Методика проведения уроков по химии

Понятие протона, электрона, электронного облачка. Типы химической связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Строение вещества. Химические и физические свойства металлов. Прибор для получения и обнаружения водорода.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 01.12.2010
Размер файла 39,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

  • 1. Дать определение понятиям: протон. Электрон. Электронная облачко. Период. Группа
  • 2. Определите методические подходы в изучении темы «вода. Растворы. Основания»
  • 3. Составьте план раскрытия следующей темы «химическая связь. Строение вещества»
  • 4. Какие новые понятия и умения формируются при изучении темы «вода. Растворы. Основания»
  • 5. Приведите примеры познавательных заданий в форме дидактической игры по химии в теме: «первоначальные химические понятия»
  • 6. Разработайте план одного из уроков предложенной темы раздел «металлы»
  • 7. Разрисуйте прибор, который школьник должен собрать и использовать для получения и обнаружения вещества: «водород»
  • 8. Какие хим. Опыты вы предложите учащимся при формировании хим. Понятий в теме «электрическая диссоциация»
  • 9. Какие расчетные задачи можно предложить учащимся при изучении темы «кислород. Оксиды. Горение»
  • Список литературы

1. Дать определение понятиям: Протон. Электрон. Электронная облачко. Период. Группа

Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определённую массу покоя), а с другой -- его движение напоминает волну и может быть описано определённой амплитудой, длиной волны, частотой колебаний и др. Поэтому нельзя говорить о какой-либо определённой траектории движения электрона -- можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.

Следовательно, под электронной орбитой следует понимать не определённую линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами, электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определённом расстоянии от ядра. В связи с этим электрон представляют не в виде материальной точки, а как бы "размазанным" по всему объёму атома в виде так называемого электронного облака, имеющего области сгущения и разрежения электрического заряда. Представление об электроне как о некотором облаке электрического заряда удобно; оно довольно точно передаёт особенности поведения электрона. Однако следует иметь в виду, что электронное облако не имеет резко очерченных границ, и даже на большом расстоянии от ядра существует вероятность пребывания электрона. Для характеристики формы электронного облака понятие орбиталь вместо понятия орбита было введено именно для того, чтобы не смешивать движение электрона с движением тела в классической физике. Однако при упрощённом рассмотрении строения атома иногда сохраняют термин орбита, помня тем не менее об особом характере движения электрона в атоме.

Электроны с различными орбитальными квантовыми числами несколько отличаются друг от друга: их энергия тем выше, чем больше число l. Число возможных подуровней в каждом энергетическом уровне совпадает с порядковым номером электронного слоя, но фактически ни один энергетический уровень не содержит больше четырёх подуровней. Это справедливо для стационарного состояния атомов всех элементов. Так, первому энергетическому уровню соответствует s-подуровень; второму уровню -- два подуровня: s и p; третьему уровню -- три подуровня: s, p и d; четвёртому и следующим уровням --четыре подуровня: s, p, d и f.

Ориентацию орбиталей в пространстве определяет третье квантовое число, называемое магнитным квантовым числом и обозначаемое m. При данном орбитальном квантовом числе l магнитное квантовое число m может принимать любые целочисленные значения от -l до +l, в том числе нулевое значение. Оно определяет число орбиталей в одном и том же электронном слое: одна s-орбиталь (m = 0), три p-орбитали (m равно -1, 0, +1), пять d-орбиталей (m равно -3, -2, -1, 0, +1, +2, +3).

Четвёртое квантовое число, называемое спином и обозначаемое ms, раньше связывали с вращением электрона вокруг своей оси, но теперь ему не придают какого-либо наглядного образа и считают чисто квантовомеханической величиной. Спин электрона может иметь два значения: +1/2 и -1/2.

Электронное облако не имеет резко очерченных границ в пространстве, поэтому представления о размерах и форме электронного облака требуют специального пояснения. Обратимся к рис. 7, на котором изображено электронное облако атома водорода. В этом облаке можно провести поверхности, на которых электронная плотность будет иметь одинаковое значение. В случае атома водорода это сферические поверхности, внутри которых заключена большая или меньшая часть электронного облака. Если проведённая поверхность охватывает 90 % заряда и массы электрона, её называют граничной поверхностью. Размер и форму граничной поверхности отождествляют с размером и формой электронного облака.

В атоме водорода на электрон действует только сила притяжения положительно заряженного ядра. В многоэлектронном атоме к этому взаимодействию прибавляется взаимное отталкивание электронов. Электроны внутренних слоёв атома ослабляют притяжение внешнего электрона ядром, как бы экранируют внешний электрон от ядра.

