Адаптивные комплексы и генетическое разнообразие в семействе Cricetinae, на примере хомячков рода Phodopus

Анализ существующих классификаций адаптаций и адаптивных стратегий животных. Характеристика адаптивных особенностей морфологии, физиологии и поведения представителей рода Phodopus. Обзор исторического формирования генетического разнообразия хомячков.

Рубрика Биология и естествознание
Вид автореферат
Язык русский
Дата добавления 24.12.2017
Размер файла 631,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Рис. 3. Кладограмма гаплотипов объединенного участка мтДНК (2173 н.п.) хомячка Кэмпбелла. В узлах - значения индексов бутстреп поддержки по методам NJ, K2P (первое значение) и Мaximum Рarsimony (второе значение), после косой черты - значения вероятности, определяемые Байесовым подходом.

Однако географическое разделение «Восточной» и «Западной» филогенетических линий сохранилось и связано с лесным поясом горной системы Хангая (рис. 4). Исключением, нарушающим «географическую целостность» «Западной» филогруппы хомячка Кэмпбелла, является последовательность (Bor128), отмеченная у двух зверьков, пойманных в Ононском р-не Читинской области, т.е. на крайнем востоке ареала вида. Этот факт свидетельствует о первоначально гораздо более широком распространении данной группы. Возможно, географический барьер, разделивший предковые популяции Ph. campbelli, изначально проходил не столько в меридиональном (запад-восток), сколько широтном (север-юг) направлении. Дальнейшее разделение сохранившейся в северной части видового ареала «Западной» филогруппы на собственно западные и «Читинские» популяции произошло значительно позднее. Дистанция, отделяющая «читинскую» последовательность от остальных «Западных» гаплотипов составляет 0.87%, что позволяет оценить время изоляции примерно в 240-190 тыс. лет.

Показатели гаплотипического (H) и нуклеотидного () разнообразия всей выборки хомячков Кэмпбелла по объединенному участку, по гену цитохрома b и контрольному региону приведены в табл. 3. Высокий уровень гаплотипического и нуклеотидного разнообразия, c одной стороны может означать, что популяции этого вида стабильны и в течение длительного времени имеют высокое значение эффективной численности, а с другой - что в их состав входят особи ранее изолированных группировок (Avise, 2000).

Размещено на http://www.allbest.ru/

Рис. 4. Медианная сеть расстояний между гаплотипами хомячка Кэмпбелла по объединенному участку мтДНК (2173 н.п.).

Длина ветвей соединяющих отдельные гаплотипы пропорциональна количеству мутационных шагов. Обозначение гаплотипов: особи «Восточной» генетической группы - серые круги, «Западной» - не закрашенные; «Кош-Агачской» - заштрихованные. В узлах с маркировкой «mv» расположены гипотетические гаплотипы, через которые мог происходить переход от одного гаплотипа в другой.

Внутривидовая структура джунгарского хомячка. Для 28 особей джунгарского хомячка получены данные о составе всех трех указанных выше участков мтДНК, проанализированных как по отдельности, так и как единый локус. В имевшейся у нас выборке джунгарских хомячков отмечено 13 гаплотипов, из них 12 обнаружены у 18 особей, отловленных в природе.

Размещено на http://www.allbest.ru/

Рис. 5. Кладограмма гаплотипов объединенного участка мтДНК (2173 н.п.) джунгарского хомячка.

В узлах - значения индексов бутстреп поддержки по методам NJ, K2P (первое значение) и Мaximum Рarsimony (второе значение), после косой черты - значения вероятности, определяемые Байесовым подходом.

Топология деревьев, полученных разными методами для обобщенного участка (рис. 5), а также последовательности гена цитохрома b, идентична. Гаплотипы зверьков, обитающих на изолированной части ареала в Минусинской котловине (обозначение «Aba», сюда вошел и гаплотип, единый для 8 зверьков из колонии ИПЭЭ РАН), образуют отдельную кладу, занимающую базальное положение.

Особи с основной части ареала, в свою очередь, разделяются на две клады, в одну из которых, условно названную «Северной», вошли гаплотипы зверьков, пойманных во всех точках сбора (последовательность K100Svi, единая для 2 зверьков из колонии Университета в г. Галле, основатели которой происходили из Новосибирской области, также вошла в эту группу). Во вторую, «Южную», вошли гаплотипы особей из Казахстана, но не из Новосибирской области.

Обособленное положение трех гаплогрупп джунгарского хомячка видно и на медианной сети гаплотипов для двух видов рода Phodopus (рис. 6).

Размещено на http://www.allbest.ru/

Рис. 6. Медианная сеть расстояний между гаплотипами джунгарского хомячка по объединенному участку мтДНК (2173 н.п.).

Длина ветвей соединяющих отдельные гаплотипы пропорциональна количеству мутационных шагов. Обозначение гаплотипов: особи «Хакасской» генетической группы - серые круги, «Северной» - не закрашенные; «Южной» - заштрихованные. В узлах с маркировкой «mv» расположены гипотетические гаплотипы, через которые мог происходить переход от одного гаплотипа в другой.

Величина генетической дистанции между гаплотипами зверьков Минусинской котловины и зверьков из основной части ареала (табл. 2) свидетельствует о гораздо более позднем, чем у хомячка Кэмпбелла, времени возникновения изоляции - не более 220-320 тыс. лет назад. Время разделения «Южной» и «Северной» гаплогрупп джунгарских хомячков, обитающих на основной части ареала, можно оценить в 200-170 тыс. лет. Однако разделявший эти две материнские линии географический барьер впоследствии исчез, и в настоящее время их представители населяют одни и те же территории.

Наиболее низкие показатели гаплотипического и нуклеотидного разнообразия джунгарского хомячка (табл. 3) свидетельствуют о том, что вид является наиболее эволюционно молодым в роде Phodopus. Его современные популяции в течение относительно короткого эволюционного времени произошли от предковой с низким значением эффективной численности и в дальнейшем восстановили через мутации гаплотипическое разнообразие, но для восстановления высокого значения нуклеотидного разнообразия этого времени оказалось недостаточно. Высокий уровень гаплотипического разнообразия свидетельствует также о благополучном состоянии популяций джунгарского хомячка (по схеме Avise, 2000).

Если говорить о роде Phodopus в целом, то уровень гаплотипического и нуклеотидного разнообразия максимален у хомячка Кэмпбелла и минимален у наиболее эволюционно молодого джунгарского хомячка (табл. 3). Однако, даже у последнего генетическое разнообразие выше такового, обнаруженного, например, для широкоареального вида рыжей полевки на Российской (большей) части ареала (табл. 3). Несмотря на то, что ископаемые остатки рыжих полевок известны с конца среднего плейстоцена (Агаджанян, 1984; Громов, Ербаева, 1995), практически вся Европейская часть России и часть Западной Европы (Deffontaine et al., 2005) заселена рыжими полевками одной (восточной) филогруппы. Низкое гаплотипическое разнообразие у Cl. glareolus объясняется сильными колебаниями численности и вымиранием предковых линий во время среднего или позднего плейстоцена, т.е. тем, что они прошли через «бутылочное» горлышко и утеряли значительную часть своего генетического разнообразия (Абрамсон, Родченкова, 2007). О хомячках рода Phodopus, которые обладают относительно высоким генетическим разнообразием по селективно нейтральным признакам, этого сказать нельзя.

