Полииодиды комплексов переходных элементов с амидами

Определение состава, строения и свойств соединений, образующихся при взаимодействии иодидов ряда переходных элементов с амидами и иодом в водной среде, роль центрального атома катионного комплекса, лиганда и иода в формировании супрамолекулярных систем.

Рубрика Химия
Вид автореферат
Язык русский
Дата добавления 22.09.2010
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Анализ данных спектроскопии КР показывает наличие корреляционной зависимости частоты симметричных валентных колебаний связи I-I в свободных и координированных молекулах иода и трииодид-ионах от длины связи I-I (рис. 13). Это позволяет использовать данные спектров КР полииодидных комплексов для оценки межатомных расстояний в полииодидных анионах. Например, в спектрах КР рентгеноаморфных полииодидов бензамидных производных цинка и кадмия наблюдаются полосы при 108-113 и 158 см-1. Можно утверждать, что длина связи в координированных молекулах иода в составе этих соединений составляет около 2.785 Е (порядок связи около 0.7). Аналогичные полосы (111 и 156 см-1) наблюдаются в спектре КР рентеноаморфного полииодида карбамидного комплекса кадмия. Таким образом, анализ спектра КР свидетельствует, что это соединение также содержит трииодид-ионы и координированные молекулы иода.

Зависимость средних длин связей М-О от ионного радиуса комплексообразователя (рис. 14) подтверждает наличие железа(III) в [Fe(Ur)6]I3 и [Fe(Ur)6][I3]3. Если считать, что полученные комплексы содержат железо(III), то точка, отвечающая средней длине связи Fe-O, попадает линию прямолинейной зависимости. Если же принять, что железо сохраняет степень окисления (II), положение точки заметно выпадает из полученной корреляции. Уравнение линии тренда: y = 1.25 + 0.96x (R2 = 0.99). При х 0 у 1.25 Е, что практически совпадает с ионным радиусом O-II. Поскольку значение параметра при х чуть меньше 1, можно считать, что катионы металла практически не деформируются при координации; поляризуемость проявляется лишь для самых крупных ионов.

Рис. 13. Зависимость частоты симметричных валентных колебаний в спектрах КР от длины связи I-I.

Рис. 14. Зависимость длины связи М-О от ионного радиуса М.

Исследование строения полииодидов амидных комплексов переходных элементов показало, что полииодидные частицы не размещаются в пустотах и каналах, образованных катионным каркасом, как это считалось ранее, а сами образуют каркас, в котором располагаются комплексные катионы. С повышением содержания иода формируются более сложные структуры. Структурообразующая роль принадлежит амиду только в соединениях, содержащих 10 моль карбамида на моль иодида металла (отношение числа атомов иода к числу молекул лиганда в соединении равно 1 : 5), где наблюдается клатратно-координационное строение (рис. 15). При повышении содержания иода вплоть до отношения числа атомов иода к числу молекул лигандов 1 : 1 иод становится равноправным структурообразователем; соединения имеют слоистую структуру, содержащую либо слои из амид-содержащих катионов и иод-содержащих анионов, либо чередующиеся слои из амидных комплексов и атомов иода. При еще более высоком содержании иода (до 5 атомов иода на 3 молекулы лиганда) иод формирует канальную структуру, которая может быть образована полииодидными цепочкам. Когда отношение числа атомов иода к числу молекул лиганда достигает 2 : 1, появляется трехмерный каркас из атомов иода.

Таблица 9. Электропроводность полииодидов различного строения

Данные по измерению электропроводности показывают, что для исследованных полииодидов отсутствует прямая зависимость значений электропроводности от содержания иода в соответствующих соединениях (табл. 9). Значения электропроводности полииодидов связаны с образуемым иодом структурным мотивом. Максимальная электропроводность наблюдается в тех случаях, когда атомы иода образуют бесконечные цепочки.

Выводы

1. Проведено систематическое исследование условий образования и особенностей координационной и супрамолекулярной химии соединений иодидов хрома, марганца, железа, кобальта, никеля, цинка или кадмия с карбамидом (Ur), 1,3-диметилмочевиной (DMU), ацетамидом (AA), пропанамидом (PA), иодацетамидом (IAA), формамидом (FA) или бензамидом (BA) и иодом.