При этом экранирование оказывается различным для электронов с неодинаковой формой электронного облака. Поэтому в многоэлектронных атомах энергия электрона зависит не только от главного квантового числа n, но и от орбитального квантового числа l, определяющего форму электронного облака. По мере накопления сведений о свойствах химических элементов возникла настоятельная необходимость их классификации. Ко времени открытия Д. И. Менделеевым периодического закона было известно уже более 60 элементов. Многие химики пытались разрабатывать систематику элементов. Этим занимались А. Э. Б. Шанкуртуа во Франции, Л. Ю. Мейер и И. В. Деберейнер в Германии, Дж. А. К. Ньюлендс в Англии и др. Так, Ньюлендс, размещая элементы в порядке возрастания их атомных масс, заметил, что химические свойства восьмого элемента подобны свойствам первого. Этой закономерности он дал название закон октав. Деберейнер составлял триады из сходных по химическим свойствам элементов и указывал, что в триадах атомная масса среднего элемента приблизительно равна среднему арифметическому атомных масс двух крайних элементов. Шанкуртуа разместил элементы в порядке возрастания их атомных масс по винтовой линии, описанной вокруг цилиндра. Сходные элементы при этом располагались друг под другом. Мейер, разместив элементы в порядке увеличения их атомных масс, получил шесть групп подобных элементов. Однако никто из названных исследователей не сумел за этими отдельными аналогиями увидеть один из основных законов химиии. Задача была решена в 1869 г. великим русским учёным Дмитрием Ивановичем Менделеевым. Открытый им периодический закон и созданная на его основе периодическая система элементов стали фундаментом современной химии.

Изучая свойства химических элементов, Д. И. Менделеев пришёл к выводу, что многие свойства определяются атомной массой элементов. Поэтому в основу систематики элементов он положил атомную массу как "точное, измеримое и никакому сомнению не подлежащее" свойство. По мнению Менделеева, "масса вещества есть именно свойство его, от которого должны находиться в зависимости все остальные свойства. Поэтому ближе или естественнее всего искать зависимость между свойствами и сходствами элементов, с одной стороны, и атомными весами их, с другой стороны".

Менделеев разместил все известные в то время элементы в порядке возрастания их атомных масс и обнаружил, что в полученном ряду наблюдается периодичность изменеия свойств элементов. Например, в ряду от Li к F по мере увеличения атомной массы наблюдалось закономерное изменение химических свойств элементов и их соединений. Литий является типичным металлом, у следующего за ним элемента -- бериллия -- металлические свойства выражены уже значительно слабее. По величине атомной массы за бериллием идёт бор -- элемент с неметаллическими свойствами. В ряду элементов от углерода до фтора происходит усиление неметаллических свойств, и фтор уже выступает как типичный неметалл. Следующий за фтором элемент -- натрий -- резко отличается по свойствам от фтора, но проявляет большое сходство с литием. При переходе от натрия к хлору вновь наблюдается постепенное ослабление металлических и нарастание неметаллических свойств. Периодически повторяются не только химические свойства элементов, но и формулы их соединений. Например, литий образует с кислородом соединение состава Li2O; аналогичную формулу имеет соединение натрия с кислородом -- Na2O. Д. И. Менделеев сформулировал открытый им закон так:

свойства простых тел, а также формулы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Первый вариант периодической системы элементов Менделеев опубликовал в 1869 г. Все элементы он разместил в порядке увеличения их атомных масс, однако с таким расчётом, чтобы подобные по свойствам элементы оказались друг над другом. Сходные элементы, вошедшие в один вертикальны ряд, Менделеев объединил в группы. Последовательность элементов, в пределах которой закономерно изменяются свойства элементов от типичного металла до типичного неметалла, была названа периодом.

При составлении периодической системы Менделеев, беря за основу атомные массы элементов, не оставлял без внимания и их химические свойства. Так, в некоторых случаях в таблице нарушен принцип расположения элементов по возрастанию их атомных масс. Например, теллур, атомная масса которого больше атомной массы иода, стоит перед иодом. В противном случае иод находился бы в одной группе с серой, а не с хлором, с которым он проявляет большое сходство. Так же поступил учёный с парой элементов калий -- аргон. Атомная масса калия меньше атомной массы аргона, однако в таблице калий был помещён после аргона и оказался в одной группе с другими щелочными металлами. Менделеев предсказал физические и химические свойства этих трёх элементов на основании свойств окружающих их в таблице элементов. Например, атомную массу и плотность элемента номер 21 он рассчитал как среднее арифметическое атомных масс и плотностей бора, иттрия, кальция и титана. Открытие предвиденных Менделеевым элементов и блестящее совпадение предсказанных им свойств с установленными опытным путём привело к всеобщему признанию периодического закона. Кесслер Г. Ядерная энергетика. Москва: Энергоиздат, 2000.-159с.