Таблица 2. Средние внутригрупповые и межгрупповые генетические дистанции (%) для выявленных гаплогрупп Ph. campbelli и Ph. sungorus. K2P-модель.

Вид

Гаплогруппа

Внутригрупповая дистанция

Межгрупповая дистанция

Ph. campbelli

Вся выборка

1.41

3.60

Ph. sungorus

Вся выборка

0.72

Ph. campbelli

Восточная

0.64

2.07

Западная

0.59

Ph. campbelli

Западная

0.59

1.50

Кош-Агачская

0.23

Ph. campbelli

Восточная

0.64

1.80

Кош-Агачская

0.23

Ph. sungorus

Минусинская

0.19

1.04

Вся выборка

0.49

Ph. sungorus

Минусинская

0.19

1.13

Северная

0.18

Ph. sungorus

Минусинская

0.19

0.97

Южная

0.13

Ph. sungorus

Северная

0.18

0.75

Южная

0.13

Таблица 3. Нуклеотидное () и гаплотипическое (H) разнообразие у видов рода Phodopus и Myodes (Сletrionomys) glareolus: n - объем выборки, HT - количество гаплотипов. (1) - по Абрамсон, Родченкова, 2007; (2) - анализ данных, представленных в базе GenBank.

Вид

Объединенный участок мтДНК

Ген цитохрома b

Контрольный регион

Ph. roborovskii

=0.75%, H=0.98

n=19, HT=17

=0.74%, H=0.96

n=23, HT=18

=0.94%, H=0.98

n=26, HT=21

Ph. campbelli

=1.43%, H=0.99

n=24, HT=22

=1.27%, H=0.97

n=25, HT=23

=1.81%, H=0.98

n=30, HT=25

Ph. sungorus

=0.72%, H=0.93

n=18, HT=12

=0.79%, H=0.86

n=18, HT=7

=0.68%, H=0.94

n=18, HT=13

Myodes glareolus

-

=0.60%, H=0.98

n=60, HT=42 (1)

=0.61%

HT=21 (2)-

Внутривидовые адаптации, сформировавшиеся у «Восточной» и «Западной» генетических групп хомячка Кэмпбелла. Время разделения «Западной» и «Восточной» генетических групп хомячка Кэмпбелла, как уже было сказано, предположительно может составлять около 500 тыс. лет (межгрупповая генетическая дистанция - 2.07%, табл. 2). За этот период между этими группами накопился целый ряд морфологических, физиологических, поведенческих различий.

К морфологическим отличиям можно отнести достоверно большую длину ступни, хвоста и высоту уха (Р<0.05) у хомячков «Западной» группы, по сравнению с «Восточной». У хомячков Кэмпбелла «Восточной» генетической группы лучше развиты СЖК углов рта - 7.4±0.7 мг (n=10), в возрасте 1 мес., против 4.4±0.4 мг (n=13) у особей того же возраста «Западной» генетической группы (P< 0.001). Более крупные СЖК и их активное функционирование у животных «Восточной» группы адаптивно и связано с большей долей углеводных компонентов пищи в рационе зверьков этой группы.

К физиологическим отличиям можно отнести различия в особенностях водного обмена и терморегуляции (см. главу 5).

Важной экологической адаптацией хомячков Кэмпбелла из восточной части ареала является заметное посветление шерсти в зимний период, отсутствие спячки и снижение массы тела в осенне-зимний период. Хомячки Кэмпбелла «Западной» группы при пониженных температурах воздуха не белеют и, вероятно, впадают в «неглубокую спячку» (Соколов, Орлов, 1980), о чем свидетельствует и нарастание у них массы тела в экспериментах с укорочением длины светового дня (Васильева, Парфенова, 2003).

Проведенный нами анализ постэмбрионального развития хомячков Кэмпбелла разных географических популяций продемонстрировал тенденцию к несколько более медленному развитию хомячков из популяции Центральной Монголии («Восточная» группа) по сравнению со зверьками «Западной» генетической группы.

Важной поведенческой адаптацией, сформировавшейся у хомячков «Западной» группы, является забота самцов о детенышах, которую они демонстрируют при длительном разведении в лаборатории (Wynne-Edwards, 1987, 1988, 1995, 2003; Jones, Winne-Edwards, 2000, 2001, 2005, 2006). Самцы этой группы выполняют роль акушеров во время родах. Они вылизывают самку и появившихся на свет детенышей, вместе с самкой поедают послед. Как показали наши наблюдения, в условиях лаборатории, представители «Восточной» группы сходного поведения не демонстрируют, хотя через некоторое время после родов могут находиться рядом с детенышами и даже греть их.

Вин-Эдвардс с соавторами проанализировали изменение гормонального фона у самцов хомячка Кэмпбелла (принадлежащих к «Западной» генетической группе) до и после рождения у них потомства. Известно, что у самцов тех видов млекопитающих, которые проявляют активную заботу о потомстве, после появления детенышей происходят сходные гормональные изменения: растет уровень пролактина в плазме крови, падает уровень тестостерона и кортизола (Wynne-Edwards, Reburn, 2000), повышается уровень эстрадиола (Schum, Wynne-Edwards, 2005). Однако у самцов хомячков Кэмпбелла «Западной» генетической группы к пятидневному возрасту детенышей уровень тестостерона снова повышается. Авторы связывают это с проявлением самцами активной защиты выводка. Уровень кортизола у самцов резко снижается перед появлением на свет выводка и остается низким в период его выращивания (Reburn, Wynne-Edwards, 1999).

Мы проанализировали гормональные изменения, которые происходят у самцов хомячка Кэмпбелла «Восточной» генетической группы до и после появления выводка - по схеме предложенной К. Вин-Эдвардс) (Reburn, Wynne-Edwards, 1999). У самцов этой генетической группы после появления на свет детенышей достоверно снижается уровень тестостерона в плазме крови (Р< 0.05), а к пятому дню уровень этого гормона несколько увеличивается (но не достоверно и не достигает дородовых значений). Кортизол, прогестерон и эстрадиол фактически остаются на неизменном уровне независимо от появления на свет детенышей. Таким образом, появление на свет детенышей вызывает только изменения в уровне тестостерона у самцов-отцов, не отражаясь на уровне других половых гормонов и уровне кортизола. Полученные результаты свидетельствуют о наличии у самцов хомячка Кэмпбелла «Восточной» генетической группы определенных преадаптаций к заботе о потомстве. Однако выраженность подобной заботы у самцов «Западной» и «Восточной» генетических групп отличается принципиально.

