10 тем нормальной физиологии

История открытия биопотенциалов. Физиология возбудимых тканей, центральной нервной системы, сенсорных систем и высшей нервной деятельности. Характеристика гуморальной регуляции. Рассмотрение крови и кровообращения, дыхания, пищеварения и выделений.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 09.12.2014
Размер файла 8,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ионы, переносящие электрические токи не могут проходить через липидные мембраны. Для их транспорта в «мембранных контактах» между электрически сопряженными клетками необходимы канальные белки. Такие межклеточные связи называются нексусами, или «щелевыми контактами».

Щелевые контакты соединяют группы синхронно функционирующих клеток.

В тканях, не относящихся к нервной системе, клетки также бывают соединены щелевыми контактами. В миокарде и гладкой мускулатуре эти контакты создают функциональный синцитий. Возбуждение здесь переходит от одной клетки к другой без заметной паузы или снижения амплитуды ПД на границе.

Для таких органов важна регулируемость щелевых контактов. Их каналы закрываются при снижении рН или повышении концентрации Са2+. Это происходит в случае повреждения клеток или глубокого нарушения обмена. За счет такого механизма пораженные места изолируются от остальной части функционального синцития, и распространение патологии ограничивается (например, при инфаркте миокарда).

Кроме этих возбудимых тканей существует и много других, где клетки также соединены щелевыми контактами (все эпителии, печень). В принципе такая связь присуща любой клетке на ранних стадиях эмбрионального развития, когда все клетки соединены между собой щелевыми контактами и сохраняют их до стадии дифференцировки органов.

Щелевой контакт - наиболее распространеный тип электрического синапса. Однако существуют и другие. Например, электрическим путем может передаваться и торможение. В этом случае ПД особым образом расположенных пресинаптических волокон генерируют во внеклеточном пространстве вокруг постсинаптического аксона местный положительный потенциал такой амплитуды, что его деполяризация не может достичь порогового уровня, и проведение по нему ПД блокируется.

Учитывая широкое распространение щелевых контактов, кажется удивительным, почему в нервной системе они не используются для синаптической передачи повсеместно. Видимо, сложнее организованные химические синапсы обеспечивают настолько более высокую специфичность и регулируемость межклеточной коммуникации, что в значительной степени вытеснили электрические.

Эфаптическая передача.

При некоторых заболеваниях аксоны теряют свою миелиновую оболочку, становясь демиелинизированными. Демиелинизированные аксоны могут вступать в аномальные взаимодействия, когда импульсы, проходящие по группам нервных волокон, индуцируют возбуждение других параллельно идущих аксонов. Это называется эфаптической передачей. Когда такие аномальные ПД генерируются в сенсорных нервных волокнах, появляются аномальные ощущения, парестезии. Если они связаны с ноцицептивными (болевыми) волокнами, то возникают такие неприятные синдромы, как невралгия, каузалгия, невромные боли. Межаксонные помехи могут быть следствием не только недостаточной изоляции (миелиновыми оболочками), но и повышенной возбудимости аксонов.

ВОЗНИКНОВЕНИЕ ПД В АФФЕРЕНТНЫХ НЕЙРОНАХ. РЕЦЕПТОРНЫЙ И ГЕНЕРАТОРНЫЙ ПОТЕНЦИАЛЫ

Афферентные (сенсорные) нейроны - биполярные нервные клетки, выполняющие функцию восприятия и проведения возбуждения от периферических рецепторов в ЦНС. Тело округлой формы находится вне ЦНС, в спинальном ганглии, имеет один отросток, который затем Т-образно делится. Один отросток идет на периферию и образует там чувствительные окончания (рецепторы). Другой отросток идет в ЦНС, где ветвится и формирует синаптические окончания на вставочных или эффекторных клетках. Тело афферентной клетки в возбуждении участия не принимает, выполняя трофическую функцию. Терминальная же часть афферентного волокна обеспечивает передачу возбуждения от одного рецептора к нескольким вставочным нейронам.

Рецептор является преобразователем внешних стимулов в информационную систему кодируемых нервных импульсов. Рецептор - это специализированная структура (клетка или окончание нейрона), которая в процессе эволюции приспособилась к восприятию соответствующего раздражителя внутренней или внешней среды путем преобразования энергии стимула (раздражителя) в изменение проницаемости своей мембраны. Рецепторы обладают наибольшей чувствительностью к адекватным для них раздражениям.

Классификации рецепторов.

1. По модальности адекватных раздражителей:

Фоторецепторы, хеморецепторы, механорецепторы, терморецепторы, осморецепторы (на изменение осмотического давления), фонорецепторы.

2. По отношению к внешней среде:

Экстерорецепторы - воспринимают информацию из внешней среды: зрение, слух, обоняние, осязание.

Интерорецепторы - воспринимают информацию от внутренних органов: органы пищеварения, сердечнососудистой системы, проприорецепторы мышц и суставов.

Вестибулорецепторы - занимают промежуточное положение, они находятся внутри организма, но возбуждаются внешними факторами.

3. По взаиморасположению раздражителя и рецептора:

Дистантные - воспринимают энергию на расстоянии (зрение, слух, обоняние);

Контактные - непосредственный контакт с раздражителем (вкус).

4. По модальности раздражителя:

мономодальные (моносенсорные) - воспринимают один вид энергии (зрение, слух);

полимодальные (полисенсорные) - воспринимают несколько видов энергии. Например, рецепторы роговицы глаза реагируют на изменение температуры и прикосновение;

ноцицепторы (болевые) рецепторы.

5. Гистофизиологическая (структурно-функциональная):

первичночувствующие - обоняние, тактильные, проприорецепторы (восприятие стимула осуществляется непосредственно окончанием афферентного нейрона);

вторичночувствующие: вкус, слух, зрение, вестибулорецепторы (здесь между действующим стимулом и афферентным нейроном располагается специализированная клетка эпителиального происхождения, из которой при раздражении выделяется медиатор, действующий на окончание афферентного нейрона).

Процесс преобразования энергии стимула (сигнала) в изменение проницаемости мембраны с последующим формированием рецепторного потенциала мембраны получил название трансдукции и включает в себя 3 основных этапа:

1) взаимодействие стимула с рецепторной белковой молекулой, которая находится

в составе клеточной мембраны рецепторной клетки;

2) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах

рецепторной клетки;

3) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникает рецепторный потенциал). В фоторецепторах, наоборот, возникает гиперполяризация.

Зависимость между величинами стимула и рецепторного потенциала логарифмическая.

