Подгруппа углерода

Специфика строения атомов химических элементов подгруппы углерода, характеристика элементов углерода, кремния, германия, олова и свинца. Химические свойства простых веществ, образованных углеродом. Применение достижений нано химии, её направления.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 21.10.2014
Размер файла 352,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

Глава 1.Общая характеристика подгруппы углерода

Глава 2.Эксперементальная часть

Заключение

Список литературы

Приложение

Введение

Углерод (символ С - от латинского Carboneum) - элемент главной подгруппы 4 группы, порядковый номер 6, электронное строение атома 1s22s2 2p2. степени окисления в соединениях -4, +2, +4. Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применять графит для изготовления тиглей и карандашей.

В 1778 году К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод был признан химическим элементом в 1789 году Лавуазье. Латинское название сагboneum Углерод получил от carbo - уголь.

Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния - оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к "землям" (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название ввел Г. И. Гесс в 1834.

Сплавы Олова с медью - бронзы были известны уже в 4-м тысячелетии до н. э., а чистый металл во 2-м тысячелетии до н. э. В древнем мире из Олова делали украшения, посуду, утварь. Происхождение названий "stannum" и "олово" точно не установлено.

Олово - характерный элемент верхней части земной коры, его содержание в литосфере 2,5·10-4% по массе, в кислых изверженных породах 3·10-4'%, а в более глубоких основных 1,5·10-4%; еще меньше Олова в мантии. Концентрирование Олова связано как с магматическими процессами (известны "оловоносные граниты", пегматиты, обогащенные Оловом), так и с гидротермальными процессами; из 24 известных минералов Олова 23 образовались при высоких температурах и давлениях. Главное промышленное значение имеет касситерит SnO2, меньшее - станнин Cu2FeSnS4. В биосфере Олово мигрирует слабо, в морской воде его лишь 3·10-7% ; известны водные растения с повышенным содержанием Олова. Однако общая тенденция геохимии Олова в биосфере - рассеяние.

Свинец был известен за 6-7 тысяч лет до н. э. народам Месопотамии, Египта и других стран древнего мира. Он служил для изготовления статуй, предметов домашнего обихода, табличек для письма. Римляне пользовались свинцовыми трубами для водопроводов. Алхимики называли Свинец Сатурном и обозначали его знаком этой планеты. Соединения Свинец - "свинцовая зола" РbО, свинцовые белила 2РbСО3·Рb(ОН)2 применялись в Древней Греции и Риме как составные части лекарств и красок. Когда было изобретено огнестрельное оружие, Свинец начали применять как материал для пуль. Ядовитость Свинца отметили еще в 1 веке н. э. греческий врач Диоскорид и Плиний Старший.

Содержание Свинца в земной коре (кларк) 1,6·10-3% по массе. Образование в земной коре около 80 минералов, содержащих Свинец (главный из них галенит PbS), связано в основном с формированием гидротермальных месторождений. В зонах окисления полиметаллических руд образуются многочисленные (около 90) вторичные минералы: сульфаты (англезит PbSO4), карбонаты (церуссит РbCO3), фосфаты [пироморфит Рb5(РО4)3Сl].

В биосфере Свинец в основном рассеивается, его мало в живом веществе (5·10-5%), морской воде (3·10-9%). Из природных вод Свинец отчасти сорбируется глинами и осаждается сероводородом, поэтому он накапливается в морских илах с сероводородным заражением и в образовавшихся из них черных глинах и сланцах.

Цель: сформировать знания об особенностях строения атомов химических элементов подгруппы углерода, ознакомиться с пятью элементами-углерод ,кремний, германий, олово и свинец; изучить химические свойства простых веществ, образовательных углеродом.

Задачи:

Сформировать понятия «нано технология» и «нано химия ,обосновать фундаментальные принципы, лежащие в основе нано химии;

Познакомить учащихся с основными методами исследования в нано химии;

Познакомить учащихся с применением основных достижений нано химии;

Познакомить учащихся с различными направлениями нано материаловедения:

Глава 1. Общая характеристика элементов подгруппы углерода

Главную подгруппу IV группы периодической системы Д. И. Менделеева образуют пять элементов - углерод, кремний, германий, олово и свинец. В связи с тем, что от углерода к свинцу радиус атома увеличивается, размеры атомов возрастают, способность к присоединению электронов, а следовательно, и неметаллические свойства будут ослабевать, легкость же отдачи электронов - возрастать. Уже у германия проявляются металлические свойства, а у олова и у свинца они преобладают над неметаллическими. Таким образом, углерод и кремний относят к неметаллам, германий причисляют как к металлам, так и к неметаллам, а олово и свинец - металлы.

Германий по внешнему виду похож на металлы, но хрупок. Как и кремний, германий принадлежит к полупроводникам, т. е. к веществам, занимающим промежуточное положение между непроводниками электрического тока, или изоляторами (многие неметаллы), и проводниками (металлы). В качестве полупроводника германий широко применяется в радиоэлектронике.

