Дисперсные системы и их представители

Методы классификации дисперсных систем, их оптические свойства. Диффузия частиц дисперсной фазы, уравнение Эйнштейна. Теория мономолекулярной адсорбции Ленгмюра. Факторы, влияющие на адсорбцию. Поверхностно-активные вещества, их строение и свойства.

Рубрика Химия
Вид шпаргалка
Язык русский
Дата добавления 29.11.2011
Размер файла 361,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

К диспергационным методам получения золей можно отнести метод Бредига, который основан на образовании вольтовой дуги между электродами из диспергируемого металла, помещенными в воду. Сущность метода заключается в распылении металла электрода в дуге, а также в конденсации паров металла, образующихся при высокой температуре. Поэтому электрический способ соединяет в себе черты диспергационных и конденсационных методов. Метод электрораспыления был предложен Бредигом в 1898 г. Бредиг включал в цепь постоянного тока силой 5-10 А и напряжением 30-110 В амперметр, реостат и два электрода из диспергируемого металла. Электроды он погружал в сосуд с водой, охлаждаемый снаружи льдом. Схематическое устройство прибора, которым пользовался Бредиг, показано на рис. 2 (смотри приложение). При прохождении тока через электроды между ними под водой возникает вольтова дуга. При этом у электродов образуется облачко высокодисперсного металла. Для получения более стойкий золей в воду, в которую погружены электроды, целесообразно вводить следы стабилизирующих электролитов, например гидроокисей щелочных металлов.

Более общее значение имеет способ Сведберга, в котором используется колебательный разряд высокого напряжения, приводящий к проскакиванию искры между электродами. Этим способом можно получать не только гидрозоли, но и органозоли различных металлов.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что обычно используют для создания более прочных материалов. В то же время увеличение прочности материалов по мере их измельчения ведет к большому расходу энергии на дальнейшее диспергирование. Разрушение материалов может быть облегчено при использовании эффекта Ребиндера - адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно- активных веществ (ПАВ), в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких ПАВ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов, органические вещества для уменьшения прочности органических монокристаллов. Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. ПАВ не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, так как, покрывая поверхность частиц, они тем самым препятствуют обратному слипанию их или слиянию ( для жидкостей). Это также способствует достижению высокодисперсного состояния.

12. Конденсационные методы получения коллоидных систем

Конденсационные методы.

В основе конденсационных методов лежат процессы возникновения новой фазы путем соединения молекул, ионов или атомов в гомогенной среде. Эти методы можно подразделить на физические и химические.

Физическая конденсация. Важнейшие физические методы получения дисперсных систем - конденсация из паров и замена растворителя. Наиболее наглядным примером конденсации из паров является образование тумана. При изменении параметров системы, в частности при понижении температуры, давление пара может стать выше равновесного давления пара над жидкостью (или над твердым телом) и в газовой фазе возникает новая жидкая (твердая) фаза. В результате система становится гетерогенной - начинает образовываться туман (дым). Таким путем получают, например, маскировочные аэрозоли, образующиеся при охлаждении паров P2O5, ZnO и других веществ. Лиозоли получаются в процессе совместной конденсации паров веществ, образующих дисперсную фазу и дисперсионную среду на охлажденной поверхности.

Широко применяют метод замены растворителя, основанный, как и предыдущий, на таком изменении параметров системы, при котором химический потенциал компонента в дисперсионной среде становится выше равновесного и тенденция к переходу в равновесное состояние приводит к образованию новой фазы. В отличие от метода конденсации паров (изменение температуры), в методе замены растворителя изменяют состав среды. Так, если насыщенный молекулярный раствор серы в этиловом спирте влить в большой объем воды, то полученный раствор в спирто-водной смеси оказывается уже пересыщенным. Пересыщение приведет к агрегированию молекул серы с образованием частиц новой фазы - дисперсной.

Методом замены растворителя получают золи серы, фосфора, мышьяка, канифоли, ацетилцеллюлозы и многих органических веществ, вливая спиртовые или ацетоновые растворы этих веществ в воду.

Химическая конденсация. Эти методы также основаны на конденсационном выделении новой фазы из пересыщенного раствора. Однако в отличии от физических методов, вещество, образующее дисперсную фазу, появляется в результате химической реакции. Таким образом, любая химическая реакция, идущая с образованием новой фазы, может быть источником получения коллоидной системы. В качестве примеров приведем следующие химические процессы.

1.Восстановление. Классический пример этого метода - получение золя золота восстановлением золотохлористоводородной кислоты. В качестве восстановителя можно применять пероксид водорода (метод Зигмонди):

2HauCl2+3H2O22Au+8HCl+3O2

Известны и другие восстановители: фосфор (М. Фарадей), таннин (В. Освальд), формальдегид (Р.Жигмонди). Например,

2KauO2+3HCHO+K2CO3=2Au+3HCOOK+KHCO3+H2O

2.Окисление. Окислительные реакции широко распространены в природе. Это связано с тем, что при подъеме магматических расплавов и отделяющихся от них газов, флюидных фаз и подземных вод все подвижные фазы проходят из зоны восстановительных процессов на большой глубине к зонам окислительных реакций вблизи поверхности. Иллюстрацией такого рода процессов является образование золя серы в гидротермальных водах, с окислителями (сернистым газом или кислородом):

2H2S+O2=2S+2H2O

Другим примером может служить процесс окисления и гидролиза гидрокарбоната железа:

4Fe(HCO3)2+O2+2H2O4Fe(OH)3+8CO2

Получающийся золь гидроокиси железа сообщает красно-коричневую окраску природным водам и является источником ржаво-бурых зон отложений в нижних слоях почвы.