Глава 4. ОСНОВНЫЕ ЭКОЛОГО-МОРФОЛОГИЧЕСКИЕ АДАПТАЦИИ ВИДОВ РОДА PHODOPUS

Адаптации волосяного покрова. Хомячки модельной группы обладают криптическим типом окраски, которая может меняется в зависимости от сезона. Наиболее яркую сезонную смену окраски с темно-серой на чисто белую демонстрирует джунгарский хомячок (Brandt, 1845). Заметная смена окраски обнаружена нами также у представителей «Восточной» генетической группы хомячка Кэмпбелла. В целом, подобная резкая смена окраски - адаптивное явление, не часто встречающееся в отряде грызунов и свидетельствующее об отсутствии зимней спячки, что предполагает наличие определенных адаптивных изменений в плотности волосяного покрова и структуре волос зимой. Действительно, нами обнаружено характерное утолщение и удлинение остевых волос первого порядка, увеличение числа волос, содержащих двурядную сердцевину, удлинение и утолщение волнообразных остевых волос третьего порядка у всех трех модельных видов в осенне-зимний период.

Особой адаптацией к перемещению по рыхлому песчаному субстрату или по снегу является опушенность подошв лап у всех представителей рода Phodopus. Наиболее ярко она выражена у обитателя полупустынь и пустынь - хомячка Роборовского. У него ступни опушены наиболее густо, что увеличивает площадь опоры и уменьшает нагрузку на единицу площади (Воронцов, 1982). Волосы, растущие на подошвах, имеют и определенные морфологические особенности, связанные с их функцией, которые также обсуждаются в данном разделе.

Адаптации специфических кожных желез. Роль СЖК в углах рта, связанная с питанием и иммунитетом. Уникальной адаптацией к существованию в аридных условиях является развитие специфических кожных желез, секрет которых, наряду с мочой и калом наносится зверьками на субстрат и несет биологически значимую информацию. У большинства представителей п/сем. Cricetinae особенно хорошо развиты среднебрюшная железа (СБЖ), а у ряда видов - боковые железы (например, у Cricetus сricetus и представителей рода Mesocriсetus).

У двух представителей рода Phodopus имеются уникальные для грызунов СЖК в углах рта. Кроме того, у мохноногих хомячков, как и у других представителей п/сем., имеется целый ряд специфических кожных желез не столь ярко выраженных, как СБЖ и СЖК, - это Гардеровы и Мейбомиевы железы, железы наружного слухового прохода, препуциальные, циркуманальные железы. Секреты этих желез могут участвовать в химической коммуникации особей, дополняя общий «запаховый портрет» животного (Суров, 2006), и играть определенную роль в поддержании нормального состояния волосяного покрова и функционирования ряда систем органов. Однако наиболее ярко выраженная функциональная нагрузка лежит на секретах СБЖ и СЖК углов рта. При этом, если функции секрета СБЖ относятся в основном к хемокоммуникативной сфере (хотя отмечено и их влияние на скорость созревания потомства хомячков: Соколов и др., 1989, 1991; Васильева, 1990; Хрущева, 2007), то функции СЖК углов рта совершенно иные. Впервые необычные структуры в углах рта были обнаружены у джунгарских хомячков N. Krischke (1986), а затем описаны нами у хомячка Кэмпбелла (Cоколов и др., 1991а). Эти комплексы представляют собой крупное секреторное поле, окружающее открывающиеся в ротовую полость карманы (ДМ), расположенные между кожей щеки и латеральной стенкой защечного мешка. СЖК расположены в непосредственной близости от пищеварительного тракта. По нашим данным, в размерах, гистологической структуре и функциональной активности СЖК отсутствует половой диморфизм; СЖК рано формируются в постнатальном онтогенезе (в период перехода детенышей на питание твердыми кормами); наблюдается увеличение функциональной активности СЖК и адаптивные изменения бактериальной композиции секрета у лактирующих самок, в период, когда СЖК детенышей еще находятся в стадии формирования; окончательное формирования СЖК и бактериальной композиции секрета отмечается к началу самостоятельной жизни детенышей в природе, задолго до полового созревания (что принципиально отличает эти структуры от большинства других специфических кожных желез) (Феоктистова, 1994; Феоктистова и др., 2004).

Анализ бактериальной композиции секрета СЖК, проведенный нами совместно с микробиологами, показал, что в качестве основных форм в секрете присутствуют кокки Streptococcus faecium и грамположительные, каталазоположительные мелкие дифтероидные палочки Microbacterium oxydans (Феоктистова, 1994; Ушакова и др., 2004; Ушакова, 2006). Соотношение основных форм бактерий в секрете стабильно как у взрослых особей, так и у детенышей и отражает потребности организма животных в определенных свойствах секрета ДМ, обусловленных в значительной степени жизнедеятельностью микроорганизмов, участвующих в биосинтезе антибиотиков, ферментов и витаминов. В частности, M. oxydans является продуцентом витамина В12. При пересчете на сухую массу количество витамина В12 в секрете СЖК у хомячков Кэмпбелла составляет 0.56 ± 0.08 мкг/г. Все сказанное свидетельствует в пользу участия секрета СЖК в процессе пищеварения, а возможно и иных физиологических функциях организма. Для установления этих функций нами были проведены эксперименты как на взрослых особях хомячка Кэмпбелла, так и на детенышах. Результаты экспериментов на взрослых особях наглядно показали, что отсутствие секрета СЖК ведет к серьезным последствиям для организма. Для 41% особей удаление ДМ приводит к летальному исходу. 59% оперированных животных «справлялись» с ситуацией, однако, у всех экспериментальных животных наблюдался дисбактериоз; достоверное снижение углеводных компонентов в предпочитаемом корме (Р< 0.05); изменение в уровне активности ряда пищеварительных ферментов (амилаз и протеиназ в слюнных железах и желудке (Р< 0.001), снижение числа лейкоцитов в крови (Р< 0.001), понижение общей резистентности организма к физиологическому стрессу, сопровождающемуся достоверным увеличением массы и относительного веса надпочечников (Р< 0.001).

К еще более фатальным результатам приводит полное лишение возможности получать секрет СЖК у детенышей. На фоне дисбактериоза, особенно ярко выраженного в период перехода на питание твердыми кормами, у них развивается заболевание желудочно-кишечного тракта, по этиологии сходное с некротизирующим энтероколитом, отмечаемым у крысят, лишенных возможности потреблять кал самки-матери (Moltz, 1984); детенышей с/х. животных и детей (Swett, 1980; Egan, 1981; Jones, 1987; Wasteson et al., 1988). Часто экспериментальная ситуация заканчивалась летальным исходом, причем достоверно более высокая смертность (55.3±7.3%) была характерна для детенышей - самцов по сравнению с детенышами-самками (P< 0.05). Кроме того, детеныши, лишенные возможности получать секрет СЖК в естественных количествах, резко отстают в росте (P< 0.05, по сравнению с контролем) и половом развитии (P< 0.05); у них отмечается стойкое увеличение относительного веса надпочечников (P< 0.001, по сравнению с контролем), а также ярко выраженные явления авитаминоза. Возможность получать небольшие дозы нативного секрета, а также терапия донорским секретом и бифидобактерином ведет к некоторому, но далеко не полному ослаблению силы негативного воздействия.