Простые вещества, образованные оловом и свинцом- следующими элементами подгруппы, проявляют уже все типичные свойства металлов: металлический блеск, высокую электрическую проводимость и теплопроводность, пластичность. Как правило, олово и свинец образуют соединения, в которых они проявляют степени окисления +2 и +4. На внешнем энергетическом уровне атомов элементов главной подгруппы IV группы содержатся четыре электрона: два спаренных s-электрона и два неспаренных р-электрона. Поэтому при образовании соединений атомы этих элементов могут или отдавать все четыре электрона, проявляя высшую степень окисления +4, или принимать четыре электрона, проявляя при этом степень окисления -4.

Среди элементов IV группы наибольшее значение имеют углерод, входящий в состав всех живых организмов, и кремний - важнейший элемент земной коры.

Двухвалентные соединения для кремния менее характерны, чем для углерода. Это связано с меньшим значением энергии возбуждения атомов кремния благодаря большей удаленности наружных электронов от ядра. При обычных условиях углерод и кремний очень инертны и практически не взаимодействуют ни с какими простыми и сложными веществами.

При обычных условиях углерод и кремний очень инертны и практически не взаимодействуют ни с какими простыми и сложными веществами. Исключение составляет аморфный кремний, реагирующий с фтором.

При нагревании углерод и кремний взаимодействуют с галогенами, с элементами подгруппы серы, азотом, водородом и многими металлами. В последнем случае образуются соединения, называемые карбидами и силицидами. С углеродом и кремнием взаимодействуют лишь некоторые кислоты, являющиеся сильными окислителями. Например, в присутствии окислителей (KClO3, MnO2) аморфный углерод растворяется в концентрированных азотной и серной кислотах при нагревании. Кремний же растворяется лишь в смеси азотной и плавиковой кислот:

3Si + 18HF + 4HNO3 = 3H2SiF6 + 4NO + 8Н2О

Щелочи переводят кремний в соли кремниевой кислоты с выделением водорода:

Si + 2КОН + H2O= К2SiO3 + 2Н2-

С водой углерод и кремний реагируют лишь при высоких температурах:

С + Н2О ®¬ СО + Н2

Si + ЗH2О = Н2SiO3+ 2Н2

Первая из этих реакций имеет большое практическое значение. Она лежит в основе процесса газификации твердого топлива.

Углерод в отличие от кремния непосредственно взаимодействует с водородом:

С + 2Н2 = СН4

Реакция осуществляется при нагревании в присутствии катализатора (мелкий раздробленный никель). Продукт взаимодействия -- метан -- является первым членом ряда предельных углеводородов, состав которых выражается формулой CnH2n+2.

Аналогично углероду кремний тоже образует с водородом соединения, но они менее устойчивы. Надежно идентифицированы только шесть низших гомологов предельного ряда. Их называют силанами. Простейший представитель моносилан SiH4 имеет строение, аналогичное СН4. Силаны - крайне реакционноспособные соединения, воспламеняющиеся на воздухе. Низкая прочность связи Si--Si (H = -220 кДж/моль) по сравнению со связью С--С (H = -340 кДж/моль) обусловила возможность образования лишь ограниченного числа силанов по сравнению с углеводородами.

При нагревании на воздухе углерод и кремний сгорают с образованием оксидов. Однако процессы окисления идут по-разному. При недостатке кислорода углерод образует оксид углерода (II), а при избытке -- оксид углерода (IV). Кремний с кислородом во всех случаях образует оксид кремния (IV). Оксид кремния (II) может быть получен лишь косвенным путем:

Si + SiO2 = 2SiO.

В природе кремнезем(SiO2) встречается в виде включений в граниты и другие породы. Такие включения заметны на осколках породы, они напоминают кусочки оплавленного стекла. Освобождаясь при выветривании породы, они скапливаются в руслах рек в виде белого песка. Встречается оксид кремния(IV) и в виде прекрасных кристаллов кварца размером, иногда превышающим человеческий рост. Советские ученые и инженеры разработали методы, позволяющие искусственно выращивать кристаллы кварца длиной до 1,5-2 м.

При плавлении аморфный кварц размягчается постепенно и также постепенно при охлаждении затвердевает. Это облегчает изготовление из кварца изделий, например химической посуды. Кварц очень мало расширяется при нагревании. Поэтому кварцевую посуду можно, раскалив добела, бросить в холодную воду, и она не растрескается.

Оксид кремния (IV) практически нерастворим в воде. Соответствующая ему кремниевая кислота получается вытеснением ее из растворов солей другими кислотами, в том числе и угольной. Обратите внимание, что в растворе угольная кислота вытесняет кремниевую из ее солей, а при прокаливании происходит обратное явление. Первый процесс обусловлен тем, что кремниевая кислота более слабая, чем угольная. Второй же процесс объясняется меньшей летучестью оксида кремния (IV).

