких земель, сульфидах меди и особенно в молибдените MoS2 (от 0,1 до 10-5%). Связь Рения с молибденитом обусловлена изоморфизмом MoS2 и ReS2. Важный источник Рения - некоторые медные сульфидные концентраты (0,002- 0,005% Re).

Физические свойства Рения. Рений кристаллизуется в гексагональной плотноупакованной решетке (а = 2,760 Е, с = 4,458 Е). Атомный радиус 1,373 Е, ионный радиус Re7+ 0,56 Е. Плотность 21,03 г/см3; tпл 3180°С, tкип 5900 °С. Удельная теплоемкость 153 дж/(кг·К), или 0,03653 кал/(г·град) (0-1200 °С). Термический коэффициент линейного расширения 6,7·10-6 (20-500 °С). Удельное объемное электрическое сопротивление 19,3·10-6 ом·см (20 °С). Температура перехода в состояние сверхпроводимости 1,699 К; работа выхода 4,80 эв, парамагнитен.

По тугоплавкости Рений уступает лишь вольфраму. В отличие от вольфрама, Рений пластичен в литом и рекристаллизованном состоянии и деформируется на холоду. Модуль упругости Рения 470 Гн/м2, или 47 000 кгс/мм2 (выше, чем у других металлов, за исключением Os и Ir). Это обусловливает высокое сопротивление деформации и быстрый наклеп при обработке давлением. Рений отличается высокой длительной прочностью при температурах 1000-2000 °С.

Химические свойства Рения. У атома Re семь внешних электронов; конфигурация высших энергетических уровней 5d56s2. На воздухе при обычной температуре Рений устойчив. Окисление металла с образованием оксидов (ReO3, Re2O7) наблюдается начиная с 300 °С и интенсивно протекает выше 600 °С. С водородом Рений не реагирует вплоть до температуры плавления. С азотом не взаимодействует вообще. Рений, в отличие от других тугоплавких металлов, не образует карбидов. Фтор и хлор реагируют с Рением при нагревании с образованием ReF6 и ReCl5, с бромом и иодом металл непосредственно не взаимодействует. Пары серы при 700-800 °С дают с Рением сульфид ReS2.

Рений не корродирует в соляной и плавиковой кислотах любых концентраций на холоду и при нагревании до 100 °С. В азотной кислоте, горячей концентрированной серной кислоте, в пероксиде водорода металл растворяется с образованием рениевой кислоты. В растворах щелочей при нагревании Рений медленно корродирует, расплавленные щелочи растворяют его быстро.

Для Рения известны все валентные состояния от +7 до -1, что обусловливает многочисленность и разнообразие его соединений. Наиболее устойчивы соединения семивалентного Рения. Рениевый ангидрид ReО7 - светло-желтое вещество, хорошо растворимое в воде. Рениевая кислота HReO4 - бесцветная, сильная; сравнительно слабый окислитель (в отличие от марганцевой HMnO4). При взаимодействии HReO4 с щелочами, оксидами или карбонатами металлов образуются ее соли - перренаты. Соединения иных степеней окисления Рения - оранжево-красный оксид (VI) RеО3, темно-коричневый оксид (IV) ReO2, легколетучие хлориды и оксихлориды ReCl5, ReOCl4, ReO3Cl и другие.

Получение Рения. Основным источником Рения служат молибденитовые концентраты (с содержанием Re 0,01-0,04%) и медные концентраты некоторых месторождений меди (с содержанием Re 0,002-0,003%). При окислительном обжиге молибденитовых концентратов Рений удаляется с печными газами в виде Re2O7 (tкип 360 °С), которая концентрируется в продуктах пылеуловительных систем (шламах, растворах). На различных стадиях производства черновой меди из концентратов Рений также удаляется с газами. Если печные газы направляются в производство серной кислоты, Рений концентрируется в промывной кислоте электрофильтров. Для извлечения Рения из пылей и шламов применяют выщелачивание слабой H2SO4 с добавкой окислителя - пиролюзита. Из полученных растворов, а также из промывной серной кислоты Рений извлекают сорбцией или экстракцией. Конечным продуктом является перренат аммония NH4ReO4. Восстанавливая его водородом, получают порошок Рения, превращаемый затем в компактные заготовки методом порошковой металлургии. Применяют также плавку Рения в электроннолучевых печах.

Применение Рения. Как тугоплавкий металл Рений, а также сплавы W с Re используют в производстве электронных приборов. Кроме того, из Рения и его сплавов с W изготавливают термопары для измерения температур до 2500 °С, электроконтакты и детали точных приборов. Сплавы Re с W, Мо, Ta отличаются высокой жаропрочностью. Они применяются в авиа- и космической технике. Рений и его соединения используются в качестве эффективных катализаторов при крекинге нефти.