3. Гидролиз. Широкое распространение в природе и важное значение в технике имеет образование гидрозолей в процессах гидролиза солей. Процессы гидролиза солей применяют для очистки сточных вод (гидроксид алюминия, получаемый гидролизом сульфата алюминия). Высокая удельная поверхность образующихся при гидролизе коллоидных гидроксидов позволяет эффективно адсорбировать примеси - молекулы ПАВ и ионы тяжелых металлов.

4. Реакции обмена. Этот метод наиболее часто встречается на практике. Например, получение золя сульфида мышьяка:

2H3AsO3+3H2SAs2S3+6H2O,

получение золя йодида серебра:

AgNO3+KIAgI+KNO3

Интересно, что реакции обмена дают возможность получать золи в органических растворителях. В частности, хорошо изучена реакция

Hg(CN)2+H2SHgS+2HCN

Ее проводят, растворяя Hg(CN)2 в метиловом, этиловом или пропиловом спирте и пропуская через раствор сероводород.

Хорошо известные в аналитической химии реакции, как, например, получение осадков сульфата бария или хлорида серебра

Na2SO4 + BaCl2 BaSO4 + 2NaCl

AgNO3 + NaCl AgCl + NaNO3

в определенных условиях приводят к получению почти прозрачных, слегка мутноватых золей, из которых в дальнейшем могут выпадать осадки.

Таким образом, для конденсационного получения золей необходимо, чтобы концентрация вещества в растворе превышала растворимость, т.е. раствор должен быть пересыщенным. Эти условия являются общими как для образования высокодисперсного золя, так и обычного осадка твердой фазы. Однако, в первом случае требуется соблюдение особых условий, которые, согласно теории, разработанной Веймарном, заключается в одновременности возникновения огромного числа зародышей дисперсной фазы. Под зародышем следует понимать минимальное скопление новой фазы, находящееся в равновесии с окружающей средой. Для получения высокодисперсной системы необходимо, чтобы скорость образования зародышей была намного больше, чем скорость роста кристаллов. Практически это достигается путем вливания концентрированного раствора одного компонента в очень разбавленный раствор другого при сильном перемешивании.

13. Строение мицеллы, образующейся в результате химической реакции

Строение коллоидной мицеллы

Лиофобные коллоиды обладают очень высокой поверхностной энергией и являются поэтому термодинамически неустойчивыми; это делает возможным самопроизвольный процесс уменьшения степени дисперсности дисперсной фазы (т.е. объединение частиц в более крупные агрегаты) - коагуляцию золей. Тем не менее золям присуща способность сохранять степень дисперсности - агрегативная устойчивость, которая обусловлена, во-первых, снижением поверхностной энергии системы благодаря наличию на поверхности частиц дисперсной фазы двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания частиц дисперсной фазы, имеющих одноименный электрический заряд.

Строение структурной единицы лиофобных коллоидов - мицеллы - может быть показано лишь схематически, поскольку мицелла не имеет определенного состава. Рассмотрим строение коллоидной мицеллы на примере гидрозоля иодида серебра, получаемого взаимодействием разбавленных растворов нитрата серебра и иодида калия:

AgNO3 + KI --> AgI + KNO3

Коллоидная мицелла золя иодида серебра образована микрокристаллом иодида серебра, который способен к избирательной адсорбции из окружающей среды катионов Ag+ или иодид-ионов. Если реакция проводится в избытке иодида калия, то кристалл будет адсорбировать иодид-ионы; при избытке нитрата серебра микрокристалл адсорбирует ионы Ag+. В результате этого микрокристалл приобретает отрицательный либо положительный заряд; ионы, сообщающие ему этот заряд, называются потенциалопределяющими, а сам заряженный кристалл - ядром мицеллы. Заряженное ядро притягивает из раствора ионы с противоположным зарядом - противоионы; на поверхности раздела фаз образуется двойной электрический слой. Некоторая часть противоионов адсорбируется на поверхности ядра, образуя т.н. адсорбционный слой противоионов; ядро вместе с адсорбированными на нем противоионами называют коллоидной частицей или гранулой. Остальные противоионы, число которых определяется, исходя из правила электронейтральности мицеллы, составляют диффузный слой противоионов; противоионы адсорбционного и диффузного слоев находятся в состоянии динамического равновесия адсорбции - десорбции.