Итак, нами наглядно продемонстрирована уникальная роль секрета СЖК в регуляции таких жизненно важных процессов, как пищеварение и поддержание иммунитета. Появление данных структур у двух видов рода Phodopus в процессе эволюции, безусловно, является уникальной адаптацией, связанной с деятельность пищеварительного тракта. Кроме того, секрет СЖК является источником ферментов и витаминов (В12), которые попадают в организм благодаря деятельности бактерий. Кроме того, экспериментально показано, что сам по себе секрет СЖК может служить источником белкового корма для детенышей (Хрущова, 2007).

Глава 5. ЭКОЛОГО-ФИЗИОЛОГИЧЕСКИЕ АДАПТАЦИИ

Хомячки рода Phodopus демонстрируют целый спектр ярко выраженных эколого-физиологических адаптаций, связанных с поддержанием гомеостаза при существовании в условиях засушливого климата с резкими суточными и сезонными колебаниями температуры. Это, прежде всего, наличие выраженных адаптаций к дефициту доступной влаги.

Особенности водного обмена мохноногих хомячков, описываемые в данном разделе, основаны в основном на литературных данных (Соколов, Мещерский, 1989, 1990; Мещерский, Клишин, 1990; Мещерский, 1992а; Соколов и др., 1994). Как уже сказано, из трех видов рода Phodopus в наиболее засушливых районах (включая пустыни крайнеаридного характера) встречается хомячок Роборовского; хомячки Кэмпбелла обитают в опустыненных и сухих степях, однако на востоке ареала часто тяготеют к более увлажненным степным сообществам; джунгарские хомячки распространены в основном в зоне настоящих степей, однако встречаются и в сухих и полупустынных сообществах на юге ареала и широко проникают в зону лесостепи (хотя и придерживаясь при этом преимущественно сухих короткотравных сообществ) на севере. Специфика физиологии водного обмена модельной группы заключается в относительно низких потребностях в свободной влаге даже в условиях неограниченного доступа к ней, что обеспечивается наличием высокоэффективного концентрирующего механизма почек, функционирующего даже при отсутствии водного дефицита. Ограничение доступных ресурсов влаги приводит к дальнейшей активизации этого механизма - концентрация мочи, выделяемой хомячками в условиях дефицита свободной воды, сопоставима с самыми высокими значениями, известными для мелких пустынных млекопитающих (например, высокоспециализированных грызунов сем. Heteromyidae). В то же время большая часть особей не способна поддерживать неотрицательный водный баланс при полном отсутствии питьевой воды или влажной пищи. Потребление значительных количеств белкового азота при свободном выборе кормов в эксперименте свидетельствует, что в естественных условиях важную роль в поддержании водного баланса играет животная пища (насекомые), что хорошо согласуется и с отмеченными особенностями водного обмена.

Среди трех видов рода наиболее устойчивым к дефициту влаги являются, как и следовало ожидать, хомячки Роборовского. Для них характерна наименьшая среди трех видов величина отношения водного и энергетического баланса при свободном доступе к воде и одновременно редукция способности выводить избыток жидкости из организма, что говорит о значительной степени специализации этого вида.

Джунгарские хомячки справляется с выведением избытка жидкости из организма на уровне влаголюбивых форм и при свободном доступе к воде потребляют ее в относительно большем количестве (отношение поступления воды и энергии в организм у них достоверно выше, чем у хомячков Роборовского), что соответствует современному обитанию этого вида на наименее (для рода в целом) засушливых территориях. В то же время концентрирующие способностями почек Ph. sungorus и его устойчивость к дегидратации лишь немногим уступают значениям, отмеченным для Ph. roborovskii, что позволяет предположить, что в своей недавней эволюционной истории джунгарские хомячки, вероятно, сталкивались с условиями высокой аридности. В настоящее время этот, наиболее эволюционно молодой вид отличается и наибольшими адаптивными возможностями.

В адаптациях к минимизации ренальных водопотерь важны как структурные изменения почек и гипоталамо-гипофизарной системы, так и молекулярные изменения внутриклеточных сигнальных систем и их модуляции Возможно, у хомячка Роборовского и джунгарского имеет место различная регуляция работы гипоталамо-гипофизарной нейросекреторной системы, секретирующей вазопрессин. Применение иммуноцитохимического метода исследований не обнаружило у хомячка Роборовского вазопрессин-иммунореактивных нейронов в медиальной части супраоптического ядра. Меньшее общее количество вазопрессин-положительных нейронов у хомячка Роборовского, по сравнению с джунгарским, возможно отражает больший расход гормона при повышенной потребности в нем в условиях длительной дегидратации (Наточин и др., 1994).

Хомячки Кэмпбелла, обитающие в Туве и относящиеся к «Западной» генетической группе, характеризуются промежуточными, по сравнению с двумя другими видами, показателями потребностей организма в свободной влаге. Таким образом, они обладают более узким адаптивным спектром, чем джунгарские хомячки, но и менее специализированы, чем хомячки Роборовского. Возможно, присущие им особенности наиболее близки к таковым у изначальной, предковой для Ph. sungorus и Ph. campbelli (может быть и для рода в целом), форме, постепенно приспосабливавшейся к обитанию на все более засушливых территориях. Хомячки Кэмпбелла, происходящие из окрестностей г. Чойбалсана («Восточная» генетическая группа) при свободном предложении воды в эксперименте потребляют ее в большем количестве, чем хомячки Кэмпбелла из Тувы - отношение поступления воды и энергии в организм у них сходно с таковым, отмеченным для джунгарских хомячков.

Однако, как уже было сказано, особенности адаптаций мохноногих хомячков к обитанию в засушливых условиях, отличаясь между собой, в целом могут быть соотнесены с таковыми известными для наиболее специализированных ксерофильных грызунов, что также позволяет отвергнуть мысль о сниженных адаптивных возможностях, присущих изучаемой группе.

Терморегуляция. Ночная активность и норный образ жизни, присущий всем видам модельной группы, является общей адаптацией, позволяющей избегать воздействия высоких температур воздуха в местах их обитания в летнее время. Однако физиологический ответ на воздействие высокой внешней температуры, определенный в эксперименте, различается у разных видов.