2. На основании данных по растворимости в системах, содержащих MI2, мочевину или ацетамид, иод и воду, определены области кристаллизации комплексных соединений и разработаны методы их синтеза. Выделены в кристаллическом состоянии полииодиды: [M(Ur)6][I3]2.2Ur (M = Mn, Co, Ni), [M(Ur)6][I3]3 (M = Fe, Cr), [M(Ur)6][I8] (M = Mn, Co, Ni), [M(AA)6][I10] (M = Mn, Fe, Co, Ni, Zn, Cd), [Co(AA)4(H2O)2][I12] и [Ni(AA)6][I3]2. Установлено образование полииодидов карбамидных, формамидных и бензамидных комплексов цинка и кадмия, имеющих аморфное строение.

3. На основании рентгеноструктурного и спектроскопического исследования комплексных соединений иодидов переходных элементов с амидами: [Mn(Ur)6]I2, [Fe(Ur)6]I3, [ML4(H2O)2]I2 (M = Mn, Co, Ni; L = Ur, AA), [Fe(AA)4(H2O)2]I2, [Co(Ur)2(H2O)4][CoI4].H2O, [ZnL2I2] (L = DMU, AA, BA, FA), [Zn(IAA)6][ZnI4].IAA, [Cd(DMU)3I2], [CdL6][Cd2I6] (L = AA, PA, IAA), [Cd(BA)4I2], [Cd(FA)2I2]n, [Cd(FA)4I2], [Cd3(FA)2I6]n - обнаружено нескольких типов комплексных соединений. Для марганца, железа, кобальта и никеля наиболее характерно образование соединений, содержащих комплексные катионы и иодид-ионы, а для цинка и кадмия - молекулярных комплексов и комплексных соединений с разделением лигандов. Отмечено формирование комплекса с разделением лигандов в случае кобальта и полимерных комплексов в случае кадмия. Методами ДТА и ИК спектроскопии показано, что при нагревании комплекса [Co(Ur)4(H2O)2]I2 происходит удаление внутрисферной воды и дополнительная координация мочевины через атом азота.

4. На основании рентгеноструктурного и спектроскопического исследования полиодидов амидных комплексов переходных элементов установлены особенности строения полииодид-иодов и формирования супрамолекулярных ансамблей на их основе.

5. Выявлена необычная стабилизация степени окисления FeIII в иодиде и полииодиде карбамидного комплекса железа, обусловленная особенностями электронного строения центрального атома и кристаллической структуры соединений.

6. Найдена корреляционная зависимость между длиной связи I-I и положением полосы колебания этой связи в спектрах КР полииодидов, что позволило охарактеризовать иодсодержащие частицы в рентгеноаморфных полииодидах.

7. Показано, что размер катиона металла не влияет на состав и строение образующихся карбамидных производных; слабое влияние размера катиона обнаружено в случае полииодидов аквакомплексов и ацетамидных производных; отмечено проявление особенностей электронного строения атома металла при образовании некоторых соединений. Установлено влияние донорной способности атома кислорода в молекуле лиганда, стерических факторов и слабых взаимодействий на возможность образования и строение комплексных соединений.

8. Проведен анализ структурных перестроек при переходе от комплексов иодидов металлов с амидами к соответствующим полииодидам. Установлено, что происходит некоторое разрыхление структуры и переход от клатратно-координационного к слоистому, а от слоистого - к канальному строению соединений.

9. Показано, что при выделении кристаллов из водного раствора имеется конкуренция между молекулами воды, амида и иода за место в кристаллической решетке образующихся комплексных иодидов и полииодидов; при низком содержании иода структурообразующая роль принадлежит амиду, а с ростом содержания иода структурообразующая роль переходит к нему, при этом в пустотах иодной подрешетки располагаются октаэдрические карбамид- или ацетамидсодержащие катионные комплексы.

10. Установлено, что максимальная электропроводность кристаллических полииодидов наблюдается для соединений, содержащих полииодидные цепи. Полученные результаты свидетельствуют о ионном типе электропроводности по механизму Гротгуса.

11. Выявленные закономерности образования супрамолекулярных ансамблей из атомов иода в комплексных соединениях переходных элементов с амидами позволят управлять процессами получения полииодидов для создания материалов для твердофазных источников тока, датчиков температуры, сенсорных устройств, поглотителей иода.

Список опубликованных работ по теме диссертации

Savinkina E.V., Alikberova L.Yu., Rook N.S., Stepin B.D. On the interaction of some metal iodides and the urea and acetamide derivatives with iodine in the aqueous solution. // Book of Abstracts. 5-th Int. Symp. Sol. Phenom. (5 ISSP), Moscow, 1992, 138.

Savinkina E.V., Buravlev E.A., Zamilatskov I.A., Albov D.V. Bis(acetamide-кO)diiodozinc(II) // Acta Cryst., 2007, E63, m1094-m1095.