Схематически мицелла золя иодида серебра, полученного в избытке иодида калия (потенциалопределяющие ионы - анионы I-, противоионы - ионы К+) может быть изображена следующим образом:

{[AgI]m · nI- · (n-x)K+}x- · x K+

При получении золя иодида серебра в избытке нитрата серебра коллоидные частицы будут иметь положительный заряд:

{[AgI]m · nAg+ · (n-x)NO3-}x+ · x NO3-

Строение коллоидной мицеллы

Агрегативная устойчивость золей обусловлена, таким образом, рядом факторов: во-первых, снижением поверхностной энергии дисперсной фазы (т.е. уменьшения движущей силы коагуляции) в результате образования двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания имеющих одноименный заряд коллоидных частиц и противоионов. Еще одна причина устойчивости коллоидов связана с процессом гидратации (сольватации) ионов. Противоионы диффузного слоя сольватированы; эта оболочка из сольватированных противоионов также препятствует слипанию частиц.

14. Методы разрушение коллоидных систем

1. Коагуляция - загустение. Если система "застревает" в коагулированном состоянии, из золя получается гель. Примером геля может служить обычное желе (именно от желе гель и получил свое название), кисель, холодец, начавшая загустевать краска, свернувшаяся, но еще не засохшая кровь на ранке. Частицы геля крупнее, чем частицы золя, обычно их размеры лежат в микронном диапазоне. Но связи между этими частицами еще достаточно слабы, поэтому гель обладает подвижностью.

2. Коалесценция (слипание) и высыхание. На этой стадии бывшая дисперсная фаза окончатльно приобретает самостоятельность, изгоняя из своей среды молекулы растворителя. Такую систему иногда называют ксерогелем (сухим гелем). Типичнейшим ксерогелем является, скажем, глинистая почва, высохшая от жары.

Одним из важнейших способов стабилизировать золь является добавка поверхносто-активных веществ (ПАВ или сурфактантов). Мыло, о действии которого мы говорили чуть раньше, является классическим сурфактантом. Молекулы сурфактанта всегда устроены таким образом, что служат своего рода посредниками между двумя фазами коллоидной системы. В результате их действия дисперсная фаза уже не так сильно отталкивается от растворителя, ее избыточная поверхностная энергия становится меньше, а система приобретает повышенную устойчивость. Коллоидную частицу в окружении молекул сурфактанта обычно называют мицеллой. Образование мицеллы стабилизирует коллоид сразу двумя спсобами: во-первых, слой молекул сурфактанта понижает избыточную поверхностную энергию коллоидной частицы.

15. Коагуляция электролитами

Коагуляцией называется процесс слипания частиц с образованием крупных агрегатов. В результате коагуляции система теряет свою седиментационную устойчивость, так как частицы становятся слишком крупными и не могут участвовать в броуновском движении.

Коагуляция является самопроизвольным процессом, так как она приводит к уменьшению межфазной поверхности и, следовательно, к уменьшению свободной поверхностной энергии.

Различают две стадии коагуляции.

1 стадия - скрытая коагуляция. На этой стадии частицы укрупняются, но еще не теряют своей седиментационной устойчивости.

2 стадия - явная коагуляция. На этой стадии частицы теряют свою седиментационную устойчивость. Если плотность частиц больше плотности дисперсионной среды, образуется осадок.

Причины коагуляции многообразны. Едва ли существует какое либо внешнее воздействие, которое при достаточной интенсивности не вызывало бы коагуляцию.

Правила коагуляции:

1. Все сильные электролиты, добавленные к золю в достаточном количестве, вызывают его коагуляцию.

Минимальная концентрация электролита, при которой начинается коагуляция, называется порогом коагуляции Ck.

Иногда вместо порога коагуляции используют величину VK, называемую коагулирующей способностью.

Коагулирующим действием обладает не весь электролит, а только тот ион, заряд которого совпадает по знаку с зарядом противоиона мицеллы лиофобного золя. Этот ион называют ионом-коагулянтом.

Правило устанавливает, что коагулирующие силы иона тем больше, чем больше его валентность. Экспериментально установлено, что ионы с высшей валентностью имеют значение порога коагуляции ниже, чем ионы с низшей. Следовательно, для коагуляции лучше брать ионы с высшей степенью окисления. Если валентность ионов одинакова, то коагулирующая способность зависит от размеров и степени гидратации ионов. Чем больше радиус иона, тем больше его коагулирующая способность. По этому правилу составлены лиотропные ряды. Органические ионы-коагулянты, как правило, лучше коагулируют гидрозоли, чем неорганические, т.к. они легко поляризуются и адсорбируются. С точки зрения двойного электрического слоя (ДЭС) считается, что коагуляция идет в том случае, когда z-потенциал > 30 мВ.

Коагулирующая способность иона при одинаковом заряде тем больше, чем больше его кристаллический радиус. Причина с одной стороны, в большой поляризуемости ионов наибольшего радиуса, следовательно, в их способности притягиваться поверхностью, состоящей из ионов и полярных молекул. С другой стороны, чем больше радиус иона, тем меньше, при одной и той же величине заряда, гидратация иона. Гидратная же оболочка уменьшает электрическое взаимодействие. Коагулирующая способность органических ионов больше по сравнению с неорганическими ионами.