Высшие солеобразующие оксиды углерода и кремния довольно сильно отличаются по свойствам. Оксид углерода (IV) - газ, который конденсируется лишь при сильном охлаждении, образуя кристаллическую массу, а оксид кремния (IV), напротив, кристаллическое вещество, встречающееся в природе в виде минерала кварца.

Оксид углерода (IV) растворяется в воде (1:1 по объему), причем он частично взаимодействует с ней, образуя угольную кислоту:

СО2+ Н2О ®¬ Н2СО3

Оксид углерода(II) не реагирует ни с водой, ни с растворами щелочей и кислот. Подобно оксиду азота(II) NO, он относится к несолеобразующим оксидам.

Оксид углерода(II) получается при взаимодействии оксида углерода(IV) с сильно раскаленным углем:

С + СО2 = 2CO - 160 кДж

В этом можно убедиться, заглянув в хорошо растопленную печь. Над раскаленными добела углями вспыхивают голубые огоньки. Это пламя оксида углерода(II), сгорающего в воздухе, поступающем через открытую дверцу печи. Когда угли несколько остывают, голубые огоньки исчезают: реакция между углем и оксидом углерода(IV) прекратилась и оксид углерода(II) не образуется.

Теперь понятно, почему сильно раскаленный уголь сгорает синим пламенем, а слабо раскаленный - без пламени.

Оксид углерода(II) содержится в некоторых видах газообразного топлива, в частности генераторном газе.

Оксид углерода(IV) образуется в природе при дыхании животных и растений, при гниении органических остатков в почве, при пожарах. Оксид углерода(IV) тяжелее атмосферного воздуха и поэтому может скапливаться в опасных концентрациях в погребах и колодцах. В угольных шахтах из-за медленного окисления угля содержание углекислого газа также выше, чем на открытом воздухе. Служба охраны труда следит за тем, чтобы оно не превышало установленной нормы (30 мг/м3).

Для растений углекислый газ служит источником углерода, и обогащение им воздуха в парниках и теплицах приводит к повышению урожая. Оксид углерода(IV) применяют также для газирования воды и напитков, жидким CO2 заряжают огнетушители. Твердый оксид углерода(IV) под названием сухого льда применяют для охлаждения продуктов. Преимущество сухого льда перед обыкновенным заключается в том, что он поддерживает в окружающем пространстве значительно более низкую температуру и испаряется, не переходя в жидкое состояние.

Растворяясь в воде оксид углерода(IV) почти не соединяется с нею. Его гидроксид - угольная кислота Н2СО3 - существует лишь в момент образования, она практически нацело разлагается на углекислый газ и воду:

Н2СО3 = Н2О + СО2

Учитывая, что угольная кислота является двухосновной, равновесие между различными формами молекул и ионов в водном растворе оксида углерода (IV) можно выразить уравнением:

Н2О + СО2®¬ Н2СО3 ®¬ H+ + НСО3- ®¬ 2H+ + CO32- .

При нагревании оксид углерода (IV) улетучивается, и равновесие смещается влево, а при прибавлении щелочи происходит связывание ионов Н+ и смещение равновесия вправо.

Угольная кислота слабая. В водном растворе соли угольной кислоты гидролизуются. Растворы средних солей карбонатов обладают сильной щелочной реакцией:

CO32-+ H2O = HCO3-+ OH-

Наиболее распространен в природе карбонат кальция(известняк, мрамор, мел и т.д.). Залежи пород, содержащих карбонат кальция , особенно известняка, встречаются довольно часто. Поэтому одной из задач краеведческой работы в районах с кислыми почвами должны быть поиски месторождений известняка.

Из искусственно получаемых карбонатов большое значение имеет карбонат натрия Na2CO3. Безводный карбонат натрия известен под названием кальцинированной соды, а кристаллогидрат Na2CO3*10H2O - кристаллической соды. Соду применяют для производства мыла, стекла, а в быту для стирки белья.

При насыщении раствора соды углекислым газом она переходит в гидрокарбонат натрия NaHCO3. Гидрокарбонат натрия продают в аптеках и продовольственных магазинах под названием питьевой соды. Ее принимают внутрь при изжоге, вызванной избытком в желудочном соке соляной кислоты. Питьевую соду применяют в кондитерском деле и хлебопечении.

Рис.1 Модель решетки алмаза.

При нагревании она разлагается с выделением углекислого газа и паров воды:

2NaHCO3 = Na2CO3 + H2O + СО2

Поэтому питьевую соду вводят в состав хлебопекарных порошков, добавляемых к тесту. Такое тесто подходит без применения дрожжей и заквасок, наполняясь пузырьками углекислого газа, и выпеченный из него продукт получается пористым и мягким.