Savinkina E.V., Buravlev E.A., Zamilatskov I.A., Palkina K.K., Tsivadze A.Yu. Crystal structures of molecular complexes [CdL4I2] (L = formamide, benzamide). // Тез. докл. XXII Международная Чугаевская конференция по координационной химии, Кишинев, 2005, 258-259.

Savinkina E.V., Palkina K.K., Davydova M.N. Supramolecular Assemblies in the MI2-CO(NH2)2-I2-H2O Systems (M = Mn, Fe, Co, Ni). // Book of Abstracts. 29th International conference on solution chemistry, Portoroh, 2005, 214.

Savinkina E.V., Tashlitskaya S.M., Zamilatskov I.A. Complex polyiodides: transition metal complexes with acetamide. // Тез. докл. XXII Международная Чугаевская конференция по координационной химии, Кишинев, 2005, 260.

Savinkina E.V., Zamilatskov I.A., Al Ansari Ya.F., Albov D.V., Tsivadze A.Yu. A woven structure of hexaacetamidecadmium(II) polyiodide. // Acta Cryst., 2005, E61, m2371-2373.

Savinkina E.V., Zamilatskov I.A., Albov D.V., Zaitseva M.G., Kravchenko V.V. Tris(1,3-dimethylurea)diiodidocadmium(II). // Acta Cryst., 2007, E63, m1335-m1336.

Savinkina E.V., Zamilatskov I.A., Buravlev E.A., Albov D.V. Syntheses and structures of zinc and cadmium iodide complexes with iodoacetamide, [Zn(ICH2CONH2)6][ZnI4]. ICH2CONH2 and [Cd(ICH2CONH2)6][Cd2I6]. // Mendeleev Commun., 2008, 18, № 3 (в печати).

Savinkina E.V., Zamilatskov I.A., Buravlev E.A., Albov D.V., Tsivadze A.Yu. Reactions of manganese and zinc iodides with formamide in aqueous solution. // Mendeleev Commun., 2008, 18, № 2 (в печати).

Savinkina E.V., Zamilatskov I.A., Kuz'mina N.E., Palkina K.K. Chains, Rings and other Structural Motifs in Transition-Metal Amide Complex Polyiodides. // Program and Abstracts. 11th International Symposium on Inorganic Ring Systems, Oulu, 2006, 146.

Аликберова Л.Ю., Живейнова О.Г., Савинкина Е.В., Степин Б.Д. Способ очистки газов от паров иода. Авт. св. СССР № 1725987 от 30.03.1990.

Аликберова Л.Ю., Зайцева М.Г., Кравченко В.В., Рукк Н.С., Савинкина Е.В., Степин Б.Д. О полииодоиодатах ацетамидных производных марганца(II), железа(II), кобальта(II) и никеля(II) // Журн. неорган. химии, 1989, 34, № 6, 1508-1512.

Живейнова О.Г., Аликберова Л.Ю., Савинкина Е.В. Новый поглотитель иода из газов. // Изв. ВУЗов. Химия и хим. технология, 1992, 35, № 6, 43-46.

Зайцева М.Г., Рукк Н.С., Степин Б.Д., Аликберова Л.Ю., Савинкина Е.В. О строении продуктов взаимодействия иодидов кобальта, никеля, марганца и железа с карбамидом(ацетамидом) и иодом. // Тез. докл. XVII Всес. Чугаевское совещ. по химии комплексных соединений, Минск, 1990, том 3, 586.

Замилацков И.А., Савинкина Е.В., Альбов Д.В. Кристаллическая структура комплексов иодида кадмия с ацетамидом и пропанамидом [Cd(CH3CONH2)6][Cd2I6] и [Cd(C2H5CONH2)6][Cd2I6]. // Координационная химия, 2007, 33, № 6, 407-410.

Замилацков И.А., Савинкина Е.В., Палкина К.К. Комплексы иодида кадмия с амидами и иодом: получение, ИК-спектры и строение. // Тез. докл. X Международная научно-техническая конференция "Наукоемкие химические технологии-2004", Волгоград, 2004, том 1, 376-377.

Замилацков И.А., Савинкина Е.В., Палкина К.К. Строение комплексов иодида кадмия с бензамидом, формамидом и ацетамидом и продуктов их взаимодействия с иодом. // Ученые записки МИТХТ, 2005, № 14, 12.

Козлова И.А., Савинкина Е.В., Аликберова Л.Ю. Влияние природы комплексного катиона на состав полииодоиодатов, кристаллизующихся из водных растворов. // Тез. докл. XVI Менделеевский съезд по общей и прикладной химии, Москва, 1998, 145.