У первичночувствующих рецепторов рецепторный потенциал является одновременно и генераторным, т.к. вызывает генерацию ПД в наиболее чувствительных участках мембраны.

У вторичночувствующих рецепторов рецепторный потенциал вызывает выделение квантов медиатора из пресинаптических окончаний рецепторной клетки. Медиатор изменяет поляризацию ПСМ, т.е. здесь генераторный потенциал является постсинаптическим потенциалом первого нейрона сенсорной системы.

Свойства рецепторных и генераторных потенциалов:

- градуальны (стимулами разной интенсивности деполяризуются или гиперполяризуются неодинаково), их амплитуда отражает силу стимуляции, хотя последняя не служит для них источником энергии;

- локальны - распространяются по мембране электротонически, а не активно;

- подвергаются пространственной и временной суммации (два слабых одиночных стимула вместе могут вызвать надпороговую деполяризацию).

Трасформация генераторных потенциалов в залпы ПД обычно происходит на первом перехвате Ранвье афферентного нервного волокна. У немиелинизированных афферентов точное место трансформации неизвестно. Генераторный потенциал распространяется электротонически до места генерирования ПД, точно также как синаптический потенциал по телу мотонейрона к аксонному холмику.

Частота импульсации в афферентном нервном волокне пропорциональна величине генераторного потенциала.

Такое же перекодирование локального потенциала с переменной амплитудой в проводимый сигнал с переменной частотой происходит в синапсах ЦНС.

ВОЗНИКНОВЕНИЕ ПД В ЭФФЕРЕНТНЫХ НЕЙРОНАХ. МЕХАНИЗМЫ СУММАЦИИ ПСП

Вставочные нейроны cоставляют 90% всех нейронов. Отростки не покидают пределов ЦНС, но обеспечивают многочисленные связи по горизонтали и вертикали. Осуществляют обработку информации и связь между афферентными и эфферентными нейронами. Делятся на возбуждающие и тормозные.

Эфферентные (эффекторные) нейроны - это нейроны, передающие информацию от нервного центра к исполнительным органам.

Пирамидные клетки двигательной зоны коры больших полушарий, посылающие импульсы к мотонейронам передних рогов спинного мозга.

Мотонейроны - аксоны выходят за пределы ЦНС и заканчиваются синапсом на эффекторных структурах.

Терминальная часть аксона ветвится, но есть ответвления и вначале аксона - аксонные коллатерали. Место перехода тела мотонейрона в аксон - аксонный холмик - наиболее возбудимый участок. Здесь генерируется ПД, затем распространяется по аксону.

На теле нейрона огромное количество синапсов.

Если синапс образован аксоном возбуждающего интернейрона, то при действии медиатора на постсинаптической мембране возникает ВПСП.

Если синапс образован аксоном тормозной клетки, то при действии медиатора на постсинаптической мембране возникает гиперполяризация или ТПСП.

Алгебраическая сумма ВПСП и ТПСП на теле нервной клетке проявляется в возникновении ПД в аксонном холмике, т.е. в области аксонного холмика происходит интеграция событий, разыгрывающихся на отдельных участках мембраны нейрона (рис.13).

Временная (последовательная) суммация. Если с определенным интервалом к нейрону в точку А приходят импульсы, они вызывают ВПСП. Если эти ВПСП не достигают КУД, то ПД не возникает. Если же частота следования импульсов большая, то в этом месте происходит суммация ВПСП и при достижении КУД нейрон возбуждается.

Пространственная суммация. Возбуждения приходящие одновременно в разные точки нейрона (А, В, С), даже если они сами по себе подпороговые, могут привести к возбуждению, при условии, что суммированный ВПСП достигнет КУД.

Рис. 13. Последовательная и пространственная суммация на уровне нейрона.1 - приход импульса к нервной клетке; 2 - формирование биопотенциала.

СКЕЛЕТНЫЕ МЫШЦЫ

Скелетные мышцы обеспечивают перемещение составных элементов скелета. Имеют поперечную исчерченность (поперечнополосатые).

Свойства скелетной мышцы: 1) возбудимость; 2) проводимость (способность проводить ПД вдоль мышечного волокна и вглубь его по Т-системе поперечных трубочек, служащих связующим звеном между поверхностной мембраной и сократительным аппаратом); 3) сократимость (способность укорачиваться или развивать напряжение при возбуждении); 4) эластичность (способность развивать напряжение при растягивании).

Скелетные мышцы имеют 2 типа волокон: интрафузальные и экстрафузальные. Интрафузальное волокно находится внутри мышечного веретена (специализированного мышечного рецептора), располагающегося в толще скелетной мышцы. Оно необходимо для регуляции чувствительности рецептора и управляется специальными мотонейронами спинного мозга - гамма-мотонейронами. Мышечные волокна не входящие в состав мышечного веретена, называются экстрафузальными.

Особенности нервно-мышечного (мионеврального) синапса.

Наличие большого числа изгибов на пресинаптической и постсинаптической мембранах, которые увеличивают площади пресинапса и постсинапса, а, следовательно, и вероятность взаимодействия.

В пресинапсе (в основном в активных зонах) - везикулы с АЦХ (до 1000- 10000 молекул).

Постсинаптическая мембрана в виде гребешков (с интервалом 1 мкм). На вершине гребешка концентрация Н-ХР максимальна (2000 на 1 мкм2, в устьях - 1000, а во внесинаптической зоне 50 на 1 мкм2). В синаптической щели находится гликокаликс - волокна, выполняющие опорную функцию.

Здесь расположена ацетилхолинэстераза (АЦХЭ), скорость расщепления АЦХ 1мол/мс.

Деполяризация ПСМ носит здесь название потенциала концевой пластинки (ПКП). В покое выделяется 1 квант/с - миниатюрный потенциал концевой пластинки (МПКП). При ПД в синапсе лягушки выделяется 100 квантов медиатора, а у млекопитающих 200-300 квантов медиатора.

МПП мышечных волокон примерно - 90 мв. ПД - 120-130 мв. Длительность ПД 1-3 мс. КУД - 50 мв.

Механизмы блокады нервно-мышечной передачи.

Блокада проведения возбуждения в пресинаптичесой части (местноанестезирующие вещества).

Блокада высвобождения медиатора в пресинаптической части (токсин ботулизма).

Нарушение синтеза медиатора.

Блокада холинорецепторов (бунгаротоксин), вытеснение АЦХ из рецепторов (кураре), инактивация ПСМ (сукцинилхолин).