Углерод (лат. Carboneum), С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12С (98,892%) и 13С (1,108%). Из радиоактивных изотопов наиболее важен 14С с периодом полураспада(ТЅ = 5,6·103 лет). Небольшие количества 14С (около 2·10-10% по массе) постоянно образуются в верхних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14N. По удельной активности изотопа 14С в остатках биогенного происхождения определяют их возраст.14С широко используется в качестве изотопного индикатора.

Физические свойства Углерода. Известны несколько кристаллических модификаций Углерода: графит, алмаз, карбин, лонсдейлит и другие. Графит - серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры: а = 2,462Е, c = 6,701Е. При комнатной температуре и нормальном давлении (0,1 Мн/м2, или 1 кгс/см2) графит термодинамически стабилен. Алмаз - очень твердое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решетку: а = 3,560Е. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400 °С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется. Жидкий Углерод может быть получен при давлениях выше 10,5 Мн/м2 (105 кгс/см2) и температурах выше 3700 °С. Для твердого Углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемых "аморфный" Углерод, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей "аморфного" Углерода выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" Углерод очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность "аморфного" Углерода всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9-2 г/см3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно.

Химические свойства Углерода. Конфигурация внешней электронной оболочки атома Углерода 2s22p2. Для Углерода характерно образование четырех ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp3. Поэтому Углерод способен в равной степени как притягивать, так и отдавать электроны. Химическая связь может осуществляться за счет sp3-, sp2- и sp- гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов Углерода и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами Углерода.

Уникальная способность атомов Углерода соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений Углерода, изучаемых органической химией.В соединениях Углерод проявляет степени окисления -4; +2; +4. Атомный радиус 0,77Е, ковалентные радиусы 0,77Е, 0,67Е, 0,60Е соответственно в одинарной, двойной и тройной связях; ионный радиус С4-2,60Е, С4+ 0,20Е. При обычных условиях Углерод химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: "аморфный" Углерод, графит, алмаз; взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300-500 °С, 600-700 °С и 850-1000 °С с образованием оксида углерода (IV) СО2 и оксида углерода (II) СО.

СО2 растворяется в воде с образованием угольной кислоты. В 1906 году О. Дильс получил недооксид Углерода С3О2. Все формы Углерода устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO3и КСlO3 и других). "Аморфный" Углерод реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение Углерода с хлором происходит в электрической дуге; с бромом и иодом Углерод не реагирует, поэтому многочисленные галогениды углерода синтезируют косвенным путем. Из оксигалогенидов общей формулы СОХ2(где X - галоген) наиболее известна хлороксид СОСl (фосген). Водород с алмазом не взаимодействует; с графитом и "аморфным" Углеродом реагирует при высоких температурах в присутствии катализаторов (Ni, Pt): при 600-1000 °С образуется в основном метан СН4, при 1500-2000 °С - ацетилен С2Н2; в продуктах могут присутствовать также других углеводороды, например этан С2Н6, бензол С6Н6. Взаимодействие серы с "аморфным" Углеродом и графитом начинается при 700-800 °С, с алмазом при 900-1000 °С; во всех случаях образуется сероуглерод CS2. Другие соединения Углерода, содержащие серу (тиооксид CS, тионедооксид С3S2, серооксид COS и тиофосген CSCl2), получают косвенным путем. При взаимодействии CS2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие Углерода с азотом с получением циана (CN)2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений Углерода важное практическое значение имеют цианистый водород HCN (Синильная кислота) и его многочисленные производные: цианиды, галогенцианы, нитрилы и других При температурах выше 1000 °С Углерод взаимодействует со многими металлами, давая карбиды. Все формы Углерода при нагревании восстанавливают оксиды металлов с образованием свободных металлов (Zn, Cd, Cu, Рb и других) или карбидов (СаС2, Мо2С, WC, ТаС и других). Углерод реагирует при температурах выше 600-800 °С с водяным паром и углекислым газом (Газификация топлив). Отличительной особенностью графита является способность при умеренном нагревании до 300-400 °С взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа С8Ме, С24Ме, С8Х (где X - галоген, Me - металл). Известны соединения включения графита с HNO3, H2SO4, FeCl3 и другие (например, бисульфат графита C24SO4H2). Все формы Углерода нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, Fe, Ni, Co).

Народнохозяйственное значение Углерода определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза, для получения пластических масс и других.

Получение. В промышленности получают из печных (дымных) газов, а также при разложении природных карбонатов (известняк, доломит). Смесь полученных газов, промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната, чаще применяется водный раствор моноэтаноламина, который при определённых условиях способен абсорбировать СО?, содержащийся в дымном газе, а при нагреве отдавать его, таким образом, отделяется готовый продукт от других веществ.В пищевых целях используется углекислота, образующаяся при спиртовом брожении, а также произведённая из смеси дымных газов, полученных в результате специального сжигания природного газа и других видов топлива.

Применение. В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя. Жидкая углекислота (жидкая пищевая углекислота) -- сжиженный углекислый газ, хранящийся под высоким давлением (~ 65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей и для производства газированной воды и лимонада.