Козлова И.А., Савинкина Е.В., Кузьмина Н.Е., Палкина К.К., Аликберова Л.Ю. Синтез и структура новых комплексных соединений переходных металлов с карбамидом и иодом. // Тез. докл. XIX Всерос. Чугаевское совещ. по химии комплексных соединений, Иваново, 1999, 56.

Козлова И.А., Савинкина Е.В., Палкина К.К. Структурные перестройки водных растворов при кристаллизации комплексных полииодидов переходных элементов. // Тез. докл. IX Международная конференция "Проблемы сольватации и комплексообразования в растворе", Плес, 2004, 154.

Кравченко В.В., Зеленцов В.В., Рукк Н.С., Зайцева М.Г., Строеску А.К., Савинкина Е.В., Аликберова Л.Ю., Степин Б.Д. Магнетохимическое и спектроскопическое исследование некоторых карбамидных и ацетамидных производных марганца(II), кобальта(II) и никеля(II). // Журн. неорган. химии, 1990, 35, № 2, 419-423.

Кравченко В.В., Садиков Г.Г., Рукк Н.С., Савинкина Е.В., Аликберова Л.Ю., Зайцева М.Г., Бутман Л.А., Степин Б.Д. Структура и колебательные спектры ацетамидных производных иодидов марганца, железа, кобальта и никеля. // Журн. неорган. химии, 1989, 34, № 6, 1492-1499.

Кузьмина Н. Е., Палкина К. К., Савинкина Е.В., Бирюков Д.А., Козлова И.А. Образование комплексов иодида кобальта с карбамидом в условиях дефицита лиганда. // Журн. неорган. химии, 2001, 46, № 8, 1324-1331.

Кузьмина Н. Е., Палкина К. К., Савинкина Е.В., Козлова И.А. О продуктах взаимодействия иодидов марганца(II) и железа(II) с карбамидом: сравнение структуры и свойств. // Журн. неорган. химии, 2000, 45, № 3, 395-400.

Кузьмина Н. Е., Палкина К. К., Савинкина Е.В., Козлова И.А., Кузнецов H.Т. Синтез и кристаллическая структура [Co(Ur)6][I8]. // Журн. неорган. химии, 2000, 45, № 1, 10-14.

Кузьмина Н. Е., Палкина К. К., Савинкина Е.В., Кузнецов H.Т., Козлова И.А. Синтез и кристаллическая структура дииодоиодатов карбамидных производных никеля(II) и кобальта(II) [Ni(CON2H4)6][I3]2.2(CON2H4) и Co(CON2H4)6][I3]2.2(CON2H4). // Журн. неорган. химии, 2000, 45, № 5, 780-789.

Кузьмина Н.Е., Палкина К.К., Савинкина Е.В. Синтез и кристаллическая структура дииодоиодата гексакарбамиджелеза(III). // Журн. неорган. химии, 1999, 44, № 12, 1988-1993.

Кузьмина Н.Е., Палкина К.К., Савинкина Е.В., Замилацков И.А. Синтез и кристаллическая структура [Cd(C6H5CONH2)4I2]. // Журн. неорган. химии, 2005, 50, № 10, 1632-1632.

Кузьмина Н.Е., Савинкина Е.В., Козлова И.А. Исследование строения соединений, кристаллизующихся в системах MI2 (M = Mn, Fe, Co, Ni) - карбамид - иод - вода. // Тез. докл. Международная конференция "Физико-химический анализ жидкофазных систем", Саратов, 2003, 163.

Рукк Н.С., Аликберова Л.Ю., Савинкина Е.В., Соколова А.С., Степин Б.Д. О продуктах взаимодействия галогенидов кобальта, никеля и марганца с ацетамидом. // Журн. неорган. химии,1990, 35, № 2, 546-548.

Савинкина Е.В. Взаимодействие иодидов некоторых металлов и их карбамидных производных с иодом в водной среде. // Тез. докл. ХХХ научн. конф. факультета физ.-мат. и естеств. наук РУДН им. П.Лумумбы, 1994, том 3, 32.

Савинкина Е.В. Взаимодействие иодидов некоторых переходных металлов с карбамидом и иодом. // Матер. 5 конф. мол. уч. и спец. Моск. Ин-та тонкой хим. технол. М.: МИТХТ, 1987, 71-72. Деп. НИИТЭХИМ, г. Черкассы, № 1243-хп87.