В интервале внешних температур 26-31 °С у всех форм рода Phodopus наблюдалось заметное снижение интенсивности потребления кислорода, что свидетельствует о том, что границы термонейтральной зоны находятся у них в области весьма высоких значений. У трех форм - хомячков Роборовского, джунгарского и хомячков Кэмпбелла из Восточной Монголии снижение потребления кислорода или сохранение его на стабильном уровне отмечалось в интервале температур 31-36°С, что позволяет сделать вывод о том, что и внешняя температура 36°С находится для этих форм в пределах термонейтральной зоны или, в крайнем случае, лишь ненамного превышает ее верхнюю границу (Мещерский, 1992а; 1993). Однако Хомячки Кэмпбелла из Тувы (относящиеся к «Западной» генетической группе) при повышении температуры воздуха с 31 до 36 °С обнаруживали явные признаки теплового стресса. Таким образом, эта форма отличается наименьшей теплоустойчивостью, по сравнению как с двумя другими видами, так и с представителями «Восточной» генетической группы своего вида.

При сходной теплоустойчивости, отмеченной для джунгарских хомячков и хомячков Роборовского, между ними, однако, имеются отличия в терморегуляторных механизмах. В условиях свободного доступа к питьевой воде доля теплопродукции, рассеиваемой с испарением (охлаждающее полипноэ) составляет у первого 21% при температуре 31 °С и 35% при температуре 36 °С, а у второго - 50 и 72% соответственно. Однако после длительной (около двух месяцев) постепенной акклимации к недостатку доступной влаги, приводящей к снижению общей интенсивности водного обмена экспериментальных животных, хомячки Роборовского оказались способными эффективно противостоять перегреву при температуре воздуха 36 °С и без интенсивной испарительной водоотдачи - доля рассеиваемой с испарением теплопродукции в этих условиях составляла у них около 32% (как и у джунгарских хомячков) (Мещерский, 1992б). Таким образом, для активизации механизма противостояния перегреву без резкого увеличения испарительной теплоотдачи хомячкам Роборовского требуется длительное время - видимо, сопоставимое со временем сезонных изменений в естественных условиях. У джунгарских хомячков этот механизм активируется гораздо быстрее. Возможно, это связано с различиями в характере суточной активности двух данных видов в природных условиях. Однако сам факт способности противостоять перегреву без излишних потерь воды в любое время свидетельствует о больших адаптивных возможностях, присущих Ph. sungorus. Этот же эволюционно более молодой вид, отличается и способностью сохранять тепловой баланс в наиболее широком интервале внешних температур.

Устойчивость к низким температурам хомячков Кэмпбелла и джунгарского изучалась в лаборатории Г. Хельдмайера и позже рядом его коллег. Этими авторами отмечено, что Ph. sungorus хорошо переносят длительное пребывание при -35 °С (Heldmaier, 1975), а минимальная температура, при которой джунгарские хомячки могли поддерживать положительный тепловой баланс, составляла менее -50…-53 °С, в то время как для хомячков Кэмпбелла переохлаждение начинало развиваться при -45 °С (Weiner, Heldmaier, 1987). При этом величина максимального уровня потребления кислорода была сходной у обоих видов. К сожалению, информации о месте происхождения использованных в этих экспериментах хомячках Кэмпбелла (т.е. о принадлежности их к «Западной» или «Восточной» генетической линии), не приводится.

Сведения о характере терморегуляции Ph. roborovskii при существенно низких (менее 0… -10 °С) температурах в известной нам литературе отсутствуют.

Адаптации к переживанию осенне-зимнего периода. Фотопериодизм. Данные об особенностях зимней биологии мохноногих хомячков противоречивы. Уже давно отмечено наличие круглогодичной активности у джунгарских хомячков с ярко выраженной сменой окраски (Brandt, 1845; Афанасьев и др., 1953; Некипелов, 1960; Крыльцов, Шубин, 1964; и др.). Количество встреч активных хомячков Кэмпбелла в зимнее время относительно невелико, что некоторым авторам дало основание предположить, что вид или впадает в «неглубокую спячку» (Соколов, Орлов, 1980), или характеризуется «периодической зимней активностью» (Flint, 1966).

В то же время упоминание о зимних находках активных особей этого вида (с неизменной, однако, окраской меха) имеется в работах Банникова (1954, для Центральной Монголии), Виноградова и Оболенского (1927, для окрестностей Улан-Батора и озера Убсу-Нур), Скалона (1949, для Северо-Восточной Монголии), Некипелова (1960, для Забайкалья). Таким образом, периодическая зимняя активность хомячка Кэмпбелла наблюдается во многих (и что особенно важно, в том числе в наиболее холодных) частях его ареала. Это же предположение (о периодической зимней активности в некоторых частях ареала) высказывается и в экспериментальной работе Васильевой, Парфеновой (2003).

Относительно характера зимней активности хомячка Роборовского есть указание, что в Казахстане этот вид может быть активен зимой (Млекопитающие Казахстана, 1977), однако экспериментальных подтверждений этому не было.

Для джунгарского хомячка определен целый ряд физиологических изменений, происходящих с ним при изменении длины светового дня и температуры (см. например, Hoffmann, 1973, 1978; Heldmaier, Steinlechner, 1981, Heldmaier et al., 1982a,b; Lerchi, Schlatt, 1993; Штайнлехнер, Пухальский, 1999; Palcykova et al., 2003 и др.). У двух других видов сезонные особенности до настоящего времени оставались практически не изученными. Мы постарались восполнить этот пробел.

Для ряда видов насекомоядных и грызунов известен факт регрессии массы тела при подготовке к зиме (Пантелеев, 1983; Пантелеев и др., 1990). Продемонстрировано это явление и на Ph. sungorus (Figala et al., 1973; Hoffman, 1973, 1978; Lerchl, Schlatt, 1993). Все известные по литературе эксперименты проводились на джунгарских хомячках, полученных от разведения особей, пойманных на основной части ареала. В наших исследованиях использованы джунгарские хомячки из изолята в Минусинской котловине, время отделения которых от животных генетической группы основной части ареала составляет предположительно около 220-320 тыс. лет. За такой период у географически разделенных популяций могли сформироваться определенные отличия, в частности, в зимней биологии. В наших экспериментах в октябре-декабре часть животных начинала белеть, к январю они становились практически белыми с некоторым количеством темных участков на спине. СБЖ у этих особей мало заметна. В феврале-марте светлые зверьки начинали темнеть. СБЖ у них в этот период различима и активно секретирует. Однако посветление шерстного покрова отмечено только для части особей, другие же животные оставались темными (окрас соответствовал летнему). У темных особей была хорошо заметна СБЖ (Феоктистова, 2007; Феоктистова, Найденко, 2007).

Минимальная масса тела взрослых зверьков обоего пола была отмечена с сентября по январь. В феврале масса тела начинала расти, достигая пика в июне. В июле и августе масса тела продолжала оставаться сходно высокой, а к сентябрю резко достоверно снижалась (P< 0.05).