16. Способы получения и разрушения аэрозолей

Самопроизвольное образование аэрозолей возможно при конденсации, например, испарение и конденсация из пересыщенных паров при охлаждении или в процессе химической реакции. В результате охлаждения при адиабатическом расширении облака или при соприкосновении влажного воздуха с холодной поверхностью образуется туман.

Например, при образовании продуктов сгорания топлива, соприкосновение которых с холодным воздухом сопровождается конденсацией, возникает топочный дым. Как следствие химических реакций, таких как например,

NH3 + HCl = NH4Cl

или фотохимических реакций

(H2O + Cl2 = HCl)

также образуется туман.

При окислении металлов на воздухе, например, при реакции

Mq + O2 = MqO

образуется аэрозоль.

Простое соприкосновение AlCl3 с влажным воздухом вызывает реакцию

AlCl3 + H2O = Al(OH)3 ,

в результате которой также образуется аэрозоль.

Разрушение аэрозолей

Изменение скорости и направления пылевого потока, частицы дисперсной фазы в которых более 3•10-6 м, вызывает выпадение твердой фазы. Для осуществления этого процесса применяют аппараты, называемые циклонами.

В сетчатых или волокнистых фильтрах используют принцип инерционного осаждения в результате многократного изменения скорости и направления движения пылевого потока или аэрозоля с размером частиц дисперсной фазы 10-6 м и более. В этом случае частицы дисперсной фазы осаждаются на фильтрах, например, из нетканого материала, разрушение полидисперсного аэрозоля происходит в результате переконденсации, подобно тому как это наблюдается в пенах, для которых мы подробно рассмотрели этот процесс.

Для коалесценции частиц необходимо насыщение воздуха парами воды и образование на поверхности частиц оболочек из жидкости. Метод озвучения - метод, в котором коагуляция аэрозоля происходит при интенсивном столкновении частиц в результате их колебательного движения со звуковой частотой. Метод эффективен только для концентрированных аэрозолей.

Введение зародышей коагуляции используют, например, для рассеивания облаков, для чего опыляют их углекислотой, йодистым серебром или йодистым свинцом. Для быстрого разрушения облаков (всего за 5-7 мин) используют концентрированные аэрозоли зародышей коагуляции.

Создание электрического поля большого напряжения применяют в промышленном методе очистки отходящих газов от пыли или разрушения дыма. Напряжение в таких установках составляет 70-100 тысяч вольт. Отрицательные ионы воздуха, образовавшиеся в поле с высоким градиентом напряженности, адсорбируется на частицах, затем частицы перемещаются в электрическом поле и осаждаются на стенках установки. Размер частиц дисперсной фазы, удаляемых этим методом, составляет » 10-8 м.

Увлажнение аэрозоля водой или растворами ПАВ приводит к увеличению массы частиц, нарушению их кинетической устойчивости и выделению дисперсной фазы. Такой метод борьбы с пылеобразованием широко используют в угольных шахтах. На текстильных предприятиях в ткацких цехах проводят непрерывное увлажнение воздуха для борьбы с образованием пыли из мелких волокон.

17. Основные свойства аэрозолей

Подобно всем коллоидным системам, аэрозоли подразделяются на две группы в зависимости от своего происхождения - диспергационные и конденсационные. Диспергационные аэрозоли образуются при раздроблении твердых веществ, распылении жидкостей и порошков. Конденсационные аэрозоли образуются при конденсации из пересыщенных паров и в результате газовых реакций, при которых образуются нелетучие продукты. Первые обычно грубодисперсны и имеют сильно различающиеся по величине частицы, т.е. более полидисперсны.

Подобно эмульсиям и суспензиям, аэрозоли с жидкой и твердой дисперсной фазой различаются тем, что частицы первых имеют правильную сферическую форму, в то время как вторые содержат частицы очень разнообразной, часто сильно асимметричной формы.

Различают аэрозоли следующих видов: туман- конденсационные и диспергационные аэрозоли с жидкой дисперсной фазой; пыль- диспергационные аэрозоли с твердыми частицами; дым- конденсационные аэрозоли, получаемые при горении и содержащие твердые или жидкие и твердые частицы одновременно.

На практике часто встречаются аэрозоли, которые нельзя отнести ни к одному из этих типов - например, воздух вблизи промышленных центров содержит частицы сажи, пепла, продуктов сухой перегонки топлива, поглотивших из атмосферы влагу. Для этих особых аэрозолей, которые являются одновременно и дымом, и туманом, и пылью, используется специальное название «смог», происходящее от двух английских слов: smoq = smoke (дым) + foq (туман).

Аэрозоли, как уже говорилось, могут содержать частички различных размеров - от 10-9до 10-3м. При этом наиболее неустойчивы высокодисперсные и грубодисперсные аэрозоли. Первые - вследствие очень большой интенсивности броуновского движения частиц, в результате чего каждая частица за короткое время достигает стенок сосуда, в котором находится аэрозоль, или встречается с другой частицей, что приводит к коагуляции аэрозоля; грубодисперсные аэрозоли неустойчивы вследствие большой скорости седиментации, обусловленной низкими вязкостью и плотностью дисперсионной среды. Размер частиц аэрозолей имеет огромное значение, поскольку ряд свойств частиц зависит от их размера. Так, при атмосферном давлении сопротивление, оказываемое окружающей средой движению одной частицы, для частиц меньше 10-8м пропорционально r2, в то время как для больших (10-7м) частиц - пропорционально r, а интервал 10-8-10-7м является переходным. Такая же зависимость наблюдается и для скорости испарения и теплообмена. Интенсивность рассеянного света пропорциональна r6 для частиц с r < 10-7м и r2 - для частиц с r > 10-5 м.