Следует отметить, что Менделеев сомневался в возможности резкого перехода от таких активных неметаллов, какими являются галогены, к щелочным металлам. Он полагал, что этот переход должен быть более плавным. Вскоре это научное предвидение оправдалось: были открыты инертные газы. В периодической системе не было свободных мест для этих элементов, и они были выделены в самостоятельную группу. С целью подчеркнуть большую химическую инертность этих элементов группа была названа нулевой.

2. Определите методические подходы в изучении темы «Вода. Растворы. Основания»

Если в сосуд с водой поместить кристаллы поваренной соли, сахара или перманганата калия (марганцовки), то мы можем наблюдать, как количество твердого вещества постепенно уменьшается. При этом вода, в которую были добавлены кристаллы, приобретает новые свойства: у нее появляется соленый или сладкий вкус (в случае марганцовки появляется малиновая окраска), изменяется плотность, температура замерзания и т.д. Полученные жидкости уже нельзя назвать водой, даже если они неотличимы от воды по внешнему виду (как в случае с солью и сахаром). Это - растворы. 

Растворы - однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия.

Растворы не отстаиваются и сохранятся все время однородными. Если раствор профильтровать через самый плотный фильтр, то ни соль, ни сахар, ни марганцевокислый калий не удается отделить от воды. Следовательно, эти вещества в воде раздроблены до наиболее мелких частиц - молекул. Молекулы могут опять собраться в кристаллы только тогда, когда мы выпарим воду. Таким образом, растворы - это молекулярные смеси.

По агрегатному состоянию растворы могут быть жидкими (морская вода), газообразными (воздух) или твёрдыми (многие сплавы металлов).

Размеры частиц в истинных растворах - менее 10 -9 м (порядка размеров молекул).

Любой раствор состоит из растворителя и растворенного вещества . В приведенных примерах растворителем является вода. Но не всегда обязательно вода является растворителем. Например, можно получить раствор воды в серной кислоте. Здесь растворителем будет кислота. Можно приготовить и растворы кислоты в воде.

Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом.

Существуют растворы не только жидкие, но и газовые и даже твердые. Например, воздух - раствор кислорода и еще нескольких газов в азоте. Сплавы металлов представляют собой твердые растворы металлов друг в друге. Газы, как мы уже знаем, способны растворяться в воде.

Количество молекул, способных перейти в раствор, часто ограничено. Молекулы вещества не только покидают кристалл, но и вновь присоединяются к кристаллу из раствора. Пока кристаллов относительно немного, больше молекул переходит в раствор, чем возвращается из него - идет растворение. Но если растворитель находится в контакте с большим количеством кристаллов, то число уходящих и возвращающихся молекул становится одинаковым и для внешнего наблюдателя растворение прекращается.

Ненасыщенные, насыщенные и перенасыщенные растворы

Если молекулярные или ионные частицы, распределённые в жидком растворе присутствуют в нём в таком количестве, что при данных условиях не происходит дальнейшего растворения вещества, раствор называется насыщенным. (Например, если поместить 50 г NaCl в 100 г H 2 O, то при 20єC растворится только 36 г соли). Насыщенным называется раствор, который находится в динамическом равновесии с избытком растворённого вещества. Поместив в 100 г воды при 20єC меньше 36 г NaCl мы получим ненасыщенный раствор. При нагревании смеси соли с водой до 100?C произойдёт растворение 39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся соль, а раствор осторожно охладить до 20єC, избыточное количество соли не всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным раствором. Перенасыщенные растворы очень неустойчивы. Помешивание, встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка соли и переход в насыщенное устойчивое состояние.

Ненасыщенный раствор - раствор, содержащий меньше вещества, чем в насыщенном.

Перенасыщенный раствор - раствор, содержащий больше вещества, чем в насыщенном.

3. Составьте план раскрытия следующей темы «Химическая связь. Строение вещества»

Вот приблизительный план урока:

1. Вступление

2. Ионная связь.

3. Ковалентная неполярная связь.

4. Металлическая связь.

5. Водородная связь.

Вам известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними - ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.

Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.

В периодах наблюдается общая тенденция роста электроотрицательности элементов, а в группах - их падения. Элементы по электроотрицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.

Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.

Ионная связь.