Наблюдения, проведенные нами за хомячком Роборовского при содержании в условиях естественного светового и температурного режимов, показали, что у этого вида также отсутствует зимняя спячка, зверьки хорошо адаптированы к низким температурам. В течение осени и зимы все тестируемые самцы хомячка Роборовского имели хорошо заметные семенники и активно секретирующую СБЖ (Соколов, Феоктистова, 1996; Мещерский, Феоктистова, 1999; Feoktistova, Mecherskii, 2005). Волосяной покров по цвету к зиме не менялся, однако зверьки становились более пушистыми. Минимальная масса тела взрослых зверьков обоих полов наблюдалась осенью и в начале зимы. В январе масса тела животных начинала расти, достигая пика в июле. В сентябре же происходило резкое и достоверное снижение массы тела (P< 0.05).

По нашим данным, хомячки Кэмпбелла (потомки зверьков, привезенных из Центральной Монголии: «Восточная» генетическая группа) в осенне-зимний период не впадают в спячку, сильно светлеют (мех становится светло-бежевым, шелковистым, полоса на спине практически исчезает). Достоверное снижение (P< 0.05) массы тела у самцов и самок наблюдалось с сентября к октябрю. Низкие показатели массы сохранялись до января включительно, а затем масса тела начинала расти, достигая максимума в летние месяцы (с июня по август).

Таким образом, мы показали, что три модельных вида (у хомячка Кэмпбелла - особи «Восточной» генетической группы) в осенне-зимний период характеризуются отсутствием спячки. У них отмечаются адаптивные изменения волосяного покрова и заметная регрессия массы тела, характерная для ряда незимоспящих видов млекопитающих. Зимняя регрессия массы тела - явление в известной степени парадоксальное. Адаптивность его связывают с количеством корма, необходимого животному (Крыльцов, 1957; Пантелеев, 1990; Штайнлехнер, Пухальский, 1999).

Отсутствие зимней спячки у мохноногих хомячков является адаптивным для выживания популяций в естественных условиях, так как некоторые особи сохраняют способность к зимнему размножению и, следовательно, при благоприятных условиях, весной, потомки этих особей уже сами могут вступать в размножение, восстанавливая численность популяции после сурового осенне-зимнего периода.

Глава 6. АДАПТИВНЫЕ ОСОБЕННОСТИ ХАРАКТЕРА РАЗМНОЖЕНИЯ, БЕРЕМЕННОСТИ И ПОСТНАТАЛЬНОГО ОНТОГЕНЕЗА ВИДОВ РОДА PHODOPUS

Основным направлением адаптаций у грызунов является направление в сторону максимального потенциала воспроизводства (Башенина, 1977). В принципе эволюционисты и экологи считают высокую плодовитость результатом высокой смертности при любом уровне адаптированности (Дарвин, 1859; Северцов А.Н, 1934; Северцов С.А. 1941; Шмальгаузен, 1940, 1966 др.). Среди млекопитающих к этой группе относятся многие виды мышевидных грызунов, и в том числе представители п/сем. Cricetinae, для большинства видов которых характерно обитание в условиях континентального или умеренно континентального климата, высокая смертность (особенно зимняя) и стабильно низкая численность. В таких условиях в целях выживания вида необходимо наличие адаптивных комплексов, обеспечивающих максимальный потенциал воспроизводства. В частности, это увеличение темпов размножения в течение года, удлинение сроков размножения, наличие потенциальной возможности зимнего размножения.

Сезонные особенности размножения. По литературным данным, джунгарские хомячки приступают к интенсивному размножению после стаивания снега, обычно в апреле (Крыльцов, Шубин, 1964; Млекопитающие Казахстана, 1977 и др.). Значительное число беременных самок обнаруживается в конце сентября (Млекопитающие Казахстана, 1977), что свидетельствует о продолжительном сезоне размножения этого вида. Крыльцов (1955) указывал на факт обрастания белой шерстью детенышей, рожденных зимой, что свидетельствует о глубокой адаптации данного вида к переживанию зимних условий.

Литературные данные по характеру сезонного размножения хомячка Кэмпбелла весьма противоречивы (Банников, 1950; Flint, 1966), а по хомячку Роборовского вообще отсутствуют в доступной нам литературе.

Исследуя характер размножения у трех модельных видов при содержании их в парах в условиях естественного светового и температурного режимов мы показали, что хомячки могут приносить выводки круглогодично, с затуханием процесса размножения с октября по январь. Первые выводки появляются у Ph. sungorus и Ph. campbelli в конце января - начале февраля, а у Ph. roborovskii - в конце февраля начале марта. Затем с марта по август начинается интенсивный процесс размножения. Наибольшее число выводков у Ph. sungorus отмечается в марте и мае, и далее в июле, у хомячка Роборовского - в апреле (P< 0.02 по сравнению с февралем) и в летние месяцы. Самые крупные выводки у Ph. sungorus отмечались в марте, у Ph. roborovskii в феврале, у Ph. campbelli во все месяцы активного размножения размеры выводков были стабильно высокими. Соотношения полов в выводках Ph. sungorus во все месяцы года, кроме августа, варьировало от 1:1 до 1:1.3, но достоверно не отличалось от 1:1. В августовских выводках достоверно преобладали самцы (1:2). У двух других видов соотношение полов достоверно не отличалось от 1:1.

Осенью у всех трех видов отмечался резкий спад интенсивности размножения и уменьшение количества детенышей в выводках (Р< 0.02 в сентябре по сравнению с августом у хомячков Роборовского и джунгарского и в октябре по сравнению с августом у хомячка Кэмпбелла). Однако во все месяцы осени и первый месяц зимы нами было отмечено рождение отдельных выводков. (Соколов, Феоктистова, 1996; Мещерский, Феоктистова, 1999; Feoktistova, Meschersky, 2005; Феоктистова, 2007). Наблюдавшаяся картина динамики размножения при содержании в условиях естественного светового и температурного режимов вполне может отражать процессы, свойственные хомячкам и в природе.

У мохноногих хомячков рождение выводков происходит практически во все сезоны года, что, безусловно, адаптивно, так как в случае благоприятных условий зимние выводки могут выжить и также вступить в размножение ранней весной, наряду с животными старших возрастов, что естественно, обеспечивает успех размножения видов в целом.

Сезонная динамика изменения тестостерона и кортизола у самцов в плазме крови. У сезонно размножающихся видов (в частности у грызунов) уровень тестостерона обычно высок во время сезона размножения (при длинном световом дне) и низок при коротком световом дне, когда животные не размножаются (Zucker et al., 1980; Leonard, Ferkin, 1999). Нами впервые изучена сезонная динамика стероидных гормонов и глюкокортикоидов у хомячков рода Phodopus.

По нашим данным, только хомячок Роборовского демонстрирует относительно высокий базовый уровень тестостерона и четкую динамику концентрации этого гормона в плазме крови по сезонам (рис. 7): достоверное возрастание перед началом весеннего размножения (Р< 0.05 в январе по сравнению с февралем). Наиболее высокие значения отмечены в летние месяцы (Р< 0.05 в июне по сравнению с маем: Феоктистова, Мещерский, 1999; Feoktistova, Mecherskii, 2005). Затем базовый уровень тестостерона снижается (Р< 0.05) и сохраняется низким с сентября по январь включительно. У Ph. sungorus базовый уровень тестостерона значительно ниже, чем у хомячка Роборовского и резких изменений его концентрации по сезонам не отмечается. Ph. campbelli занимает промежуточное положение (рис. 7). У самцов этого вида отмечается достоверное возрастание уровня тестостерона в мае, летом уровень этого гормона стабилен и резко (Р< 0.05) падает к сентябрю.