Угнетение ацетилхолинэстеразы (фосфорорганические соединения). Приводит к длительному сохранению АЦХ и вызывает длительную деполяризацию и инактивацию рецепторов синапсов.

Понятие о нейромоторной единице или двигательной единице (ДЕ).

Это морфологический комплекс, состоящий из двигательного нейрона (альфа-мотонейрона, расположенного в спинном мозге или в стволе мозга) и иннервируемых им группы мышечных волокон. Число иннервируемых мышечных волокон может варьировать от нескольких единиц до нескольких сотен (ДЕ - 10-1000 волокон).

Виды сокращений:

Динамический - чередование сокращения и расслабления.

Статический - длительное сокращение без изменения длины мышцы.

Режимы сокращений:

Изотонический - напряжение остается постоянным, длина мышцы уменьшается;

Изометрический - увеличение напряжения при постоянной длине мышечного волокна;

Ауксотонический - физиологический режим сокращения, при котором длина уменьшается, напряжение увеличивается.

Классификация скелетных мышечных волокон.

Подразделяются на фазические (фазные - они генерируют ПД) и тонические (не способны генерировать полноценный ПД распространяющегося типа).

Медленные фазические волокна окислительного типа.

большое содержание миоглобина (красные мышцы)

большое число митохондрий

утомление наступает медленно, а восстановление быстро

нейромоторные единицы состоят из большого числа волокон.

Быстрые фазические окислительного типа.

быстрые сокращения без заметного утомления

большое количество митохондрий

число волокон нейромоторной единицы меньше, чем в предыдущей группе.

Быстрые фазические с гликолитическим типом окисления.

миоглобин отсутствует (белые мышцы)

АТФ образуется за счет гликолиза

Митохондрий меньше, чем у волокон окислительного типа

Для всех фазических волокон характерно наличие одной, в крайнем случае нескольких концевых пластинок, образованных одним двигательным аксоном.

Быстрые фазические волокна имеют более развитую саркоплазматическую сеть и обширную сеть Т-системы, чем медленные.

Тонические волокна (медленные).

Двигательный аксон образует множество синаптических контактов с мембраной мышечного волокна.

Сокращения и расслабления происходят медленно, низкая активность миозиновой АТФ-азы.

Эффективно работают в изометрическом режиме.

Не генерируют ПД и не подчиняются закону «все или ничего». Одиночный пресинаптический импульс вызывает незначительное сокращение. Серия вызывает суммацию ПСП и плавно нарастающую деполяризацию мышечного волокна (входят в состав наружных мышц глаза).

Одиночное мышечное сокращение.

1. Латентный период. 2. Фаза сокращения (укорочения) мышцы. 3. Фаза расслабления.

Суммированные сокращения.

В зависимости от частоты раздражения меняется характер сокращения.

Если стимулы попадают в латентные периоды - наблюдаются одиночные сокращения.

Если очередной стимул (или его действие) попадает в фазу расслабления, мышца не успевает расслабиться, возникает дополнительное сокращение, развивается длительное напряжение - зубчатый тетанус.

При более высокой частоте (т.е. с еще меньшим интервалом между раздражителями), когда каждый очередной стимул попадает в фазу укорочения мышцы, происходит продолжительная активация сократительной системы, развивается мощное длительное сокращение, которое называется гладким тетанусом. Расслабление возникает при утомлении.

Амплитуда гладкого тетануса зависит от частоты раздражения. Если каждый последующий стимул (раздражитель) попадает в фазу экзальтации (повышенной возбудимости), ответ мышцы будет достаточно большим, если же импульсы попадают в период сниженной возбудимости (относительная рефрактерная фаза), то ответ мышцы будет намного меньше. Напр. 30 Гц - 10 мм, 50 Гц - 15 мм, 200 Гц - 3 мм. Такая зависимость амплитуды ответа мышцы от частоты получила название оптимума и пессимума частоты раздражения.

Альфа-мотонейрон может посылать к мышце серию импульсов, например, 20 имп/с, 40 имп/с, 50 имп/с. Все наши сокращения в ответ на импульсную стимуляцию частотного характера являются тетаническими.

Строение мышечного волокна и механизм сократительного процесса.

Скелетные мышцы состоят из отдельных многоядерных волокон. Волокно имеет сарколемму и состоит из миофибрилл. Структурно-функциональная сократительная единица миофибриллы называется саркомером. Саркоплазматический ретикулум и сеть поперечных Т-трубочек образуют вокруг миофибрилл как бы решетку. Т-трубочки расположены перпендикулярно фибриллам, а саркоплазматический ретикулум - параллельно. Участки соприкосновения Т-трубочек и саркоплазматического ретикулума (триады) состоят из небольшой трубочки в центре и двух цистерн ретикулума по бокам. На каждый саркомер приходится 2 триады (участки перекрытия актиновых и миозиновых нитей).

1 г. ткани поперечно-полосатой мышцы содержит 100 мг сократительных белков - актина и миозина. Они образуют в мышечных волокнах тонкие и толстые нити, которые собраны в пучки диаметром 1 мкм.

Структура саркомера.

С помощью светового микроскопа в миофибрилле обнаружены правильно чередующиеся поперечные светлые и темные полосы (исчерченность), обусловленные особой регулярной организацией или расположением нитей актина и миозина в саркомерах. В середине такого саркомера располагается пучок толстых нитей миозина. Исчерченность обусловлена правильной организацией актина и миозина. В середине - толстые нити миозина, нити актина жестко закреплены в - мембранах по типу щетина в щетках. Именно Z-мембраны ограничивают отдельный саркомер скелетной мышцы.

Более темные участки А-диски (анизотропные) обладают двойным лучепреломлением. В их центре видна более светлая полоска (Н-зона). По обе стороны А-диска светлые изотропные полоски - I-диски, образованные нитями актина. В центре Н-полоски обнаружена М-линия - структура, которая удерживает нити миозина.

Укорочение саркомеров.

Мышца укорачивается в результате сокращения множества саркомеров, соединенных последовательно. При укорочении тонкие актиновые нити скользят вдоль толстых миозиновых и двигаются к середине саркомера (рис. 14). Во время скольжения длина актиновых и миозиновых нитей не меняется; при наблюдении в световой микроскоп не изменяется ширина А-диска, тогда как I-диски и Н-зона становятся более узкими.

Рис. 14. Скольжение нитей актина и миозина при сокращении саркомера. а) - мышца в покое; б) - при сокращении.

Работа поперечных мостиков.