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na 2 SO 4 ) ионные связи существуют только между атомами натрия и кислорода (остальные связи - ковалентные полярные).

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрицательностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H2, F2, Cl2, O2, N2. Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодействием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара - это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Металлическая связь.

Связь, которая образуется в результате взаимодействия относительно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свободные электроны, оторвавшиеся от атома, перемещаются между положительными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристаллической решетки металлов.

Водородная связь.

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2 O, NH 3 ).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H2O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их “упаковки”.

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также вследствие укрупнения их молекул.

Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.

4. Какие новые понятия и умения формируются при изучении темы «Вода. Растворы. Основания»

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания - это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

При изучении этой темы формируются следующие понятия:

- основания,

- растворы,

- вода,

- гидроксидная группа

5. Приведите примеры познавательных заданий в форме дидактической игры по химии в теме: «Первоначальные химические понятия»

Теория химических явлений обсуждается в курсе философии в свете общих представлений о возникновении и исчезновении веществ. Экспериментальной частью были заняты в основном аптекари и алхимики.

Различные алхимика проделывали различные опыты по “трасмутации” металлов. Это позволяло открывать новые способы получения различных веществ. Также они развивали натурфилософские учения древнегреческих философов Аристотеля, Эмпедокла, Левкиппа, Демокрита.

Если взять за основу эти учения, все вещества в природе состоят из более простых частей, такие просты части назвали элементами. Согласно классификации Левкиппина и Демокрита такими элементами были атомы -- мельчайшие частицы бескачественной первичной материи. Эта материя различается только величиной и формой. Овчинников Ю.А. Химия жизни (Избранные труды). М.:Наука,2000.-341с.

В эпоху эллинизма появилось учение о “трансмутации”, что означает превращении. Это учение гласит, что если изменить сочетания элементов можно получить вещества уже с другими свойствами. Основоположником этого учения стал Парацельс.

Как и многие алхимики, Парацельс считал, что все вещества состоят из элементов, которые способны соединяться друг с другом. Если же вещества разлагаются, то элементы разъединяются.

Но все же в разрез алхимикам, Парацельс считал, что существуют три начала и они очень существенны. “сера” - начала горючести, “ртуть” - начала липучести, “соли” - начала огнепостоянства.

“Василий Валентин” (это псевдоним, настоящие имя, к сожалению, не дошло до нас) написал сочинение о ртути, сере и соли как начала, образующих все тела. Его труд получил большое распространение в 16 веке.

На практике это учение “доказал” Парацельс. Его доказательство заключалось в горении древесины. Он писал: “ Чтобы испытать это, возьми сначала дерево: это будет тело. Сожги его, тогда то, что будет гореть, - это сера, то, что будет дымить, - меркурий (ртуть), а то, что останется золой, - соль”.

Роберту Боилю посчастливилось жит в эпоху великих общественных и духовных преобразований. Благодаря Боилю был открыта дорога механистическому материализму в естествознании.

Основываясь на экспериментальные результаты Бойль выступал против учения о трех началах и четырех элементах как основе всех веществ.

Он считал, что элементом следует считать вещество, которое не имеет составных частей и не может быть разложено. Это свойство было принято Боилем потому, что в то время считалось, что вещества, не изменяющиеся при обжиге можно назвать элементами.

Бойль экспериментально доказал, что вещества, с которыми он проводил опыты, вовсе не распадаются на три или четыре более простых вещества (золото, стекло). Из некоторых веществ могут выделяться простые “тела” в количестве, большем, чем три или четыре, причем их химические свойства такие же, как у элементов. Биотехнология: что это такое?' Вакула В.Л., Москва: Молодая гвардия,1990.-127с.

В 1955 году был синтезирован элемент с атомным весом 101, названный менделеем. Данный элемент навсегда утвердил значимость открытий, которые сделал Менделеев -- создателя периодической системы, позволившей предсказать свойства неизвестных элементов и создать предпосылки для открытия трансурановых элементов, к которым принадлежит менделей.

6. Разработайте план одного из уроков предложенной темы раздел «Металлы»

В настоящее время известно 105 химических элементов, большинство из них - металлы. Последние весьма распространены в природе и встречаются в виде различных соединений в недрах земли, водах рек, озер, морей, океанов, составе тел животных, растений и даже в атмосфере.

По своим свойствам металлы резко отличаются от неметаллов. Впервые это различие металлов и неметаллов определил М. В. Ломоносов. “Металлы, - писал он, - тела твердые, ковкие блестящие”. Шульпин Г.Б. Химия для всех. М.:ИНФРА,2000.-286с.