Аэрозоли обычно полидисперсны, размер частиц у них весьма различен - от 10-9 до 10-8 м. В табачном дыме частицы имеют размеры 2·10-7-5•10-6 м, в слоистых облаках капли - от 4•10-6 до 10-5 м и крупнее.

Наиболее характерно для аэрозолей то, что эти системы обладают только некоторой кинетической устойчивостью, агрегативной устойчивости они не имеют, и каждое столкновение их частиц приводит к слипанию. Частицы аэрозолей или совсем не имеют заряда или он очень мал (1-2 заряда при радиусе частиц 10-8м). В определенных условиях частицы аэрозоля способны адсорбировать своей поверхностью заряды из окружающей среды, на этом основано действие электрофильтров для запыленного воздуха. Большие коэффициенты диффузии у аэрозолей благоприятствуют их кинетической устойчивости. Промышленное значение аэрозолей двояко: переход в пылевидное и капельножидкое состояние значительно увеличивает реакционную способность вещества. Это свойство используют при сгорании пылевидного топлива, распыления нефти в форсунках, при вдыхании медицинских препаратов в виде аэрозолей. В промышленности и в быту используют аэрозольное нанесение красок на окрашиваемые поверхности. В быту используют аэрозоли косметических препаратов или препаратов бытовой химии. Вместе с тем борьба с пылями в производстве (улавливание ценных материалов, уходящих в виде пылей с производства, устранение токсичных и взрывоопасных аэрозолей) составляет одну из важнейших задач организации производства и техники безопасности. Многие вещества в состоянии аэрозолей, например, сахарная пудра, угольная, серная, мучная пыли - становятся взрывоопасными из-за повышенной реакционной способности высокодисперсных коллоидных частиц.

18. Эмульсии, их классификация и свойства

При диспергировании одной жидкости в другой получается дисперсная система, называемая эмульсией. В большинстве случаев эмульсии - это грубодисперсные системы, содержащие капли от 10-7 до 5·10-5 м. Такие капельки жидкости можно легко рассматривать при помощи обычного микроскопа. Однако можно получить эмульсии и коллоидной дисперсности - так называемые, критические.

Эмульсии имеют большое практическое применение. Целый ряд пищевых продуктов - молоко, масло, маргарин и пр. - это эмульсии. Огромное значение в последнее время приобрели эмульсии для охлаждения и облегчения деформаций при механической обработке металлов. Кроме того, процесс полимеризации различных мономеров часто проводится именно эмульсионным методом. Такой метод облегчает регулирование скорости процесса и отвод тепла реакции. Сущность его состоит в следующем: углеводородный мономер эмульгируется в воде, затем в эмульсию вводятся инициатор и катализатор, вызывая таким образом процесс полимеризации. Реакция зарождается в мицеллах эмульгатора, а завершается в полимерно-мономерных частицах. Возможна полимеризация и непосредственно в каплях мономера. Соответственно различают латексную и суспензионную полимеризацию, так как в результате процесса получается латекс или суспензия полимера, используемые непосредственно, или из них выделяется полимер путем коагуляции.

Эмульсии находят широкое применение и в других отраслях промышленности - например, в бумажной, производстве заменителей кожи, текстильной промышленности для импрегнирования, аппретирования и другой заключительной отделки тканей, в фармакологии и др. Нефть - это тоже эмульсии и ее часто приходится разрушать. Все это убеждает нас в необходимости знать, как приготовляются и разрушаются эмульсии.

Так как в процессе диспергирования участвуют две жидкости - вода и углеводород, то существует возможность получения эмульсии как углеводорода в воде, так и воды в углеводороде. Поэтому по качественному составу фаз различают эмульсии двух типов: прямые эмульсии - «масло в воде» (м/в) и обратные эмульсии - «вода в масле» (в/м). При обозначении типа эмульсии в числителе дроби ставится индекс дисперсной (внутренней) фазы, в знаменателе - дисперсионной среды (внешней фазы). Та жидкость, которая находится в раздробленном состоянии, называется дисперсной или внутренней фазой; жидкость, в которой осуществляется диспергирование, носит название дисперсионной среды или внешней (непрерывной) фазы. Термином «масло» собирательно обозначается любая маслоподобная углеводородная жидкость. Если жидкость не имеет углеводородной природы, то для обозначения эмульсии применяется специальное название, например, «ртуть в воде».