Миозиновые нити имеют поперечные выступы, которые представляют собой субфрагменты миозина - тяжелый меромиозин, в котором различают шейку и головку. Эти ферменты обладают АТФ-азной активностью (способностью расщеплять АТФ), они отходят биполярно. Во время сокращения каждый поперечный мостик может связываться с актиновой нитью. В момент взаимодействия головки с актиновой нитью развивается усилие, которое сопровождается поворотом головки на 45є, т. е. она действует как рычаг, приводя в движение актиновую нить.

Биполярное расположение головок в обеих половинах саркомеров приводит к скольжению актиновых нитей в правой и левой половинах саркомера.

В момент соединения поперечного мостика с актиновой нитью происходит активация АТФ-азы этого мостика, затем расщепление АТФ. Предполагают, что энергия расщепления АТФ необходима для разделения актина и миозина.

Расщепление - обязательное условие, которое обеспечивает следующий цикл взаимодействия актина и поперечных мостиков.

Таким образом, происходит ритмическое отсоединение и присоединение головок миозина к актиновым нитям (сходство с группой людей, которая тянет длинную веревку).

Несмотря на ритмичную смену прикрепления и отсоединения поперечных мостиков с частотой от 5 до 50 Гц, сила, развиваемая мышцей, в физиологических условиях не колеблется, так как гребковые движения поперечных мостиков происходят асинхронно.

В случае уменьшения концентрации АТФ цикличность может нарушаться, а существенное снижение концентрации АТФ может привести к устойчивому прикреплению мостиков к актину.

Этим объясняется состояние трупного окоченения (расслабление будет возможно в результате аутолиза).

Электромеханическое сопряжение:

Генерация ПД. (Стимуляция приводит к деполяризации сарколеммы.)

Распространение ПД по Т-системе. (Деполяризация Т-системы и саркоплазматического ретикулума.)

Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов кальция. (Выход ионов кальция из саркоплазматического ретикулума.)

Сокращение:

Образуется комплекс кальций + тропонин. Комплекс кальций + тропонин снимает блокаду актина тропомиозином (освобождение активных центров на актиновых филаментах), а также снимает блокаду тропонином I АТФ-азной активности миозина.

Взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги.

Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Расслабление:

Кальций отделяется от комплекса с тропонином.

Кальций диффундирует от тонких филаментов в саркоплазматический ретикулюм.

Тропомиозин возвращается на блокирующее место.

Тропонин I блокирует АТФ-азную активность миозина.

Поперечные актомиозиновые мостики разрываются и нити смещается друг относительно друга. В головках вновь накапливается АТФ.

Таким образом, в механизме сокращения скелетных мышц сократительными белками являются - актин и миозин, а регуляторными - тропонин и тропомиозин.

Контрактура - в условиях целостного организма возникает при патологии и проявляется в длительном, слитном сокращении мышцы, которое не управляется корой (волей человека). Природа контрактур различна. В экспериментальных условиях ее легко получить путем воздействия на мышцы.

Гиперкалиевый раствор: вызывает длительную деполяризацию мембраны, что приводит к достаточно длительной активности мышцы (калиевая контрактура).

Кофеиновая контрактура: длительное сокращение, которое держится в течении всего времени, пока в растворе содержится кофеин. Является следствием высвобождения ионов кальция из саркоплазматического ретикулума.

СЕРДЕЧНАЯ МЫШЦА

Сердечная мышца (миокард) относится к возбудимым тканям и имеет поперечную исчерченность. Однако в области Z-линий имеются участки слияния (переплетения) волокон (в этих участках образуются вставочные диски). Благодаря этой особенности сердечная мышца представляет собой сеть волокон. Т-система кардиомиоцитов локализована в области Z-линий (а не на месте слияния А и I-дисков, как в скелетной).

В ответ на раздражение сердечная мышца сокращается в соответствии с законом «все или ничего», т.е. либо с максимальной силой, либо не сокращается вовсе. У скелетной мышцы закон «всё или ничего» выполняется применительно к отдельному мышечному волокну, а не к мышце в целом, т.к. отдельные волокна имеют разную возбудимость.

Свойства сердечной мышцы: 1) возбудимость; 2) проводимость; 3) сократимость; 4) автоматия.

Автоматия - это значит, что возбуждение возникает в сердце периодически, под влиянием процессов, протекающих в нём самом. Однако способностью к автоматии обладают лишь определённые участки миокарда, состоящие из атипичной мышечной ткани, бедной миофибриллами.

Все мышечные клетки сердца можно разделить на два больших класса:

1) миокардиоциты - осуществляют сокращение в ответ на приходящий ПД;

2) миоциты - входят в состав узлов автоматии и проводящей системы.

Для миоцитов способность к сокращению выражена слабо. Их главная функция состоит в генерации автоматического ПД и быстрого проведения возбуждения по сердцу.

Мембранный потенциал атипичных волокон не держится на стационарном уровне, происходит медленный сдвиг мембранного потенциала в сторону КУД - фаза спонтанной (или медленной) диастолической деполяризации (СДД или МДД). МДД - внутриклеточный механизм спонтанного возбуждения клеток, лежит в основе автоматии. При достижении КУД начинается генерация ПД, затем снова МДД провоцирует появление очередного потенциала действия и т.д..

Причины фазы МДД: 1) Снижение активности натрий-калиевой АТФ-азы; 2) Низкая проницаемость мембраны для ионов калия; 3) Высокая проницаемость мембраны для ионов натрия.

Проводящая система.

В норме возбуждение возникает в синоатриальном (синусно-предсердном) узле - в стенке правого предсердия у места впадения в него верхней полой вены. В атипичных клетках синоатриального узла наиболее высокая скорость МДД. Частота генерации ПД 60-80 в мин. Он навязывает ритм деятельности сердцу - является пейсмекером 1-го порядка.

От синоатриального узла возбуждение распространяется (скорость 0,8 - 0,9 м/с) по волокнам правого и левого предсердия, запуская процесс их сокращений. От предсердий возбуждение достигает перегородки между предсердиями и желудочками и попадает в атриовентрикулярный (предсердно-желудочковый) узел. В сердце теплокровных животных существуют специальные проводящие пути между синоатриальным и атриовентрикулярным узлами, а также между правым и левым предсердиями.

В атриовентрикулярном узле значительно замедляется скорость проведения возбуждения (0,02 - 0,05 м/с). Эта атриовентрикулярная задержка проведения необходима для того, чтобы отставить во времени процесс возбуждения в предсердиях и желудочках: камеры предсердий и желудочков работают поочередно.