Савинкина Е.В., Аликберова Л.Ю., Рукк Н.С., Степин Б.Д. Получение комплексных полииодоиодатов переходных металлов, не содержащих примесей других фаз. // Тез. докл. VIII Всес. конф. по методам получения и анализа высокочистых веществ, Горький, 1988, том 2, 159-160.

Савинкина Е.В., Альбов Д.В., Буравлев Е.А., Замилацков И.А. Синтез и строение полииодидов ацетамидных комплексов переходных элементов. // Журн. неорган. химии, 2007, 52, № 7, 1133-1139.

Савинкина Е.В., Давыдова М.Н. Уточнение состава и областей кристаллизации полииодидов в четверных системах MI2-Ur-I2-H2O. // Вестник МИТХТ, 2006, 1, № 1, 66-70.

Савинкина Е.В., Замилацков И.А., Буравлев Е.А., Альбов Д.В., Кузьмина Н.Е., Палкина К.К. Полииодиды комплексов переходных элементов с амидами. // Тез. докл. XVIII Менделеевский съезд по общей и прикладной химии, Москва, 2007, т. 2, 495.

Савинкина Е.В., Козлова И.А., Замилацков И.А. Кристаллизация комплексных полииодидов переходных металлов из водных и неводных растворов. // Тез. докл. III Международная научная конференция "Кинетика и механизм кристаллизации", Иваново, 2004, 152.

Савинкина Е.В., Рукк Н.С., Аликберова Л.Ю. Электропроводные соединения с повышенным содержанием иода. // Координационная химия, 1998, 24, № 12, 934-935.


Подобные документы

  • Координационная связь. Электронное строение комплексов переходных элементов и теория полной гибридизации. Кристаллическое поле. Октаэдрическое, тетраэдрическое поле. Энергия расщепления. Степень окисления центрального атома. Число и расположение лигандов.

    презентация [426,5 K], добавлен 22.10.2013

  • Изучение атома и его состава и радиоактивности. Характеристика ядерной модели атома. Зависимость свойств элементов и свойств образуемых им веществ от заряда ядра. Анализ квантовой теории света, фотоэлектрического эффекта, электронной оболочки атома.

    реферат [31,3 K], добавлен 18.02.2010

  • Физические свойства элементов VIIIB группы и их соединений, в частности, соединений железа. Анализ комплексных соединений железа (II) и железа (III) с различными лигандами с точки зрения теории кристаллического поля. Строение цианидных комплексов железа.

    курсовая работа [1,3 M], добавлен 24.02.2011

  • Периодическая система химических элементов. Строение атомов и молекул. Основные положения координационной теории. Физические и химические свойства галогенов. Сравнение свойств водородных соединений. Обзор свойств соединений p-, s- и d-элементов.

    лекция [558,4 K], добавлен 06.06.2014

  • Комплексные соединения d-металлов с органическим лигандом группы азолов. Анализ состава солей и их характеристик. Приготовление растворов хлористоводородной кислоты. Исследование свойств соединений клотримазола с солями d-элементов (Cu2+, Au3+).

    курсовая работа [3,2 M], добавлен 12.05.2019

  • Изучение соединений переходных элементов в связи с их непрерывно расширяющимся промышленным применением. Сведения о токсических веществах и их биологической активности. Суммарные токсические и стимулирующие действия элементов в организмах или в органах.

    курсовая работа [67,8 K], добавлен 10.11.2010

  • Теории химического строения (структурная и электронная). Квантово-механическое описание химической связи. Комплексы переходных и непереходных элементов. Основные постулаты классической теории химического строения. Структура конденсированных фаз.

    презентация [97,1 K], добавлен 15.10.2013

  • Электронные структуры d-элементов и их валентные возможности. Кислотно-основные свойства гидроксидов. Характеристика элементов подгрупп меди, цинка, титана, ванадия, хрома, марганца, их биологическая роль и применение. Металлы семейств железа и платины.

    курс лекций [294,4 K], добавлен 08.08.2015

  • Характеристика строения атома, аллотропии, способа получения, окислительных и восстановительных свойств серы. Исследование истории открытия химических элементов теллура, полония, селена, физических свойств и работы с ними, основных областей применения.

    презентация [4,4 M], добавлен 27.11.2011

  • Свойства ацетатов и ацетатных комплексов d-элементов 6 и 7 групп. Кластерные комплексы и комплексы, не содержащие связи Ме-Ме. Соединения ионного характера (соли). Синтез кластерного комплекса ацетата хрома(II). Физические свойства соединений, получение.

    курсовая работа [3,1 M], добавлен 12.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.