Углекислый газ используется в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его диссоциация с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в аргоне или гелии. Твёрдая углекислота -- сухой лёд -- используется в ледниках.Твёрдая углекислота используется в качестве хладагента и рабочего тела в теплоэнергетических установках (в холодильниках, морозильниках, солнечных электрогенераторах и т. д.).

Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами:28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).

Физические свойства Кремния. Кремний образует темно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решетку типа алмаза с периодом а = 5.431Е, плотностью 2,33 г/см3. При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см3. Кремний плавится при 1417 °С, кипит при 2600 °С. Удельная теплоемкость (при 20-100 °С) 800 Дж/(кг·К), или 0,191 кал/(г·град); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25 °С) 84-126 вт/(м·К), или 0,20-0,30 кал/(см·сек·град). Температурный коэффициент линейного расширения 2,33·10-6 К-1, ниже 120 К становится отрицательным. Кремний прозрачен для длинноволновых ИК-лучей; показатель преломления (для л = 6 мкм) 3,42; диэлектрическая проницаемость 11,7. Кремний диамагнитен, атомная магнитная восприимчивость -0,13-10-6. Твердость Кремния по Моосу 7,0, по Бринеллю 2,4 Гн/м2 (240 кгс/мм2), модуль упругости 109 Гн/м2 (10 890 кгс/мм2), коэффициент сжимаемости 0,325·10-6см2/кг. Кремний хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

Кремний - полупроводник, находящий большое применение. Электрические свойства Кремния очень сильно зависят от примесей. Собственное удельное объемное электросопротивление Кремния при комнатной температуре принимается равным 2,3·103 ом·м (2,3·105 ом·см).

Полупроводниковый Кремний с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

Химические свойства Кремния. В соответствии с положением Кремния в периодической системе Менделеева 14 электронов атома Кремния распределены по трем оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s22s22p63s23p2. Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,ЗЗЕ, ковалентный радиус 1,17Е, ионные радиусы Si4+ 0,39Е, Si4- 1,98Е.

В соединениях Кремний (аналогично углероду) 4-валентен. Однако, в отличие от углерода, Кремний наряду с координационным числом 4 проявляет координационное число 6, что объясняется большим объемом его атома (примером таких соединений являются кремнефториды, содержащие группу [SiF6]2-).

Химическая связь атома Кремния с другими атомами осуществляется обычно за счет гибридных sр3-орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда Кремний является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), Кремний в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si - О, равная 464 кДж/молъ (111 ккал/молъ), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si - Si мала, 176 кДж/молъ (42 ккал/моль); в отличие от углерода, для Кремния не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе Кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2. Известен также оксид кремния (II) SiO, устойчивый при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твердый продукт, легко разлагающийся на тонкую смесь Si и SiO2. Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. Кремний реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы SiX4. Водород непосредственно не реагирует с Кремнием, и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и других. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12). При нагревании Кремний реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с СН3Сl) с образованием органогалосиланов [например, Si(СН3)3Cl], служащих для синтеза многочисленных кремнийорганических соединений.

Кремний образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi2, Me5Si3, Me3Si, Me2Si и других) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твердостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение Кремния. Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого Кремния Это требует предварительного синтеза чистейших исходных соединений Кремния, из которых Кремний извлекают путем восстановления или термического разложения.

Чистый полупроводниковый Кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и SiH4) и монокристаллический (бестигельной зонной плавкой и "вытягиванием" монокристалла из расплавленного Кремния - метод Чохральского).

Применение Кремния. Специально легированный Кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку Кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике,

Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Кремний используется для удаления растворенного в расплавленных металлах кислорода (раскисления). Кремний является составной частью большого числа сплавов железа и цветных металлов. Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие Кремний. Все большее количество Кремния идет на синтез кремнийорганических соединений и силицидов. Кремнезем и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и других отраслями промышленности.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз..

Германий (лат. Germanium), Ge, химический элемент IV группы периодической системы Менделеева; порядковый номер 32, атомная масса 72,59; твердое вещество серо-белого цвета с металлическим блеском. Природный Германий представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Германия предсказал в 1871 году Д. И. Менделеев и назвал этот неизвестный еще элемент экасилицием из-за близости свойств его с кремнием. В 1886 году немецкий химик К. Винклер обнаружил в минерале аргиродите новый элемент, который назвал Германием в честь своей страны; Германий оказался вполне тождествен экасилицию. До второй половины 20 века практическое применение Германия оставалось весьма ограниченным. Промышленное производство Германия возникло в связи с развитием полупроводниковой электроники.

Общее содержание Германий в земной коре 7·10-4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ge)S6 и другие. Основная масса Германия рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых оксидных минералах (хромите, магнетите, рутиле и других), в гранитах, диабазах и базальтах. Кроме того, Германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.