Эмульсии различают также по количественному соотношению фаз. По этому показателю эмульсии классифицируют на разбавленные, концентрированные и высококонцентрированные. Разбавленными считаются такие эмульсии, у которых капельки не способны взаимодействовать между собой. Как правило, такие эмульсии не могут содержать более 0,1% дисперсной фазы по объему. Концентрированными называют эмульсии, у которых капельки могут взаимодействовать, но остаются недеформированными, т.е. сохраняют сферическую форму. Мелкие монодисперсные капельки эмульсии при максимально плотной упаковке, но не деформируясь, занимают 74,02% объема эмульсии. Поэтому эмульсии считаются концентрированными если дисперсная фаза занимает от 0,1 до 74%. Выше 74% капельки дисперсной фазы деформируются, они принимают пентаэдрическую форму, подобную газовым пузырькам в пенах, и поэтому высококонцентрированные эмульсии часто называют пенообразными или спумоидными. Известны, например, эмульсии, в которых содержится около 99% дисперсной фазы и только 1% дисперсной среды. Таковы эмульсии парафина, получаемые в растворе олеата калия.

Были получены даже такие концентрированные эмульсии бензола в растворе желатины, когда 140 мл бензола эмульгировались в 1 мл раствора желатины. Эмульсии такого типа обычно чрезвычайно вязки и в определенной степени обладают свойствами твердого тела. Их, например, можно резать ножом и они не изменяют своей формы после снятия деформирующего напряжения.

19. Эмульгаторы. Влияние свойств эмульгаторов на тип образующейся эмульсии

Если взять примерно одинаковое количество воды и углеводорода, например, бензола, и путем взбалтывания приготовить эмульсию, то получим одновременно как эмульсию прямого типа - м/в, так и эмульсию обратного типа - в/м. Однако обе эти эмульсии будут неустойчивы и разрушаются практически мгновенно. Если в систему ввести соль жирной кислоты щелочного металла, растворимую в воде, то получим эмульсию прямого типа. Если взять соль жирной кислоты щелочноземельного металла, лучше растворимую в углеводородной фазе, то получим обратную эмульсию. Таким образом, первым условием для выбора эмульгатора или стабилизатора является их лучшая растворимость в той жидкости, которую предполагается сделать внешней фазой.

Вторым условием, определяющим выбор стабилизатора, следует рассматривать хорошую адсорбционную способность на границе раздела двух выбранных жидкостей. Стабилизатор должен стремиться на поверхность раздела и располагаться преимущественно между фазами, а не в объеме любой из них. Следовательно, стабилизатор должен иметь дифильное строение, т.е. содержать группы, обладающие сродством к обеим фазам. В результате адсорбции стабилизатор должен снижать разность полярностей фаз и уменьшать свободную энергию системы.

Однако высокая адсорбционная способность еще не обеспечивает устойчивости эмульсий. Например, использование солей щелочных металлов низших жирных кислот не позволяет получить устойчивых эмульсий, хотя эти вещества обладают высокой поверхностной активностью и, кроме того, создают двойной слой на поверхности раздела фаз. Очевидно, для получения устойчивых эмульсий недостаточно снижения свободной энергии системы или образования двойного ионного слоя. Только соли высших жирных кислот, соли сульфокислот или неионогенные ПАВ, обладающие развитым углеводородным радикалом, способны придавать устойчивость эмульсиям. Это позволило предположить, что молекулы стабилизатора должны иметь такую длину, что образовавшийся со стороны внешней фазы адсорбционный слоя не допустит сближения капель на расстояния, где начинается преобладание ван-дер-ваальсова притяжения. Это является третьим условием для выбора стабилизатора.

Как мы видели выше, в процессе эмульгирования устойчивые эмульсии образуются только в том случае, если эмульгатор способен достаточно быстро заполнять адсорбционный слой и в дальнейшем залечивать дефекты адсорбционного слоя при его нарушении. Это приводит к тому, что высокомолекулярные мыла подчас оказываются худшими стабилизаторами, чем гомологи с меньшим числом метиленовых групп в углеводородном радикале. Следовательно, стабилизатор должен обладать определенной подвижностью в адсорбционных слоях.

И, наконец, стабилизатор должен иметь способность к образованию тиксотропной структуры в адсорбционном слое, т.е. адсорбционный слой должен быть гелеподобным, с определенным пределом прочности и способностью быстро восстанавливать структуру межфазовой пленки после ее разрушения. Ряд исследований показали, что в устойчивых эмульсиях адсорбционный слой стабилизатора имеет структуру жидкого кристалла.

Таким образом, хороший стабилизатор обладает полным комплексом свойств. Неспособность стабилизатора удовлетворить хотя бы одному из указанных требований приведет к образованию неустойчивой эмульсии.

Теория эмульгирования и устойчивости эмульсий еще не разработана и поэтому приходится опытным путем подбирать эмульгатор и стабилизатор для каждого конкретного случая. Известную пользу приносят эмпирические характеристики эмульгатора, например, гидрофильно-липофильный баланс (ГЛБ), показывающий баланс между действием полярной и неполярной частей молекул. Эта характеристика хотя и не имеет под собой строгой теоретической основы, позволяет заранее предсказать тип получаемой эмульсии, но не характеризует ее устойчивость, так как одному значению ГЛБ может соответствовать различное строение молекул ПАВ, особенно неионогенных.