От атриовентрикулярного узла возбуждение переходит на пучок Гиса. Благодаря атриовентрикулярной задержке возбуждение доходит до пучка Гиса тогда, когда предсердия успевают сократиться.

Пучок Гиса прободает предсердно-желудочковую перегородку и делится на правую и левую ножки. Ножки следуют в межжелудочковой перегородке, а в области верхушки сердца загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волокон Пуркинье), погружённых в рабочий (сократительный) миокард желудочков. Скорость распространения возбуждения в пучке Гиса (4,5 - 5 м/с) и проводящих миоцитах в 5 раз больше скорости распространения по рабочему миокарду. Благодаря этому, миокардиоциты желудочков вовлекаются в сокращение почти одновременно.

Существует градиент автоматии, выражающийся в убывающей способности к автоматии (из-за понижения скорости МДД) различных участков проводящей системы, по мере удаления от синоатриального узла. При повреждении синоатриального узла роль водителя ритма - пейсмекера 2-го порядка берёт на себя атриовентрикулярный узел (частота разрядов 30 - 40 в мин.). Вентрикулярная проводящая система - пучок Гиса, волокна Пуркинье - пейсмекеры 3-го порядка (частота 15-20 в мин.).

Проводящая система обеспечивает: 1) ритмическую генерацию ПД; 2) координацию сокращений предсердий и желудочков; 3) синхронное вовлечение в процесс сокращения миокардиоцитов желудочков.

Отличительная особенность проведения возбуждения в миокарде - большое количество межклеточных контактов в виде специальных структурных образований - вставочных дисков. Вставочные диски имеют различную структуру. Одни участки вставочных дисков - это нексусы (электрические синапсы), другие выполняют механическую функцию, третьи - обеспечивают транспорт веществ через мембрану кардиомиоцита (креаторные связи). Нексусы благодаря низкому сопротивлению электрическому току обеспечивают быстрый переход возбуждения с одной клетки на другую. Благодаря нексусам мышечная ткань предсердий и желудочков ведёт себя как функциональный синцитий: возбуждение, возникнув в каком либо из отделов, охватывает все без исключения невозбуждённые волокна.

Сокращение сердца, как и скелетных мышц, запускается ПД. Однако, временные соотношения этих процессов в этих двух типах мышц различны. Длительность ПД скелетных мышц составляет несколько мс, а сокращение начинается тогда, когда возбуждение уже почти заканчивается. В миокарде возбуждение и сокращение в значительной степени перекрываются во времени, ПД заканчивается после начала фазы расслабления.

В ПД рабочего (сократительного) миокардиоцита желудочка выделяют следующие фазы: фаза деполяризации (1-2 мс); фаза быстрой начальной реполяризации; фаза замедленной реполяризации (плато); фаза быстрой конечной реполяризации. МПП -90 мВ; амплитуда ПД 120 мВ; длительность ПД 100 - 400 мс (в среднем 300 мс). У ПД миокардиоцитов предсердий нет такой четко выраженной фазы плато, как у рабочих миокардиоцитов желудочков, и, соответственно, меньшая продолжительность ПД.

В отличие от ПД скелетных мышц, у миокардиоцитов во время реполяризации происходит открытие кальциевых каналов и возникает деполяризующий медленный входящий кальциевый ток. Одновременно уменьшается проводимость для калия. Эти причины формируют фазу плато, задерживают реполяризацию и удлиняют по времени ПД.

Рис. 15. ПД рабочего миокардиоцита желудочка.

1 - период абсолютной рефрактерности;

2 - период относительной рефрактерности;

3 - период супернормальной возбудимости;

4 - период полного восстановления нормальной возбудимости.

Рефрактерность во время ПД связана с инактивацией натриевых каналов. Их восстановление происходит при реполяризации до уровня - -40 мв. Т.е. рефрактерность связана с длительностью ПД. Если изменяется длительность ПД, то, соответственно, изменяется и длительность периода рефрактерности. При длительности ПД 300 мс, 270 из них приходятся на АРП.

Систола миокарда почти совпадает с рефрактерностью отдельного миокардиоцита. Этот рефрактерный период больше, чем время распространения возбуждения по предсердиям и желудочкам. Это делает невозможным возникновение тетануса в сердечной мышце.

Раздражение, нанесённое на миокард в период расслабления (диастолы), когда возбудимость восстановлена, вызывает внеочередное сокращение сердца - экстрасистолу.

ГЛАДКИЕ МЫШЦЫ

Свойства гладкой мышцы: 1) возбудимость; 2) проводимость; 3) сократимость; 4) пластичность (при растягивании напряжение мышцы сначала увеличивается, но затем уменьшается); 5) автоматия (способность к спонтанной деятельности).

Гладкие мышцы подразделяются на висцеральные (или унитарные) и мультиунитарные (ресничная мышца и мышца радужки глаза). Деление основано на различной плотности их двигательной иннервации. В висцеральных гладких мышцах (находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, и т.д.) двигательные нервные окончания имеются на небольшом количестве гладкомышечных клеток (ГМК). Однако возбуждение передаётся на все ГМК пучка благодаря нексусам между ними. Нексусы позволяют ПД и медленным волнам деполяризации распространяться с одной мышечной клетки на другую; обеспечивают одномоментность сокращения.

Висцеральная гладкая мышца имеет двойную иннервацию - симпатическую и парасимпатическую.

Нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений АД- и Х-ергических нейронов имеются утолщения - варикозы. Они содержат гранулы с медиатором, который выделяется из каждой варикозы. По ходу следования нервного волокна могут возбуждаться или тормозиться многие ГМК. Скорость проведения возбуждения - несколько сантиметров в секунду.

Возбуждающее влияние проявляется в виде отдельных волн деполяризации. При повторной стимуляции потенциалы суммируются, и может возникнуть ПД.

Тормозящее влияние в виде отдельных волн гиперполяризации (ТПСП). При ритмической стимуляции ТПСП суммируются.

Строение гладких мыщц.

Состоят из клеток веретенообразной формы (длина 100 мкм, диаметр 3 мкм). Клетки располагаются в составе мышечных пучков и тесно прилегают друг к другу. Содержат миофиламенты актина и миозина, которые располагаются здесь менее упорядоченно, чем в скелетных волокнах. Саркоплазматическая сеть также менее развита.

Электрическая активность ГМК.

Нестабильный мембранный потенциал (МП). Колебания МП вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии частичного сокращения - тонуса. При уменьшении МП мышца сокращается, при увеличении - расслабляется. В период относительного покоя величина МП в среднем -50 мВ. Величина ПД может варьировать в широких пределах; продолжительность ПД 50-250 мс. В некоторых ГМК ПД имеют продолжительное плато во время реполяризации.