Причисляя тот или иной элемент к разряду металлов, мы имеем в виду наличие у него определенного комплекса свойств:

Плотная кристаллическая структура.

Характерный металлический блеск.

Высокая теплопроводность и электрическая проводимость.

Уменьшение электрической проводимости с ростом температуры.

Низкие значения потенциала ионизации, т.е. способность легко отдавать электроны.

Ковкость и тягучесть.

Способность к образованию сплавов.

Все металлы и сплавы, применяемые в настоящее время в технике, можно разделить на две основные группы. К первой из них относят черные металлы - железо и все его сплавы, в которых оно составляет основную часть. Этими сплавами являются чугуны и стали. В технике часто используют так называемые легированные стали. К ним относятся стали, содержащие хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Иногда в легированные стали входят 5-6 различных металлов. Методом легирования получают различные ценные стали, обладающие в одних случаях повышенной прочностью, в других - высокой сопротивляемостью к истиранию, в третьих - коррозионной устойчивостью, т.е. способностью не разрушаться под действием внешней среды.

Ко второй группе относят цветные металлы и их сплавы. Они получили такое название потому, что имеют различную окраску. Например, медь светло-красная, никель, олово, серебро - белые, свинец - голубовато-белый, золото - желтое. Из сплавов в практике нашли большое применение: бронза - сплав меди с оловом и другими металлами, латунь - сплав меди с цинком, баббит - сплав олова с сурьмой и медью и др.

Это деление на черные и цветные металлы условно.

Наряду с черными и цветными металлами выделяют еще группу благородных металлов: серебро, золото, платину, рутений и некоторые другие. Они названы так потому, что практически не окисляются на воздухе даже при повышенной температуре и не разрушаются при действии на них растворов кислот и щелочей.

Физические свойства металлов.

С внешней стороны металлы, как известно, характеризуются прежде всего особым “металлическим” блеском, который обусловливается их способностью сильно отражать лучи света. Однако этот блеск наблюдается обыкновенно только в том случае, когда металл образует сплошную компактную массу. Правда, магний и алюминий сохраняют свой блеск, даже будучи превращенными в порошок, но большинство металлов в мелкораздробленном виде имеет черный или темно-серый цвет. Затем типичные металлы обладают высокой тепло- и электропроводностью, причем по способности проводить тепло и ток располагаются в одном и том же порядке: лучшие проводники - серебро и медь, худшие - свинец и ртуть. С повышением температуры электропроводность падает, при понижении температуры, наоборот, увеличивается.

Очень важным свойством металлов является их сравнительно легкая механическая деформируемость. Металлы пластичны, они хорошо куются, вытягиваются в проволоку, прокатываются в листы и т.п.

Характерные физические свойства металлов находятся в связи с особенностями их внутренней структуры. Согласно современным воззрениям, кристаллы металлов состоят из положительно заряженных ионов и свободных электронов, отщепившихся от соответствующих атомов. Весь кристалл можно себе представить в виде пространственной решетки, узлы которой заняты ионами, а в промежутках между ионами находятся легкоподвижные электроны. Эти электроны постоянно переходят от одних атомов к другим и вращаются вокруг ядра то одного, то другого атома. Так как электроны не связаны с определенными ионами, то уже под влиянием небольшой разности потенциалов они начинают перемещаться в определенном направлении, т.е. возникает электрический ток.

Наличием свободных электронов обусловливается и высокая теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них - следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.

По плотности металлы условно подразделяются на две большие группы: легкие металлы, плотность которых не больше 5 г/см 3 , и тяжелые металлы - все остальные.

Частицы металлов, находящихся в твердом и жидком состоянии, связаны особым типом химической связи - так называемой металлической связью. Она определяется одновременным наличием обычных ковалентных связей между нейтральными атомами и кулоновским притяжением между ионами и свободными электронами. Таким образом, металлическая связь является свойством не отдельных частиц, а их агрегатов.

Химические свойства металлов.

Основным химическим свойством металлов является способность их атомов легко отдавать свои валентные электроны и переходить в положительно заряженные ионы. Типичные металлы никогда не присоединяют электронов; их ионы всегда заряжены положительно.

Легко отдавая при химических реакциях свои валентные электроны, типичные металлы являются энергичными восстановителями.

Способность к отдаче электронов проявляется у отдельных металлов далеко не в одинаковой степени. Чем легче металл отдает свои электроны, тем он активнее, тем энергичнее вступает во взаимодействие с другими веществами.