У всех трех видов в экспериментальных группах наблюдаются единичные, способные к размножению самцы с высоким (у хомячков Роборовского) и относительно высоким (у двух других видов рода) уровнем тестостерона, которые и обеспечивают появление на свет осенне-зимних выводков.

Базовый уровень кортизола достоверно не различался у трех модельных видов и был относительно невысок, что свидетельствует о «благополучном» состоянии исследуемых животных. Однако сезонная динамика концентрации этого гормона у трех видов различалась. У Ph. roborovskii и Ph. campbelli уровень кортизола был минимален летом (в период максимального уровня размножения) и максимален осенью (с октября по ноябрь).

С декабря по май базовый уровень этого гормона постепенно снижался. У Ph. sungorus сезонных изменений кортизола отмечено не было.

Таким образом, уровень тестостерона и кортизола сходно изменяется у хомячков Роборовского и Кэмпбелла, но у джунгарского хомячка отсутствуют достоверные изменения этих гормонов по сезонам.

Протекание беременности. У мохноногих хомячков предимплантационный период может занимать от 2 до 5 дней (Erb, Wynne-Edwards, 1993). Соответственно с момента имплантации до родов проходит от 13 до 16 дней, в которые укладывается весь основной органогенез эмбриона. В течение первых суток после родов у самок мохноногих хомячков наступает послеродовой эструс (состояние рецептивности), когда происходит спаривание с одним или несколькими самцами (Васильева, 1990; Телицына, 1993; Суров, 2006). Послеродовой эструс, отмеченный у ряда представителей Cricetinae (в том числе видов рода Phodopus), является еще одной существенной адаптацией, обеспечивающей максимальный потенциал воспроизводства.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис. 7. Характер изменения базового уровня тестостерона (нг/мл) у самцов трех видов хомячков рода Phodopus в течение года.

Сезонные особенности постнального развития. Хомячки рода Phodopus развиваются очень быстро и, фактически, к 18 дню жизни уже становятся самостоятельными. В природе к этому времени самка-мать меняет нору и приносит там следующий выводок (Телицына, 1993; Суров, 2006). Аналогичные сроки развития характерны для многих видов п/сем. Cricetinae и п/сем. Arvicolinae (Башенина, 1977).

Постэмбриональное развитие мохноногих хомячков прослежено в целом ряде работ: для хомячка Кэмпбелла - Флинт, Головкин 1961; Мейер, 1967; Ross, Cameron, 1989; для джунгарского хомячка - Адольф, 1949; Мейер, 1967; Млекопитающие Казахстана, 1977; Юдин и др., 1979, для хомячка Роборовского - Ross, Cameron, 1989. Однако все исследования проводились в условии вивария (т.е. при постоянной температуре и длине светового дня, соответствующих летнему режиму). Известно, что сезон года может влиять не только на половое созревание детенышей (см. ниже), но и на их рост и развитие. Мы проследили постнатальное развитие детенышей трех видов рода при содержании в условиях естественного светового и температурного режимов и показали, что наиболее быстро формируются отдельные признаки у хомячка Кэмпбелла, затем у джунгарского и позднее всех у хомячка Роборовского. Характер постнатального онтогенеза мохноногих хомячков очень близок к таковому у ряда видов полевок (Тупикова, Каледа, 1957).

Сезонные изменения в скорости роста детенышей в период с 1 по 27 день у всех трех видов выражены слабо.

Сезонные особенности полового созревания детенышей. Важным адаптивным путем ускорения цикла воспроизводства служит раннее половое созревание сеголеток, конкретные сроки которого обусловлены сезоном их появления на свет. В конце 1990-х годов была показана зависимость созревания сеголеток рыжих полевок от сроков рождения (Демина и др. 1997). Самки, появившиеся на свет в январе-июне, созревали рано, а родившиеся с июля по декабрь - поздно. На рыжих полевках, рожденных в фазе подъема численности, аналогичная картина наблюдается и в природе, и особенно ярко в нарушенных лесах (Жигарев, 2004). Отмечено, что в разные годы от 25 до 57% рыжих полевок, рожденных в рекреационных биотопах до середины лета и находящихся в возрасте не старше 30 дней, были половозрелыми. Аналогичная картина впервые показана нами для трех видов рода Phodopus при содержании в условиях естественного светового и температурного режимов. Детеныши весенних выводков созревают раньше, чем осенних, и сами способны приступить к размножению в конце весны - начале лета. Кроме того, в весенних выводках по показателю скорости полового созревания отмечается сильная разнокачественность особей (табл. 4; 5).

Таблица 4. Сроки открывания влагалища и самок рода Phodopus в разные сезоны (в днях)

Сроки рождения

Ph. roborovskii

Ph. campbelli

Ph. sungorus

Март-апрель (n=14 для каждого вида)

16-20

28-40

35-40

Сентябрь-октябрь (n=10 для каждого вида)

29-30

60 и более

6 месяцев

Таблица 5. Уровень тестостерона у 35-дневных самцов, рожденных в разные сезоны (нг/мл)

Сроки рождения

Ph. roborovskii

Ph. campbelli

Ph. sungorus

Март-апрель (n=14 для каждого вида)

5.2±0.1

50% - 2.4±0.8

50% - 2.0±0.5

50% - 0.5±0.1

50% - 0.4±0.1

Сентябрь-октябрь (n=10 для каждого вида)

29-30

0.6±0.08

0.5±0.06

Детеныши, рожденные в первый «весенний» пик размножения (в марте-апреле), быстро созревают и могут приступать к размножению к концу мая-июня, что доказано нами как при содержании молодняка в условиях естественного светового и температурного режимов, так и наблюдениями в природе. Детеныши осенних выводков достигают сходной массы тела в те же сроки, что и детеныши весенних выводков, но половое созревание у них значительно задерживается.

Интересно, что самый ранний возраст, при котором сеголетки рыжих полевок и лесных мышей вступают в размножение - 28-30 дней (Жигарев, 2004), что весьма сходно с таковыми, отмеченными у наиболее рано созревающих «весенних» сеголеток хомячка Роборовского. Сеголетки желтогорлых и полевых мышей, а также темных полевок созревают в возрасте 30-45 дней, что совпадает со сроками, отмеченным нами у хомячков Кэмпбелла и джунгарских.