Ионная природа ПД ГМК определяется особенностями каналов мембраны. Основную роль играют ионы Са2+ . Кальциевые каналы пропускают и другие двухзарядные ионы (Ba2+ , Mg2+), а также ионы Na+ . Вход Са в клетку во время ПД необходим для поддержания тонуса и развития сокращения.

Автоматия.

ПД ГМК имеют авторитмический (пейсмекерный) характер. Пейсмекерные потенциалы регистрируются в различных участках ГМ. Т.е. любые клетки висцеральных ГМ способны к самопроизвольной автоматической активности. Автоматия ГМ присуща многим внутренним органам и сосудам.

Реакция на растяжение.

В ответ на растяжение ГМ сокращается. Растяжение уменьшает МП клеток, увеличивает частоту ПД и в конечном итоге - тонус ГМ. Это свойство служит одним из способов регуляции двигательной деятельности внутренних органов. Напр., увеличение тонуса стенки желудка в ответ на растяжение при наполнении способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной регуляции тонуса сосудов.

Пластичность.

Если растянутую висцеральную ГМ удерживать в состоянии удлинения, то ее напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже. Эта пластичность ГМ способствует нормальному функционированию внутренних полых органов.

Связь возбуждения с сокращением.

Висцеральная ГМ находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД (электромеханические соотношения изучать труднее, чем в скелетной).

В основе сокращения также лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.

Особенность заключается в обязательном фосфорилировании миозина перед АТФ-азной активностью. Механизм: ион Са2+ соединяется с кальмодулином (рецептивный белок для иона Са), возникающий комплекс активирует фермент - киназу легкой цепи миозина, который катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Т.е. пусковой момент для сокращения гладкой мышцы - присоединение иона Са2+ к кальмодулину, а для скелетной - к тропонину.

В гладких мышцах сократительные белки - актин, миозин; регуляторные: кальмодулин и тропомиозин.

ГЛАНДУЛОЦИТЫ

Железистая ткань также относится к возбудимым тканям. Однако, образующие ее гландулоциты обладают существенной морфофункциональной спецификой.

Секреция - процесс образования внутри клетки (гландулоцита) и выделения из нее специфического продукта (секрета).

Выделяемые секреторной клеткой вещества могут иметь различное отношение к внутриклеточным процессам. Собственно секретом принято считать продукт метаболизма данной клетки, экскретом - продукт ее катаболизма, рекретом - поглощенный клеткой из крови и затем в неизмененном виде выделенный продукт.

Секрет может выводиться из клетки через ее апикальную мембрану в просвет ацинусов, протоки желез, полость пищеварительного тракта - экзосекреция (внешняя секреция).

Выведение секрета из клетки через ее базолатеральную мембрану в интерстициальную жидкость, откуда он поступает в кровь и лимфу, называется внутренней секрецией - эндосекрецией, или инкрецией.

Секреторный цикл - периодическое изменение состояния секреторной клетки, обусловленное образованием, накоплением, выделением секрета и восстановлением ее дальнейшей секреции. Выделяют несколько фаз цикла: 1) поступление в клетку исходных веществ (диффузия, активный транспорт и эндоцитоз); 2) синтез и транспорт исходного секреторного продукта, формирование секреторных гранул; 3) выделение секрета из клетки.

Биопотенциалы гландулоцитов имеют ряд особенностей в покое и при секреции: низкую величину и скорость изменения, градуальность, различную поляризованность базальной и апикальной (верхушечной) мембран, гетерохронность изменения поляризованности мембраны при секреции.

МП гландулоцитов экзокринных желез в состоянии относительного покоя равен от -30 до -75 мВ. Стимуляция секреции меняет МП. Это изменение поляризованности мембраны называется секреторным потенциалом. У разных гландулоцитов он имеет существенные различия, влияет на секреторный цикл и сопряжение его фаз, на синхронизацию активности гландулоцитов в составе данной железы (это не исключает химического взаимодействия их через межклеточные контакты). Оптимальной для возникновения секреторных потенциалов считается поляризованность мембраны -50 мВ.

Для возбуждения большинства видов гландулоцитов характерна деполяризация их мембран (обусловлена потоком ионов натрия в клетку и выходом из нее ионов калия). У некоторых гландулоцитов мембраны при возбуждении гиперполяризуются (за счёт транспорта в клетку ионов хлора и выход из нее ионов натрия и калия).

Различие в поляризованности базальной и апикальной мембран составляет 2-3 мВ, что создает значительное электрическое поле (20-30 В/см). Его напряженность при возбуждении секреторной клетки возрастает примерно вдвое, что способствует перемещению секреторных гранул к апикальному полюсу клетки и выходу секреторного материала из клетки. Изменение МП и электрической проводимости гландулоцитов опосредовано увеличением внутриклеточной концентрации кальция (стимуляторы секреции, повышающие концентрацию кальция в гландулоцитах, влияют на калиевые и натриевые каналы и вызывают секреторный потенциал).

Секреция желез контролируется нервными, гуморальными и паракринными (выделение химических средств управления в межтканевую жидкость) механизмами.

Для синаптических окончаний на гландулоцитах характерны незамкнутые относительно широкие синаптические щели, заполненые интерстициальной жидкостью. Сюда из окончаний нейронов поступают медиаторы, из крови - гормрны, из соседних эндокринных клеток - парагормоны, от самих гландулоцитов - продукты их жизнедеятельности.

В состоянии покоя гландулоциты выделяют небольшое количество секрета, которое может градуально увеличиваться или уменьшаться. На мембранах гландулоцитов имеются возбуждающие и тормозные рецепторы, с участием которых секреторная активность гландулоцитов изменяется в широких пределах.

Физиология центральной нервной системы

НЕРВНАЯ ТКАНЬ

Нейроглия.

Структурной и функциональной единицей ЦНС является нервная клетка (нейрон), которая окружена клетками нейроглии.

Нейроглия (глиоциты) - совокупность всех клеточных элементов нервной ткани кроме нейронов. В мозге взрослого человека 1150 - 200 млрд. глиальных клеток, что в 10 раз больше нервных. Нейроглия делится на микроглию (глиальные макрофаги) и макроглию (астроциты, олигодендроциты, эпендимоциты).

Астроциты составляют 45 - 60% серого вещества мозга. Покрывают 85% поверхности капилляров мозга (сосудистые ножки астроцитов), крупные отростки астроцитов контактируют с телами нейронов. Основная функция - трофическая.