2.4 Борий

Борий (лат. Bohrium), Bh, химический элемент VII группы периодической системы Менделеева; атомный номер 107, атомный вес 262.

Элемент впервые получили в 1981 году П.Армбрустер, Г.Манзенберг с сотрудниками в Дармштадте (Германия). Назван в честь Нильса Бора.

Впервые Bh создан бомбардировкой атома висмута 209Bi ядрами хрома54Cr по реакции 209Bi + 54Cr = 262Bh + 1n.

Электронная конфигурация внешнего слоя 5f146d57s2.

Трансурановый элемент, металл. Получено всего несколько атомов. Имеет исключительно научное значение.

Список Литературы

1. Ахметов Н. С. Общая и неорганическая химия. -- М.: Высшая школа, 2001. -- ISBN 5-06-003363-5.

2. Лидин Р. А.. Справочник по общей и неорганической химии. -- М.: КолосС, 2008. -- ISBN 978-5-9532-0465-1.

3. Некрасов Б. В. Основы общей химии. -- М.: Лань, 2004. -- ISBN 5-8114-0501-4.

4. Спицын В. И., Мартыненко Л. И. Неорганическая химия. -- М.: МГУ, 1991, 1994.

5. Турова Н. Я. Неорганическая химия в таблицах. Учебное пособие. -- М.: ЧеРо, 2002. -- ISBN 5-88711-168-2.

6. Greenwood, Norman N.; Earnshaw, Alan. (1997), Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann, ISBN 0-08-037941-9

7. F. Albert Cotton, Carlos A. Murillo, and Manfred Bochmann, (1999), Advanced inorganic chemistry. (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5

8. Housecroft, C. E. Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall, ISBN 978-0-13-175553-6

Интернет источники:

1. http://www.for-stydents.ru/himiya/uchebniki/obschaya-himiya.html

2. http://www.xumuk.ru/nekrasov/xii.html

3. http://repetitor.h11.ru/docs/chem/02group.htm

4. http://alnam.ru/book_chem.php?id=1

Размещено на Allbest.ru


Подобные документы

  • Изучение понятия и основных свойств галогенов - химических элементов (фтор, хлор, бром, йод и астат), составляющих главную подгруппу VII группы периодической системы Д.И. Менделеева. Положительное и отрицательное влияние галогенов на организм человека.

    презентация [147,3 K], добавлен 20.10.2011

  • История открытия и место в периодической системе химических элементов Д.И. Менделеева галогенов: фтора, хлора, брома, йода и астата. Химические и физические свойства элементов, их применение. Распространённость элементов и получение простых веществ.

    презентация [656,9 K], добавлен 13.03.2014

  • Химические элементы, относящиеся к галогенам: фтор, хлор, бром, йод и астат. Химическая характеристика, порядковые номера элементов, их физические свойства, энергия ионизации и электроотрицательность. Степени окисления галогенов, энергия диссоциации.

    презентация [335,4 K], добавлен 16.12.2013

  • Понятие и практическое значение галогенов, их физические и химические свойства, отличительные признаки. Характеристика и способы получения галогенов: йода, брома, хлора, фтора, астат. Реакции, характерные для данных галогенов, сферы их использования.

    презентация [988,7 K], добавлен 11.03.2011

  • Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.

    презентация [1,8 M], добавлен 23.04.2014

  • Галогены - химические элементы, относящиеся к главной подгруппе VII группы периодической системы Менделеева. К галогенам относят фтор, хлор, бром, иод и астат. Все галогены - энергичные окислители, поэтому встречаются в природе только в виде соединений.

    реферат [238,8 K], добавлен 20.03.2009

  • Хлор - 17-й элемент периодической таблицы химических элементов третьего периода, с атомным номером 17. Химически активный неметалл, входит в группу галогенов. Физические свойства хлора, взаимодействие с металлами и неметаллами, окислительные реакции.

    презентация [1,5 M], добавлен 26.12.2011

  • Свойства элементов подгруппы азота, строение и характеристика атомов. Увеличение металлических свойств при переходе элементов сверху вниз в периодической системе. Распространение азота, фосфора, мышьяка, сурьмы и висмута в природе, их применение.

    реферат [24,0 K], добавлен 15.06.2009

  • Физические и химические свойства галогенов, их положение в Периодической таблице элементов Менделеева. Основные источники и биологическое значение хлора, брома, иода, фтора. Нахождение галогенов в природе, их получение и промышленное использование.

    презентация [64,6 K], добавлен 01.12.2014

  • Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.

    реферат [76,2 K], добавлен 18.05.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.