Физические свойства Германия. Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575Е. Плотность твердого Германий 5,327 г/см3 (25°С); жидкого 5,557 (1000°С); tпл 937,5°С; tкип около 2700°С; коэффициент теплопроводности ~60 Вт/(м·К),или 0,14 кал/(см·сек·град) при 25°С. Даже весьма чистый Германий хрупок при обычной температуре, но выше 550°С поддается пластической деформации. Твердость Германия по минералогической шкале 6-6,5; коэффициент сжимаемости (в интервале давлений 0-120 Гн/м2, или 0-12000 кгс/мм2) 1,4·10-7м2/мн (1,4·10-6 см2/кгс); поверхностное натяжение 0,6 н/м (600 дин/см). Германий - типичный полупроводник с шириной запрещенной зоны 1,104·10-19дж или 0,69 эв (25°С); удельное электросопротивление Германия высокой чистоты 0,60 ом·м (60 ом·см) при 25°С; подвижность электронов 3900 и подвижность дырок 1900 см2/в·сек (25°С) (при содержании примесей менее 10-8%). Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм.

Химические свойства Германия. В химические соединениях Германий обычно проявляет валентности 2 и 4, причем более стабильны соединения 4-валентного Германия. При комнатной температуре Германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500-700°С Германий окисляется до оксидов GeO и GeO2. Оксид Германия (IV) - белый порошок с tпл 1116°C; растворимость в воде 4,3 г/л (20°С). По химическиv свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (GeO3·nH2O), выделяемого при гидролизе тетрахлорида GeCl4. Сплавлением GeO2 с других оксидами могут быть получены производные германиевой кислоты - германаты металлов (Li2GeO3, Na2GeO3 и другие) - твердые вещества с высокими температурами плавления.

При взаимодействии Германия с галогенами образуются соответствующие тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700-800°С в присутствии СО). Одно из наиболее важных соединений Германия тетрахлорид GeCl4 - бесцветная жидкость; tпл -49,5°С; tкип 83,1°С; плотность 1,84 г/см3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированного оксида (IV). Получается хлорированием металлического Германия или взаимодействием GeO2 с концентрированной НСl. Известны также дигалогениды Германия общей формулы GeX2, монохлорид GeCl, гексахлордигерман Ge2Cl6 и оксихлориды Германия (например, СеОСl2).

Сера энергично взаимодействует с Германием при 900-1000°С с образованием дисульфида GeS2 - белого твердого вещества, tпл 825°С. Описаны также моносульфид GeS и аналогичные соединения Германия с селеном и теллуром, которые являются полупроводниками. Водород незначительно реагирует с Германием при 1000-1100°С с образованием гермина (GeH)Х - малоустойчивого и легко летучего соединения. Взаимодействием германидов с разбавленной соляной кислотой могут быть получены германоводороды ряда GenH2n+2 вплоть до Ge9H20. Известен также гермилен состава GeH2. С азотом Германий непосредственно не реагирует, однако существует нитрид Gе3N4, получающийся при действии аммиака на Германий при 700-800°С. С углеродом Германий не взаимодействует. Германий образует соединения со многими металлами - германиды.

Известны многочисленные комплексные соединения Германия, которые приобретают все большее значение как в аналитической химии Германия, так и в процессах его получения. Германий образует комплексные соединения с органическими гидроксилсодержащими молекулами (многоатомными спиртами, многоосновными кислотами и другими). Получены гетерополикислоты Германия. Так же, как и для других элементов IV группы, для Германия характерно образование металлорганических соединений, примером которых служит тетраэтилгерман (С2Н5)4Ge3.

Получение Германия. В промышленного практике Германий получают преимущественно из побочных продуктов переработки руд цветных металлов (цинковой обманки, цинково-медно-свинцовых полиметаллических концентратов), содержащих 0,001-0,1% Германия. В качестве сырья используют также золы от сжигания угля, пыль газогенераторов и отходы коксохимических заводов. Первоначально из перечисленных источников различными способами, зависящими от состава сырья, получают германиевый концентрат (2-10% Германия). Извлечение Германия из концентрата обычно включает следующие стадии: 1) хлорирование концентрата соляной кислотой, смесью ее с хлором в водной среде или других хлорирующими агентами с получением технического GeCl4. Для очистки GеСl4применяют ректификацию и экстракцию примесей концентрированной НСl. 2) Гидролиз GeCl4 и прокаливание продуктов гидролиза до получения GeO2. 3) Восстановление GeO2 водородом или аммиаком до металла. Для выделения очень чистого Германия, используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Германий получают обычно зонной плавкой или методом Чохральского.

Применение Германия. Германий - один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Германий применяется также в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. Важной областью применения Германия является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8-14 мкм. Перспективны для практическое использования многие сплавы, в состав которых входят Германий, стекла на основе GeO2 и другие соединения Германия.

Олово (лат. Stannum), Sn, химический элемент IV группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжелый, мягкий и пластичный. Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120Sn наиболее распространен (около 33%).