Смертность детенышей. Важную информацию дает анализ рождений и гибели детенышей в выводках в течение первого месяца жизни в условиях естественного светового и температурного режимов в разные сезоны года. По нашим данным, в весенних выводках минимальная смертность детенышей наблюдается у хомячков Кэмпбелла, максимальная - у хомячков Роборовского, а джунгарские хомячки занимают по этому показателю промежуточное положение. В осенних выводках у хомячка Кэмпбелла процент выживания детенышей больше, чем у джунгарского.

Глава 7. ПОВЕДЕНЧЕСКИЕ (ХЕМОКОММУНИКАТИВНЫЕ) АДАПТАЦИИ К ОДИНОЧНОМУ ОБРАЗУ ЖИЗНИ

Пространственно-этологическая структура видов п/сем. Cricetinae. Многие представители семейств Cricetidae, Sciuridae, Dipodidae, Heteromyidae, Gliridae, Bathyergidae относятся к видам, условно называемым одиночными, для которых характерен преимущественно агрессивный характер взаимодействия не только между особями одного пола, но и между разнополыми партнерами. У этих видов пространственная этологическая структура представлена системой обособленных индивидуальных участков с разной степенью охраны его границ (Громов, 2008). Все представители п/сем. Cricetinae относятся к животным с такой территориальной организацией. Для хомячков Кэмпбелла из Тувы («Западная группа») и джунгарских (из изолята в Минусинской котловины) изучена структура поселений. Показано, что у хомячков Кэмпбелла участки самцов значительно превышают по размеру участки самок и обычно сильно перекрываются. Участки самок невелики по размерам и изолированы от участков других самок. Аналогичную картину показали и исследования, проведенные в 2008 г. за Ph. campbelli «Восточной группы». Структура поселений джунгарского хомячка представлена также системой сильно перекрывающихся участков самцов и изолированных участков самок. Но, в отличие от хомячка Кэмпбелла, участки самцов и самок этого вида практически не отличаются по размерам и значительно меньше таковых хомячка Кэмпбелла (Телицына, 1993; Wynne-Edwards et al., 1992; 1999; Суров, 2006). Вненоровая активность хомячков Кэмпбелла существенно выше, чем у джунгарских (Wynne-Edwards et al., 1992; 1999).

Поведение модельных видов в природе и условиях вольерного содержания. Роль химических сигналов в организации взаимоотношений между особями. Важной адаптацией при одиночном образе жизни является преимущественная ориентация на восприятие информации через обонятельные сигналы. Показано, что хомячки Кэмпбелла способны ориентироваться на запаховый сигнал эстральной самки на расстоянии около 1 км. Поиск самки осуществляется, возможно, по градиенту запаха (Суров и др., 2006). Накануне эструса самки, самцы могут переселяться в нору, расположенную ближе к самке, у которой ожидается эструс (Суров, 2006). Аналогичную картину мы наблюдали при проведении полевых исследований в 2008 г. По нашим данным, в условиях эксперимента самцы трех модельных видов могут распознавать запах мочи эстральной самки даже при разбавлении его в 2400-2600 раз.

У хомячков Кэмпбелла и джунгарского (по лабораторным наблюдениям) имеется 6 основных источников пахучих экскретов: моча, кал, секрет СБЖ (Reasner, Johnston, 1987), секрет СЖК в углах рта (Соколов и др., 1991), Гардеровы железы (Бодяк, 1994; Суров, 2006), ушные железы. У хомячка Роборовского - 5 (у них отсутствуют СЖК углов рта, хотя есть гипертрофированные сальные железы в углах рта, Соколов и др., 1991). Прямые наблюдения за поведением модельных видов как в природе с помощью метода радиопрослеживания, так и в условиях содержания в больших вольерах, позволили определить, что наиболее часто зверьки наносят на субстрат первые три экскрета из указанных выше. Секрет СЖК у Ph. campbelli и Ph. sungorus также может попадать на субстрат во время сбора корма зверьками. Поэтому у этих видов мы протестировали четыре вида экскретов для установления их роли во взаимоотношениях между противоположными полами и в территориальных взаимоотношениях, а у Ph. roborovskii - три.


Подобные документы

  • Изучение видового состава, экологической и трофической структуры рода Mycena на территории Вологодской области. Анализ распространения видов по типам местообитаний. Характеристика видов, редко встречающихся и охраняемых на территории регионов России.

    дипломная работа [480,5 K], добавлен 17.06.2017

  • История изучения рода Mycobacterium, особенности морфологии и физиологии. Антигенная структура микобактерий. Классификация и таксономия, виды микобактерий и их дифференциация. Внутривидовая и межвидовая идентификация, ветеринарное и медицинское значение.

    курсовая работа [478,0 K], добавлен 11.01.2011

  • Изучение частной микробиологии, систематики и методов идентификации бактерий рода Listeria, возбудителей острой инфекционной болезни, особенности морфологии и физиологии. Экология и распространение данных бактерий, медицинское и ветеринарное значение.

    курсовая работа [577,3 K], добавлен 23.01.2011

  • Общая характеристика рода Cucurbita. Краткая историческая справка изучения процессов транспирации. Определение продуктивности транспирации и транспирационного коэффициента у представителей рода Cucurbita. Характеристика водного баланса растения.

    курсовая работа [615,2 K], добавлен 14.06.2012

  • Общая характеристика, морфология и систематика рода Alyssum L. Изучение и анализ видов рода Alyssum L флоры Ставропольского края с точки зрения морфологии, экологии и географии в целях определения роли Alyssum L в сложении флоры и растительности края.

    курсовая работа [216,1 K], добавлен 27.04.2011

  • Патогенные микроорганизмы рода Clostridium. Возбудители ботулизма, эмфизематозного карбункула, столбняка. Получение ацетона и бутанола в ходе бактериального брожения представителей рода Сlostridium. Применение ботулинического токсина в медицине.

    курсовая работа [74,3 K], добавлен 05.06.2009

  • Изучение рода Vibrio cholerae. Хронология изучения его представителей, систематика, морфология этого рода вибрионов, их физиология, культуральные свойства. Межродовая, внунтривидовая и межвидовая идентификация, патогенность, устойчивость к антибиотикам.

    реферат [2,9 M], добавлен 16.03.2011

  • Исследование ботанической классификации и биологических особенностей рода абрикос. Обзор происхождения и распространения культуры, морфологии надземной части и корневой системы. Анализ химического состава, применения в медицине, видов и сортов абрикоса.

    курсовая работа [434,0 K], добавлен 08.02.2012

  • Ботаническое описание рода бурачниковых. Классификация и редкие виды рода. Виды, занесенные в Красную книгу России. Подсемейства кордиевых, эретиевых, гелиотропиевых, бурачниковых и велыптедиевые. Практическое применение растений рода бурачниковых.

    реферат [39,2 K], добавлен 02.01.2013

  • Сахелантроп и его родственные связи. Находки, открытия, свидетельства об эволюционных тенденциях, согласующихся с человеческой эволюцией. Представления об адаптивных возможностях рода Homo. Неандертальцы и зарождение подлинно человеческой культуры.

    реферат [25,4 K], добавлен 01.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.