20. Пены. Их строение и свойство

Пены по своей природе близки к концентрированным эмульсиям, но дисперсной фазой в них является газ, а не жидкость. Пены получают из растворов поверхностно-активных веществ. Для повышения их устойчивости в растворы ПАВ добавляют высокомолекулярные вещества, повышающие вязкость растворов.

В качестве характеристик пены используется комплекс свойств, всесторонне характеризующих пену.

1) Пенообразующая способность раствора - количество пены, выражаемое её объемом (см3) или высотой столба (м), которое образуется из заданного постоянного объема пенообразующего раствора при соблюдении некоторых стандартных условий пенообразования в течение постоянного времени.

2) Кратность пены b, которая представляет собой отношение объема пены Vп к объему раствора Vж, пошедшего на ее образование:

, (2.7.24)

где Vг- объем газа в пене.

3) Стабильность (устойчивость) пены - ее способность сохранять общий объем, дисперсность и препятствовать вытеканию жидкости (синерезису). Часто в качестве меры стабильности используют время существования («жизни») выделенного элемента пены (отдельного пузырька или пленки) или определенного объема пены.

4) Дисперсность пены, которая может быть охарактеризована средним размером пузырьков, распределением их по размерам или поверхностью раздела «раствор - газ» в единице объема пены.

В ряде случаев практического применения пен важны такие ее свойства, как вязкость, теплопроводность, электропроводность, оптические свойства и т.д.

Пены находят широкое применение во многих отраслях промышленности и в быту. Широко распространены в быту пенные моющие средства для ванн, чистки ковров и мебели. Огромное значение пены приобрели в пожаротушении, особенно при возгорании емкостей с легко воспламеняющимися жидкостями, при тушении пожаров в закрытых помещениях - в подвалах, на судах и в самолетах. Применяются пены для теплоизоляции, например, для предотвращения промерзания полигонов для добычи полезных ископаемых открытым способом в условиях крайнего севера.

Перспективно применение пены в текстильной промышленности.

Пенные технологии в производстве текстильных материалов являются ресурсо-, энергосберегающими, снижающими производственные затраты на 25-30%.

На стадии прядения пенные составы используются для увлажнения, антиэлектростатической обработки и замасливания волокон в ровнице. Пенный состав может наноситься при прохождении ровницы через пену или путем нанесения пены на ровницу с помощью специальных дозаторов.

Для стабилизации пен при пенной обработке ровницы используют поверхностно-активные вещества, входящие в обычные составы для антиэлектростатической обработки волокнистых материалов или для их замасливания.

Для снижения энергоемкости технологических процессов текстильного производства с целью уменьшения влагосодержания текстильных материалов представляет интерес использование пенных технологий крашения и заключительной отделки тканей, трикотажных полотен и проклеивания нетканых материалов. При осуществлении заключительных отделок по пенной технологии на 60-80% снижаются энергозатраты, практически полностью используются химические материалы, уменьшается расход воды, увеличивается производительность оборудования в результате сокращения времени сушки. Пенная технология эффективна при отбеливании и крашении текстильного материалов, их заключительной отделке, крашении трикотажных полотен, печатании декоративных тканей и т.д. Кроме того, пенные технологии можно считать экологически безопасными, так как применение пены позволяет резко сократить или полностью исключить образование сточных вод и уменьшить количество токсичных растворителей в составе печатных пенных красок по сравнению с эмульсионными. Состав пены текстильного назначения достаточно сложен, так как в нее должны входить пенообразователи и все основные компоненты, используемые для соответствующих видов отделок, такие как красители, катализаторы, полимерные добавки, модификаторы поверхности и т.д.

Возможны два варианта применения пены в технологии крашения - нанесение пены на движущееся полотно и использование пенной ванны, в которую помещают изделия или трикотажные полотна.

Интересным технологическим решением является окрашивание с помощью пен ткани в различные цвета с разных сторон. Для этой цели подбираются пенные композиции с низкой проникающей способностью в ткань. Следовательно, структура ткани должна быть достаточно плотной, а композиция - вязкой. В таких композициях наиболее перспективны пигментные красители, которые адгезионно закрепляются на поверхности волокон окрашиваемого материала в пленке связующего, например, латексного или термореактивной смолы. Одновременно с окрашиванием достигается эффект несминаемости ткани, повышается прочность окрасок к трению, улучшаются физико-механические и гигиенические свойства тканей.

Возможно применение пен и в технологии печати по текстильным материалом. В композиции могут включаться пигменты, дисперсные, активные и кислотные красители. Количество загусток - водорастворимых полимеров в пенном составе - требуется меньше, чем в обычной эмульсионной печатной краске. Можно даже полностью исключить загуститель. Роль загустителя в таком составе выполняет высокодисперсная пена. Исключение загустителя при печатании пигментами позволяет получить мягкий гриф ткани и повысить прочность окраски к трению. Расход красителей снижается на 20-30%, значительно упрощаются операции зреления и промывки напечатанных тканей.