Физические свойства Олова. Олово имеет две полиморфные модификации. Кристаллическая решетка обычного в-Sn (белого Олово) тетрагональная с периодами а = 5,813Е, с = 3,176Е; плотность 7,29 г/см3. При температурах ниже 13,2 °С устойчиво б-Sn (серое Олово) кубической структуры типа алмаза; плотность 5,85 г/см3. Переход в->б сопровождается превращением металла в порошок. tпл 231 ,9 °С, tкип 2270 °С. Температурный коэффициент линейного расширения 23·10-6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10-6 ом·м, то есть 11,5·10-6 ом·см. Предел прочности при растяжении 16,6 Мн/м2 (1,7 кгс/мм2); относительное удлинение 80-90% ; твердость по Бринеллю 38,3-41,2 Мн/м2(3,9-4,2 кгс/мм2). При изгибании прутков Олова слышен характерный хруст от взаимного трения кристаллитов.

Химические свойства Олова. В соответствии с конфигурацией внешних электронов атома 5s22 Олово имеет две степени окисления: +2 и +4; последняя более устойчива; соединения Sn (II) - сильные восстановители. Сухим и влажным воздухом при температуре до 100 °С Олово практически не окисляется: его предохраняет тонкая, прочная и плотная пленка SnO2. По отношению к холодной и кипящей воде Олово устойчиво. Стандартный электродный потенциал Олова в кислой среде равен -0,136 в. Из разбавленных НCl и H2SO4 на холоду Олово медленно вытесняет водород, образуя соответственно хлорид SnCl2 и сульфат SnSO4. В горячей концентрированной H2SO4 при нагревании Олово растворяется, образуя Sn(SO4)2 и SO2. Холодная (0°С) разбавленная азотная кислота действует на Олово по реакции:

4Sn + 10HNO3 = 4Sn(NO3)2 + NH4NO3 + 3H2O.

При нагревании с концентрированной HNO3 (плотность 1,2-1,42 г/мл) Олово окисляется с образованием осадка метаоловянной кислоты H2SnO3, степень гидротации которой переменна:

3Sn + 4HNO3 + n H2O = 3H2SnO3·nH2O + 4NO.

При нагревании Олова в концентрированных растворах щелочей выделяется водород и образуется гексагидростаниат:

Sn + 2KOH + 4H2O = K2[Sn(OH)6] + 2H2.

Кислород воздуха пассивирует Олово, оставляя на его поверхности пленку SnO2. Химически оксид (IV) SnO2 очень устойчив, а оксид (II) SnO быстро окисляется, его получают косвенным путем. SnO2 проявляет преимущественно кислотные свойства, SnO - основные.

С водородом олово непосредственно не соединяется; гидрид SnH4образуется при взаимодействии Mg2Sn с соляной кислотой:

Mg2Sn + 4HCl = 2MgCl2 + SnH4.

Это бесцветный ядовитый газ, tкип -52 °С; он очень непрочен, при комнатной температуре разлагается на Sn и H2 в течение нескольких суток, а выше 150°С - мгновенно. Образуется также при действии водорода в момент выделения на соли Олова, например:

SnCl2 + 4HCl + 3Mg = 3MgCl2 + SnH4.

С галогенами олово дает соединения состава SnX2 и SnX4. Первые солеобразны и в растворах дают ионы Sn2+, вторые (кроме SnF4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием Олова с сухим хлором (Sn + 2Cl2 = SnCl4) получают тетрахлорид SnCl4; это бесцветная жидкость, хорошо растворяющая серу, фосфор, иод. Раньше по приведенной реакции удаляли Олово с вышедших из строя луженых изделий. Сейчас способ мало распространен из-за токсичности хлора и высоких потерь Олова.

Тетрагалогениды SnX4 образуют комплексные соединения с Н2О, NH3, оксидами азота, РСl5, спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды Олова дают комплексные кислоты, устойчивые в растворах, например H2SnCl4 и H2SnCl6. При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки Sn(OH)2 или Н2SnО3·nН2О. С серой Олово дает нерастворимые в воде и разбавленных кислотах сульфиды: коричневый SnS и золотисто-желтый SnS2.

Получение Олова. Промышленное получение Олова целесообразно, если содержание его в россыпях 0,01% , в рудах 0,1%; обычно же десятые и единицы процентов. Олову в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и другие ценные металлы. Первичное сырье обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.