Вытеснение одних металлов из их соединений другими металлами впервые было подробно изучено русским ученым Бекетовым, расположившим металлы по их убывающей химической активности в так называемый “вытеснительный ряд”. В настоящее время вытеснительный ряд Бекетова носит название ряда напряжений.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, и образуют электрохимический ряд напряжений металлов: Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд напряжений характеризует химические свойства металлов:

Чем меньше электродный потенциал металла, тем больше его восстановительная способность.

Каждый металл способен вытеснять(восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений после него.

Все металлы, имеющие отрицательный стандартный электродный потенциал, то есть находящиеся в ряду напряжений левее водорода, способны вытеснять его из растворов кислот.

7. Разрисуйте прибор, который школьник должен собрать и использовать для получения и обнаружения вещества: «Водород»

ионный ковалентный металл водород

Получение водорода как топлива пока остается на уровне поисковых разработок. Это абсолютно чистое топливо, дающее при сгорании лишь Н 2 О, отличается исключительно высокой теплотворной способностью -- 143 кДж/г. Химический и электрохимический способы получения Н 2 неэкономичны, поэтому заманчиво использование микроорганизмов, способных выделять водород. Такой способностью обладают аэробные и анаэробные хемотрофные бактерии, пурпурные и зеленые фототрофные бактерии, цианобактерии, различные водоросли и некоторые простейшие (Е. Н. Кондратьева, И. Н. Го-готов, 1981). Процесс протекает с участием гидрогеназы или нитрогеназы.

Гидрогеназа -- фермент, содержащий FeS-центры. Она катализирует реакцию

2Н + + 2е - = Н 2

Одна из технологических возможностей основана на включении изолированной гидрогеназы в состав искусственных Н 2 -генерирую-щих систем. Сложной проблемой является нестабильность изолированного фермента и быстрое ингибирование его активности водородом (продуктом реакции) и кислородом. Повышение стабильности гидрогеназы может быть достигнуто ее иммобилизацией (Чан Динь Тоай, 1984; Y. Nosaka et. al., 1986). Иммобилизация предотвращает ингибирование гидрогеназы кислородом.

Предложено много вариантов модельных систем, катализирующих образование водорода из воды за счет энергии света. Эти системы различаются механизмом улавливания энергии света и содержат хлоропласты или изолированный из них хлорофилл, а также восстановленные никотинамидные нуклеотиды. Некоторые системы наряду с водородом образуют кислород: в этом случае речь идет о биофотолизе воды. Кащеев В.П. Ядерные энергетические установки. Минск: Высшая школа, 2000.-287с.

Примером может служить система хлоропласт -- ферредоксин -- гидрогеназа. Ферредоксин служит промежуточным переносчиком электронов от фотосинтетической цепи хлоропластов к добавленной гидрогеназе. Серьезной проблемой является поддержание низкого парциального давления этих газов, с тем чтобы не наступило ингибирование гидрогеназы. При замене ферредоксина на флавопротеид или метилвиологен система образует только Н 2 . Флавопротеид и, по некоторым данным, метилвиологен защищают гидрогеназу от ингибирования кислородом. Разрабатываются системы с изолированным хлорофиллом, встроенным в детергент ные мицеллы или липосомы вместе с гидрогеназой. Предложена также система с гидрогеназой, иммобилизованной в агарозном геле, с которым прочно связан полимерный виологен и металлопорфирин, аналог хлорофилла. Маргулова Т.Х. Атомная энергетика сегодня и завтра. Москва: Высшая школа, 2001.-227с.

Водород получают также с применением целых клеток микроорганизмов, стабильность которых возрастает при их иммобилизации. Высокоэффективными продуцентами Н 2 являются пурпурные фототрофные бактерии, например Rhodopseudomonas sp., которые при иммобилизации в агарозном геле дают до 180 мкмоль Н 2 за 1 ч в пересчете на 1 мг бактериохлорофилла (М. Tadashi, A. Akira, 1983). Важное направление работ -- поиск продуцентов Н 2 с устойчивой к О 2 гидрогеназой.

Другим ферментом, катализирующим выделение водорода, является нитрогеназа. У всех микроорганизмов нитрогеназа состоит из двух, компонентов, а именно из MoFeS-протеида (молибдоферредоксина) и FeS-протеида (азоферредоксина). Основной функцией нитрогеназы является восстановление молекулярного азота:

N 2 + 8H+ + 8е - + nАТФ -> 2NH 3 + Н 2 + nАДФ + nфосфорная кислота

В отсутствие основного субстрата (N 2) нитрогеназа катализирует энергозависимое

восстановление Н + с образованием Н 2. Переключение фермента с одного режима работы на другой является технологической проблемой. Один из путей решения -- получение штаммов микроорганизмов с нитрогеназой, не утилизирующей азот.