В отличие от пен, применяемых для крашения, пенный состав для печатания должен быть устойчивым при контакте с текстильным материалом. Характеристики окрасок пенными составами находятся на уровне эмульсионных печатных красок.

При нанесении пенного состава на сухую ткань ее влажность не превышает 30%, а при контакте пены с влажным материалом пена может даже всасывать влагу из ткани, в результате чего влажность полотна снижается от 70 до 30%. В результате этого расход энергии на сушку уменьшается в три раза.

Газовые пузырьки в пенах разделены тончайшими пленками, образующими в своей совокупности пленочный каркас, который и служит основой пен. Такой пленочный каркас образуется, если объем газа составляет 80-90% общего объема. Пузырьки плотно прилегают друг к другу и их разделяет только тонкая пленка раствора пенообразователя. Пузырьки деформируются и приобретают форму пентаэдров. В каждом ребре многранника сходятся три пленки, углы между которыми равны 120о. Места стыка пленок (ребра многогранника) характеризуются утолщениями, образующими в поперечном сечении треугольник. Эти утолщения называют каналами Плато-Гиббса, в честь известных ученых - бельгийского ученого Ж. Плато и американского - Дж. Гиббса, внесших большой вклад в изучение пен. Четыре канала Плато-Гиббса сходятся в одной точке, образуя по всей пене одинаковые углы 109о 28'. Площадь поперечного сечения треугольного канала Плато-Гиббса определяется как

, (2.7.24)

где - средний радиус пузырьков в пене.

Размещено на http://www.allbest.ru/

Схема фрагмента высокократной пены

Если объем газовой фазы невелик и пленки между пузырьками толстые, то такая пена неустойчива и очень быстро разрушается. В зависимости от формы пузырьков пены делятся на сферические и многогранные. Сферические пены отличаются высоким содержанием жидкости и поэтому неустойчивы, их относят к метастабильным. В таких системах пузырьки коалесцируют - сливаются при соприкосновении.

Размещено на Allbest.ru


Подобные документы

  • Понятие дисперсной системы, фазы и среды. Оптические свойства дисперсных систем и эффект Тиндаля. Молекулярно-кинетические свойства дисперсных систем. Теория броуновского движения и виды диффузии. Процесс осмоса и уравнение осмотического давления.

    реферат [145,0 K], добавлен 22.01.2009

  • Частички газообразной, жидкой или твердой фазы в жидкости. Классификация различных дисперсных систем по размеру частиц дисперсной фазы, распределенной в дисперсионной среде. Удельная поверхность раздела фаз. Поверхностные процессы, адсорбция и адгезия.

    презентация [94,0 K], добавлен 30.04.2014

  • Основные признаки дисперсных систем, их классификация, свойства и методы получения, диализ (очистка) золей. Определение заряда коллоидной частицы, закономерности электролитной коагуляции, понятие адсорбции на границе раствор-газ, суть теории Ленгмюра.

    методичка [316,8 K], добавлен 14.12.2010

  • Химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов). Свойства и важнейшие характеристики, получение, применение. Поверхностно-активные вещества: молекулярное строение и получение, свойства и применение.

    реферат [28,7 K], добавлен 05.02.2008

  • Понятие о дисперсных системах. Разновидность дисперсных систем. Грубодисперсные системы с твердой дисперсной фазой. Значение коллоидной системы для биологии. Мицеллы как частицы дисперсной фазы золей. Последовательность в составлении формулы мицеллы.

    реферат [16,2 K], добавлен 15.11.2009

  • Мономолекулярная адсорбция на твёрдой поверхности. Уравнение изотермы Ленгмюра. Хроматография, коллоидная химия и дисперсные системы. Оптические свойства коллоидов. Свойства межфазовой границы. Лиофильные и лиофобные золи. Получение лиофобных золей.

    реферат [216,6 K], добавлен 27.06.2010

  • Изменение свободной энергии, сопровождающее химическую реакцию, связь с константой равновесия. Расчет теплового эффекта реакции. Классификации дисперсных систем по размерам дисперсных частиц, агрегатным состояниям дисперсной фазы и дисперсионной среды.

    контрольная работа [49,7 K], добавлен 25.07.2008

  • Классификация дисперсных систем по размеру частиц дисперсной фазы и по агрегатным состояниям фаз. Условия для получения устойчивых эмульсий. Молекулярно-кинетические свойства золей, сравнение их с истинными растворами. Внешние признаки коагуляции.

    контрольная работа [719,2 K], добавлен 21.07.2011

  • Изучение основных видов адсорбции. Факторы, влияющие на скорость адсорбции газов и паров. Изотерма адсорбции. Уравнение Фрейндлиха и Ленгмюра. Особенности адсорбции из растворов. Правило Ребиндера, Панета-Фаянса-Пескова. Понятие и виды хроматографии.

    презентация [161,4 K], добавлен 28.11.2013

  • Определение дисперсных систем и их образование. Грубодисперсные и коллоидные системы. Деление коллоидов по степени взаимодействия между молекулами дисперсной фазы и дисперсионной среды на лиофильные и лиофобные. Коллоидные системы в организме человека.

    презентация [5,4 M], добавлен 21.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.