Концентраты, содержащие 50-70% Олова, обжигают для удаления серы, очищают от железа действием НCl. Если же присутствуют примеси вольфрамита (Fe,Mn)WO4 и шеелита CaWO4, концентрат обрабатывают НCl; образовавшуюся WO3·H2O извлекают с помощью NH4OH. Плавкой концентратов с углем в электрических или пламенных печах получают черновое Олово (94-98% Sn), содержащее примеси Cu, Pb, Fe, As, Sb, Bi. При выпуске из печей черновое Олово фильтруют при температуре 500-600 °С через кокс или центрифугируют, отделяя этим основную массу железа. Остаток Fe и Cu удаляют вмешиванием в жидкий металл элементарной серы; примеси всплывают в виде твердых сульфидов, которые снимают с поверхности Олова. От мышьяка и сурьмы Олово рафинируют аналогично - вмешиванием алюминия, от свинца - с помощью SnCl2. Иногда Bi и Рb испаряют в вакууме. Электролитическое рафинирование и зонную перекристаллизацию применяют сравнительно редко для получения особо чистого Олова. Около 50% всего производимого Олова составляет вторичный металл; его получают из отходов белой жести, лома и различных сплавов.

Применение Олова. До 40% Олово идет на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов. Оксид SnO2 применяется для изготовления жаростойких эмалей и глазурей. Соль - станнит натрия Na2SnO3·3H2O используется в протравном крашении тканей. Кристаллический SnS2("сусальное золото") входит в состав красок, имитирующих позолоту. Станнид ниобия Nb3Sn - один из наиболее используемых сверхпроводящих материалов. атом углерод германий олово

Токсичность самого Олова и большинства его неорганических соединений невелика. Острых отравлений, вызываемых широко используемым в промышленности элементарным Оловом, практически не встречается. Отдельные случаи отравлений, описанные в литературе, по-видимому, вызваны выделением AsH3 при случайном попадании воды на отходы очистки Олова от мышьяка. У рабочих оловоплавильных заводов при длительном воздействии пыли оксида Олова (так называемое черное Олово, SnO) могут развиться пневмокониозы; у рабочих, занятых изготовлением оловянной фольги, иногда отмечаются случаи хронической экземы. Тетрахлорид Олова (SnСl4·5Н2О) при концентрации его в воздухе свыше 90 мг/м3 раздражающе действует на верхние дыхательные пути, вызывая кашель; попадая на кожу, хлорид Олова вызывает ее изъязвления. Сильный судорожный яд - оловянистый водород (станнометан, SnH4), но вероятность образования его в производственных условиях ничтожна. Тяжелые отравления при употреблении в пищу давно изготовленных консервов могут быть связаны с образованием в консервных банках SnH4 (за счет действия на полуду банок органических кислот содержимого). Для острых отравлений оловянистым водородом характерны судороги, нарушение равновесия; возможен смертельный исход.


Подобные документы

  • Место углерода в таблице химических элементов: строение атомов, энергетические уровни, степень окисления. Химические свойства углерода. Алмаз, графит, фуллерен. Адсорбция как важное свойство углерода. Изобретение противогаза и угольных фильтров.

    презентация [217,1 K], добавлен 17.03.2011

  • Физические свойства элементов главной подгруппы III группы. Общая характеристика алюминия, бора. Природные неорганические соединения углерода. Химические свойства кремния. Взаимодействие углерода с металлами, неметаллами и водой. Свойства оксидов.

    презентация [9,4 M], добавлен 09.04.2017

  • Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.

    презентация [1,8 M], добавлен 23.04.2014

  • Химические свойства простых веществ. Общие сведения об углероде и кремнии. Химические соединения углерода, его кислородные и азотсодержащие производные. Карбиды, растворимые и нерастворимые в воде и разбавленных кислотах. Кислородные соединения кремния.

    реферат [801,5 K], добавлен 07.10.2010

  • Получение углерода термическим разложением древесины, поглощение углем растворенных веществ и газов. Взаимодействие углекислого газа со щелочью, получение оксида углерода и изучение его свойств. Ознакомление со свойствами карбонатов и гидрокарбонатов.

    лабораторная работа [1,7 M], добавлен 02.11.2009

  • Сведения об углероде, восходящие к древности и распространение его в природе. Наличие углерода в земной коре. Физические и химические свойства углерода. Получение и применение углерода и его соединений. Адсорбционная способность активированного угля.

    реферат [18,0 K], добавлен 03.05.2009

  • Характеристика и групповое значение р-элементов. Степени их окисления. Состояние атомов халькогенов. Свойства галогенов. Подгруппа алюминия, азота и углерода. Основные минеральные формы бора. Распространенность в земной коре различных видов минералов.

    презентация [420,7 K], добавлен 22.04.2016

  • Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.

    реферат [209,8 K], добавлен 23.03.2009

  • Свойства элементов подгруппы азота, строение и характеристика атомов. Увеличение металлических свойств при переходе элементов сверху вниз в периодической системе. Распространение азота, фосфора, мышьяка, сурьмы и висмута в природе, их применение.

    реферат [24,0 K], добавлен 15.06.2009

  • История открытия и место в периодической системе химических элементов Д.И. Менделеева галогенов: фтора, хлора, брома, йода и астата. Химические и физические свойства элементов, их применение. Распространённость элементов и получение простых веществ.

    презентация [656,9 K], добавлен 13.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.