В Японии получен штамм Anabaena sp., который осуществляет биофотолиз воды в режиме, не чувствительном к Н 2, О 2 и N 2. Повышению эффективности биофотолиза воды способствует чередование периодов функционирования биообъекта как продуцента Н 2 и О 2 с периодами “отдыха”, когда клетки фотоассими-лируют СО 2 (вводимый на этот период в среду культивирования). Возможно комбинирование процессов получения Н 2 и других ценных продуктов. В частности, представители рода Clostridium дают органические растворители и в то же время обладают активной гидрогеназой. Если в реакторе с культурой Cl. saccharo-perbutylacetoniocum не создавать оттока для выделяющегося Н 2 , то наблюдается ингибирование образования Н 2 и эффективный синтез бутанола, ацетона и этанола. Если водороду обеспечивают свободный отток, то наряду с довольно активным образованием Н 2 культура синтезирует лишь этанол. Этот пример иллюстрирует возможность управления ходом биотехнологического процесса условиями культивирования биообъекта.

Таким образом, предложены разнообразные проекты систем для получения водорода с использованием биообъектов. Речь идет о вмешательстве человека в процесс биоконверсии энергии с целью добиться ее возможно более полного превращения в энергию химической связи в молекуле Н 2.

8. Какие хим. опыты вы предложите учащимся при формировании хим. понятий в теме «Электрическая диссоциация»

Пример 1.

Рассмотрим зависимость молярной электрической проводимости раствора бинарного электролита от скорости движения ионов. Пусть электрический ток проходит через раствор бинарного электролита, помещенный в стеклянную трубку с поперечным сечением s м2, причем расстояние между электродами равно l м и разность потенциалов между ними равна Е В. Обозначим через u'+ и u'- скорости движения катионов и анионов, м/с, а через см концентрацию раствора электролита, г/моль/м3. Если степень диссоциации электролита в данном растворе равна б, то концентрации катионов и анионов равны б см г/моль/м3. Подсчитаем количество электричества, которое переносится через поперечное сечение трубки за 1 с. Коллиер Дж., Дж.Хьюитт. Введение в ядерную энергетику. Москва: Энергоатомиздат, 2000.-297с.

Катионов за это время пройдет через сечение u'+ sбc м г/моль и они перенесут u'+ sбc м F Кл электричества, так как г/моль переносит количество электричества, равное числу Фарадея F.

Анионы в обратном направлении перенесут u'- sбc м F Кл электричества.

Пример 2.

Сосуд снабжен двумя одинаковыми плоскими параллельными электродами, закрепленными так, чтобы расстояние между ними не изменялось.

Прибор представляет собою контур обе. Между b и с в цепь включен сосуд для измерения электропроводности. Сопротивление его обозначено через W, между а и с--магазин сопротивления R. Отрезок ab представляет собой тонкую металлическую (Pt, Mn, манганиновую и т. п.) однородную проволоку длиной в 1 м, натянутую на линейку с делениями. В точках а и b подсоединяются провода, по которым подается переменный ток от вторичной обмотки катушки Румкорфа v или от генератора звуковой частоты.

Для определения сопротивления жидкостей применяют переменный ток, а не постоянный во избежание электролиза и поляризации. При переменном токе очень чувствительным инструментом, обнаруживающим присутствие или отсутствие тока является низкоомный телефон (в последнее время применяется катодный осциллограф). Телефон включается между точкой с и подвижным контактом d.

Сопротивление раствора определяется при таком положении контакта d, при котором в телефонной трубке не слышно никакого звука, и следовательно, ток в линии cd отсутствует.

Рассмотрим ряд ионов: Li+, Na+, K+. Как следует из уравнения движения, скорость движения ионов обратно пропорциональна их радиусу. В указанном ряду истинные радиусы ионов увеличиваются, и подвижности должны уменьшаться в той же последовательности.

В действительности в растворах подвижности ионов увеличиваются. Из этого можно сделать заключение, что в растворе и в ионной решетке ионы обладают различными радиусами. Чем меньше кристаллохимический радиус иона, тем больше его эффективный радиус в электролите. Это явление можно объясни тем, что в растворе ионы не свободны, а гидратированы или в общем случае сольватированы. Эффективный радиус движущегося электрическом поле иона будет определяться гидратации, количеством связанных с ионом молекул воды.

Многовалентные ионы в силу большой гидратной оболочки обладают минимальной подвижностью, так как гидратированы в наибольшей степени.