Олигодендроциты образуют миелин в нервной системе и поддерживают его целостность.

Эпендимоциты - клетки, выстилающие стенки спинномозгового канала и всех желудочков головного мозга. Это граница между спинномозговой жидкостью (ликвор) и тканью мозга.

Особенности глиальных клеток.

Чувствительны к ионным изменениям среды.

Высокая активность калий - натриевой АТФ-азы.

Высокая проницаемость для ионов калия.

Мембранный потенциал - 90 мВ (у нейронов - 60-80 мВ).

На раздражение отвечает только медленной деполяризацией не более 10 мВ.

Потенциал действия в глиальных клетках не генерируется.

Функции нейроглии.

Опорная - вместе с сосудами и мозговыми оболочками образуют строму ткани мозга.

Трофическая - обеспечивают метаболизм нервных клеток (связь с кровеносными сосудами). В глиоцитах сосредоточен весь гликоген ЦНС.

Участие в интегративной деятельности мозга:

без глиоцитов (блокада антиглиальным гамма-глобулином) меняется электрическая активность нейронов;

возможно, участвуют в формировании следов воздействия (память), а значит и условного рефлекса.

Гематоэнцефалический барьер.

Адаптация к постоянно изменяющимся условиям существования связана с необходимостью поддержания гомеостаза. Важное место среди таких гомеостатических механизмов занимает гематоэнцефалический барьер (ГЭБ), выполняющий регуляторную и защитную функции.

ГЭБ объединяет совокупность физиологических механизмов и соответствующих анатомических образований в ЦНС, участвующих в регулировании состава цереброспинальной жидкости (ЦСЖ).

ЦСЖ (ликвор, спинномозговая жидкость) - прозрачная бесцветная жидкость, заполняющая полости желудочков мозга, субарахноидальное пространство головного мозга и спинномозговой канал, периваскулярные и перицеллюлярные пространства в ткани мозга. Выполняет питательные функции, определяет величину внутримозгового давления. Состав ЦСЖ формируется в процессе обмена веществ между мозгом, кровью и тканевой жидкостью, включая все компоненты ткани мозга. В ЦСЖ содержится ряд биологически активных соединений: гормоны гипофиза и гипоталамуса, ГАМК, ацетилхолин, норадреналин, дофамин, серотонин, продукты метаболизма.

Существуют два механизма проникновения веществ в клетки мозга:

через ЦСЖ, служащую промежуточным звеном между кровью и нервной или глиальной клеткой (ликворный путь, питательная функция);

2) через стенку капилляра (гематогенный путь).

Представления о ГЭБ:

Проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка;

ГЭБ является в большей степени не анатомическим, а функциональным понятием, находится под регулирующим влиянием нервной и гуморальной систем;

Ведущим управляющим фактором является уровень деятельности и метаболизма нервной ткани.

Важнейший компонент морфологического субстрата ГЭБ - стенка капилляра мозга. У взрослого организма основным путём движения вещества в нервные клетки является гематогенный путь. Уровень и регуляция физиологической проницаемости клеточной стенки обусловливают динамику поступления в нервные клетки физиологически активных веществ. Регуляция функций ГЭБ осуществляется высшими отделами ЦНС и гуморальными факторами (значительная роль в нейрогуморальной регуляции отводится гипоталамо-гипофизарной системе).

Нейроны.

Нейроны - специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию; способные устанавливать контакты с другими нейронами, клетками органов; способные генерировать электрические разряды и передавать информацию с помощью специализированных окончаний - синапсов.

Размеры нейрона 6 - 120 мкм. Число нейронов мозга человека приближается к 1011 . На одном нейроне может быть до 10000 синапсов. Если эти элементы считать хранителями информации, то нервная система может хранить 1019 бит информации.

Строение нейрона: тело (сома) и отростки (длинный - аксон и короткие -дендриты). На протяжении первых 50 - 100 мк аксон не имеет миелиновой оболочки - начальный сегмент. Особенность начального сегмента: высокая возбудимость, порог раздражения примерно в 3 раза ниже, чем других участков.

Серое вещество мозга - тела нейронов. Белое вещество различных отделов мозга - отростки нейронов.

Мембранный потенциал покоя нейрона - 70 мВ, потенциал действия 110 мВ, длительность: 1- 3 мсек. Порог ПД начального сегмента - 10 мВ, порог ПД тела нейрона - 20 - 35 мВ.

Тела нейронов выполняют трофическую функцию по отношению к их отросткам (гибель тела клетки ведет к дегенерации ее отростков).

Типы нейронов.

Строение нейронов в значительной степени соответствует их функциональному назначению. По строению нейроны делят на: униполярные; биполярные; мультиполярные.

Униполярные:

истинно униполярные нейроны (в ядрах тройничного нерва);

псевдоуниполярные - имеют два отростка. Оба отростка сливаются вблизи клетки в единый отросток (обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, вибрационной сигнализации).

Биполярные: имеют один аксон и один дендрит. Встречаются в периферических частях зрительной, слуховой и обонятельной системы.

Мультиполярные: имеют несколько дендритов и один аксон. Встречаются более 60 вариантов мультиполярных нейронов. Располагаются в сером веществе и ганглиях.

Классификации нейронов.

Учитывает химическую структуру медиатора, выделяющегося в окончаниях их аксонов: холинергические; норадренергические; дофаминергические; серотонинергические и т.д.

По чувствительности к действию раздражителей:

моносенсорные: чувствительны к разным качествам одного раздражителя. Располагаются в первичных проекционных зонах коры больших полушарий.

бисенсорные: реагируют на два раздражителя. Например, нейроны вторичной зоны зрительной области коры больших полушарий реагируют на зрительные и слуховые раздражители.

полисенсорные: реагируют на несколько раздражителей - это нейроны ассоциативных зон коры больших полушарий.

По функциональному назначению:

рецепторные (чувствительные, афферентные, сенсорные);

эффекторные (эфферентные);

контактные (вставочные, ассоциативные, интернейроны).

Афферентные нейроны.

Биполярные нервные клетки, выполняющие функцию восприятия и проведения возбуждения от периферических рецепторов в ЦНС.

Тело округлой формы находится вне ЦНС, в спинальном ганглии, имеет один отросток, который затем Т-образно делится.

Один отросток идет на периферию и образует там чувствительные окончания (рецепторы). Другой отросток идет в ЦНС, где ветвится и формирует синаптические окончания на вставочных или эффекторных клетках.