Ионы гадроксила и гидроксония обладают аномальной подвижностью - подвижность в растворах максимальна.

Предложено несколько теорий, объясняющих подвижность гидроксония и гидроксила.

9. Какие расчетные задачи можно предложить учащимся при изучении темы «Кислород. Оксиды. Горение»

Задача 1.

Рассчитайте массу кислорода, необходимого для полного сгорания 208 г оксида натрия. Какая масса воздуха содержит эту массу кислорода? Массовая доля кислорода в воздухе составляет 23%.

Задача 2.

Какой объем воздуха (н. у.) расходуется при полном сгорании 1кг оксида кальция? Объемная доля кислорода в воздухе составляет 21%.

Задача 3.

При горении 1 моль газообразного алкана (при н. у.) образовалось 2,24 л оксида углерода (IV) и 36 г воды. Найдите молекулярную формулу алкана и рассчитайте, какой объем кислорода потребуется для полного сгорания 5 л его.

Задача 4.

Какая масса воды образуется при сгорании в кислороде 5 парафиновых свечей массой 100 г каждая, если массовая доля углерода в этом образце парафина составляет 80%?

Задача 5.

При горении 1 моль газообразного алкана (при н. у.) образовалось 2,24 л оксида углерода (IV) и 36 г воды. Найдите молекулярную формулу алкана и рассчитайте, какой объем кислорода потребуется для полного сгорания 5 л его.

Список литературы

1. Биотехнология: что это такое? / Вакула В.Л., Москва: Молодая гвардия,1990.-564с.

2. Кащеев В.П. Ядерные энергетические установки. Минск: Высшая школа, 2000.-548с.

3. Кесслер Г. Ядерная энергетика. Москва: Энергоиздат, 2000.-533с.

4. Коллиер Дж., Дж.Хьюитт. Введение в ядерную энергетику. Москва: Энергоатомиздат, 2000.-439с.

5. Маргулова Т.Х. Атомная энергетика сегодня и завтра. Москва: Высшая школа, 2001.-521с.

6. Овчинников Ю.А. Химия жизни (Избранные труды). М.:Наука,2004.-472с.

7. Шульпин Г.Б. Химия для всех. М.:ИНФРА,2004.-532с.

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.

    контрольная работа [180,4 K], добавлен 05.08.2013

  • Особенности валентности - образования у атомов определенного числа химических связей. Основные типы химической связи: ионная, ковалентная, водородная, металлическая. Виды кристаллов по типу химической связи: ионные, атомные, металлические, молекулярные.

    курсовая работа [241,7 K], добавлен 19.10.2013

  • Типы химической связи: ковалентная, ионная и металлическая. Донорно-акцепторный механизм образования и характеристики ковалентной связи. Валентность и степень окисления элементов. Молекулы химических соединений. Размеры и масса атомов и молекул.

    контрольная работа [45,3 K], добавлен 16.11.2010

  • Характеристика ковалентной связи: насыщаемость, направленность, полярность. Гибридизация атомных орбиталей. Ионная, молекулярная, водородная и металлическая химические связи. Вандерваальсовы силы, межмолекулярное взаимодействие; кристаллические решетки.

    презентация [1,1 M], добавлен 22.04.2013

  • Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.

    реферат [19,2 K], добавлен 05.12.2003

  • Рассмотрение возможности экологизации раздела химии: "Физико-химические свойства водорода" путем внедрения темы: "Альтернативная энергетика". Обзор сведений о водородной энергетике как альтернативном виде энергии. Выбор наилучших форм организации занятий.

    дипломная работа [135,3 K], добавлен 24.12.2009

  • Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.

    реферат [76,2 K], добавлен 18.05.2006

  • Положение металлов в периодической системе Д.И. Менделеева. Строение атомов металлов и их кристаллических решеток. Физические свойства металлов и общие химические свойства. Электрохимический ряд напряжения и коррозия металлов. Реакции с другими веществами

    презентация [1,8 M], добавлен 29.04.2011

  • Положение металлов в периодической системе Д.И. Менделеева. Строение атомов металлов, кристаллических решеток. Металлы в природе, общие способы их получения. Физические свойства металлов. Общие химические свойства. Электрохимический ряд напряжения.

    презентация [2,3 M], добавлен 09.02.2012

  • Английский естествоиспытатель, физик и химик Генри Кавендиш - первооткрыватель водорода. Физические и химические свойства элемента, его содержание в природе. Основные методы получения и области применения водорода. Механизм действия водородной бомбы.

    презентация [4,5 M], добавлен 17.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.