Генерация потенциала действия в афферентных волокнах отмечается в первом от рецептора перехвате Ранвье.

Тело афферентной клетки в возбуждении участия не принимает. Выполняет трофическую функцию. Терминальная часть афферентного волокна ветвится, обеспечивая передачу возбуждения от одного рецептора к нескольким вставочным нейронам.

Вставочные нейроны.

Составляют 90% всех нейронов. Отростки не покидают пределов ЦНС, но обеспечивают многочисленные связи по горизонтали и вертикали.

Особенность: могут генерировать потенциал действия с частотой 1000 в сек. Причина - короткая фаза следовой гиперполяризации.

Вставочные нейроны осуществляют обработку информации; осуществляют связь между эфферентными и афферентными нейронами. Делятся на возбуждающие и тормозные.

Эфферентные нейроны.

Это нейроны, передающие информацию от нервного центра к исполнительным органам.

Пирамидные клетки двигательной зоны коры больших полушарий, посылающие импульсы к мотонейронам передних рогов спинного мозга.

Мотонейроны - аксоны выходят за пределы ЦНС и заканчиваются синапсом на эффекторных структурах.

Терминальная часть аксона ветвится, но есть ответвления и вначале аксона - аксонные коллатерали. Место перехода тела мотонейрона в аксон - аксонный холмик - наиболее возбудимый участок. Здесь генерируется ПД, затем распространяется по аксону.

На теле нейрона огромное количество синапсов. Если синапс образован аксоном возбуждающего интернейрона, то при действии медиатора на постсинаптической мембране возникает деполяризация или ВПСП (возбуждающий постсинаптический потенциал). Если синапс образован аксоном тормозной клетки, то при действии медиатора на постсинаптической мембране возникает гиперполяризация или ТПСП. Алгебраическая сумма ВПСП и ТПСП на теле нервной клетке проявляется в возникновении ПД в аксонном холмике.

Ритмическая активность мотонейронов в нормальных условиях 10 импульсов в секунду, но может возрастать в несколько раз.

Проведение возбуждения.

ПД распространяется за счет местных токов ионов, возникающих между возбужденным и невозбужденным участками мембраны. Так как ПД генерируется без затрат энергии, то нерв обладает самой низкой утомляемостью.

Объединения нейронов.

Существуют разные термины, обозначающие объединения нейронов.

Нервный центр - комплекс нейронов в одном или разных местах ЦНС (например, дыхательный центр).

Нейронные цепи - последовательно соединенные нейроны, выполняющие определенную задачу (с этой точки зрения рефлекторная дуга - тоже нейронные цепи).

Нейронные сети - более обширное понятие, т.к. помимо последовательных цепей имеются параллельные цепи нейронов, а также связи между ними. Нейронные сети - это структуры, выполняющие сложные задачи (например, задачи по обработке информации).

НЕРВНАЯ РЕГУЛЯЦИЯ

Рефлекторный принцип регуляции.

Рефлекс - реакция организма на действие раздражителя при обязательном участии ЦНС.

Структурной основой рефлекса является рефлекторная дуга (РД). Она состоит из афферентного, центрального и эфферентного звеньев, связанных между собой синаптическими соединениями. Афферентная часть дуги начинается рецепторными образованиями.

В зависимости от сложности структуры РД различают моно- и полисинаптические рефлексы.

Самая простая РД - моносинаптическая, состоит из 2 нейронов: афферентного и эфферентного. Моносинаптические рефлексы - это сравнительно ограниченный круг рефлексов. Например: спинальные миотатические (возникающие в ответ на растяжение мышцы) рефлексы.

Наличие в РД 2 и более синаптических переключений (т.е. 3 и более нейронов) характеризует ее как полисинаптическую. Это более распространенные виды рефлексов. Например: сгибательный рефлекс, возникающий при раздражении рецепторов кожи.

Время от момента нанесения раздражения до конечного эффекта (время рефлекса) достигает 50-100 мс. Центральное время - промежуток времени, в течение которого импульс пробегает по структурам мозга. Для прохождения одного синапса требуется около 1,5 мс. Т.е. центральное время рефлекса косвенно указывает на число синаптических передач, имеющих место в данном рефлексе. При полисинаптической РД центральное время рефлекса больше 3 мс (если 2 синаптических переключения - то около - 4-6 мс).

Виды рефлексов.

1) По компонентам рефлекторной дуги - моносинаптические и полисинаптические.

2) По способу вызывания - безусловные (врожденные) и условные (приобретаемые).

3) По расположению основных нейронов дуги, без которых рефлекс не реализуется, - спинальные (спинномозговые), бульбарные, мезенцефальные, диэнцефальные, кортикальные.

4) По характеру рецепторов, раздражение которых вызывает данный рефлекс, - экстероцептивные, интероцептивные, проприоцептивные;

5) По биологическому значению рефлекса - пищевые, оборонительные, половые и т.д.


Подобные документы

  • Роль Павлова в создании учения о высшей нервной деятельности, объяснении высших функций мозга животных и человека. Основные периоды научной деятельности ученого: исследования в областях кровообращения, пищеварения, физиологии высшей нервной деятельности.

    реферат [25,7 K], добавлен 21.04.2010

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.

    курсовая работа [61,7 K], добавлен 09.06.2011

  • Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.

    реферат [35,3 K], добавлен 01.08.2010

  • Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа [26,4 K], добавлен 21.02.2009

  • Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа [1,6 M], добавлен 26.08.2009

  • Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат [1,6 M], добавлен 15.02.2011

  • Свойства возбудимых тканей. Рефлекторные функции продолговатого мозга. Функции ядер гипоталамуса и сенсорных систем. Стадии свертывания крови. Фазы работы сердца. Свойства желез внутренней секреции. Функции промежуточного мозга, осуществляющие их отделы.

    реферат [47,0 K], добавлен 18.05.2015

  • Значение высшей нервной деятельности в жизнедеятельности человека. Анатомия, физиология и гигиена высшей нервной деятельности. Безусловные и условные нервные рефлексы. Эмоции, память, сон, прогноз и внушение. Нарушения высшей нервной деятельности.

    реферат [19,6 K], добавлен 14.04.2011

  • Исследование психики в трудах ученых до второй половины XIX в. Высказывания о душе древних мыслителей, учение Р. Декарта. И.М. Сеченов как теоретик рефлекторной природы психической деятельности. Исследование физиологии условных рефлексов И.П. Павловым.

    контрольная работа [15,5 K], добавлен 22.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.