Митотическое деление клеток

Увеличение числа клеток за счет деления исходной клетки, удвоившей свой генетический материал. Деление всех эукариотических клеток. Различные типы митоза эукариот и длительность их фаз. Морфология митотической фигуры. Митоз растительной клетки.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 19.11.2010
Размер файла 928,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Митотическое деление клеток. Общая организация митоза
Как постулирует клеточная теория, увеличение числа клеток происходит исключительно за счет деления исходной клетки, предварительно удвоившей свой генетический материал. Это - главное событие в жизни клетки как таковой, а именно завершение воспроизведения себе подобного. Вся «интерфазная» жизнь клеток направлена на полное осуществление клеточного цикла, заканчивающегося клеточным делением. Само же деление клетки - процесс неслучайный, строго генетически детерминированный, где в последовательный ряд выстроена целая цепочка событий.
Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных) хромосом, которые приобретают вид плотных нитчатых структур. Эти нитчатые хромосомы переносятся в дочерние клетки специальной структурой - веретеном деления. Такой тип деления эукариотических клеток - митоз (от греч. mitos - нити), или кариокинез, или непрямое деление - является единственным полноценным способом увеличения числа клеток. Прямое деление клеток или амитоз достоверно описано только при делении полиплоидных макронуклеусов инфузорий, их микронуклеусы делятся только митотическим путем.
Деление всех эукариотических клеток связано с образованием специального аппарата клеточного деления. При удвоении клеток происходят два события: расхождение реплицированных хромосом и разделение клеточного тела, цитотомия. Первая часть события у эукариот осуществляется с помощью так называемого веретена деления, состоящего из микротрубочек, а вторая часть происходит за счет участия акто-миозиновых комплексов, вызывающих образование перетяжки у клеток животного происхождения или за счет участия микротрубочек и актиновых филаментов в образовании фрагмопласта, первичной клеточной перегородки у клеток растений.
В образовании веретена деления у всех эукариотических клеток принимают участие два рода структур: полярные тельца (полюса) веретена и кинетохоры хромосом. Полярные тельца, или центросомы, являются центрами организации (или нуклеации) микротрубочек. От них своими «+»-концами отрастают микротрубочки, образующие пучки, тянущиеся к хромосомам. У клеток животных центросомы включают в свой состав и центриоли. Но у многих эукариот центриолей нет, а центры организации микротрубочек присутствуют в виде бесструктурных аморфных зон, от которых отходят многочисленные микротрубочки. Как правило, при организации аппарата деления участвуют две центросомы или два полярных тельца, находящиеся на противоположных концах сложного, веретенообразного тела, состоящего из микротрубочек. Второй структурой, характерной для митотического деления клеток, связывающей микротрубочки веретена с хромосомой, являются кинетохоры. Именно кинетохоры, взаимодействуя с микротрубочками, ответственны за перемещение хромосом при клеточном делении.

Различные типы митоза эукариот

Описанное выше деление клеток животных и растений - не единственная форма непрямого деления клеток. Наиболее простой тип митоза - плевромитоз. Он в какой-то степени напоминает бинарное деление прокариотических клеток, у которых нуклеоиды после репликации остаются связанными с плазматической мембраной, которая начинает как бы расти между точками связывания ДНК и тем самым как бы разносит хромосомы в разные участки клетки. После этого при образовании клеточной перетяжки каждая из молекул ДНК окажется в новой отдельной клетке.

Как уже говорилось, характерным для деления эукариотических клеток является образование веретена, построенного из микротрубочек. При закрытом плевромитозе (закрытым он называется потому, что расхождение хромосом происходит без нарушения ядерной оболочки) в качестве центров организации микротрубочек (ЦОМТ) участвуют не центриоли, а другие структуры, находящиеся на внутренней стороне ядерной мембраны. Это так называемые полярные тельца неопределенной морфологии, от которых отходят микротрубочки. Этих телец два, они расходятся друг от друга, не теряя связи с ядерной оболочкой, и в результате этого образуются два полуверетена, связанные с хромосомами. Весь процесс образования митотического аппарата и расхождения хромосом происходит в этом случае под ядерной оболочкой. Такой тип митоза встречается среди простейших, он широко распространен у грибов (хитридиевые, зигомицеты, дрожжи, оомицеты, аскомицеты, миксомицеты и др.). Встречаются формы полузакрытого плевромитоза, когда на полюсах сформированного веретена ядерная оболочка разрушается.

Другой формой митоза является ортомитоз. В этом случае ЦОМТ располагаются в цитоплазме, с самого начала идет образование не полуверетен, а двухполюсного веретена. Существуют три формы ортомитоза: открытый (обычный митоз), полузакрытый и закрытый. При полузакрытом ортомитозе образуется бисимметричное веретено с помощью расположенных в цитоплазме ЦОМТ, ядерная оболочка сохраняется в течение всего митоза, за исключением полярных зон. В качестве ЦОМТ здесь могут обнаруживаться массы гранулярного материала или даже центриоли. Эта форма митоза встречается у зеленых водорослей, грегарин, бурых, красных водорослей, у некоторых низших грибов. При закрытом ортомитозе полностью сохраняется ядерная оболочка, под которой образуется настоящее веретено. Микротрубочки формируются в кариоплазме, реже отрастают от внутриядерного ЦОМТ, не связанного (в отличие от плевромитоза) с ядерной оболочкой. Такого типа митозы характерны для деления микронуклеусов инфузорий, но встречаются и у других простейших. При открытом ортомитозе ядерная оболочка полностью распадается. Этот тип деления клеток характерен для животных организмов, некоторых простейших и для клеток высших растений. Эта форма митоза в свою очередь представлена астральным и анастральным типами.

Из этого краткого рассмотрения видно, что главной особенностью митоза вообще является возникновение структур веретена деления, образующегося в связи с разнообразными по своему строению ЦОМТ.

Морфология митотической фигуры

Как уже говорилось, митотический аппарат наиболее подробно изучен у клеток высших растений и животных. Особенно хорошо он бывает выражен на стадии метафазы митоза. В живых или фиксированных клетках в метафазе в экваториальной плоскости клетки располагаются хромосомы, от которых в противоположных направлениях тянутся т.н. нити веретена, сходящиеся на двух разных полюсах митотической фигуры. Так что митотическое веретено - это совокупность хромосом, полюсов и волокон. Волокна веретена представляют собой одиночные микротрубочки или их пучки. Начинаются микротрубочки от полюсов веретена и часть из них направляется к центромерам, где расположены кинетохоры хромосом (кинетохорные микротрубочки), часть проходит дальше по направлению к противоположному полюсу, но до него не доходит - “межполюсные микротрубочки”. Кроме того от полюсов отходит группа радиальных микротрубочек, образуя вокруг них как бы “лучистое сияние” - это астральные микротрубочки.

По общей морфологии митотические фигуры делятся на два типа: астральный и анастральный.

Астральный тип веретена (или конвергентный) характеризуется тем, что его полюса представлены небольшой зоной, к которой сходятся (конвергируют) микротрубочки. Обычно в полюсах астральных веретен располагаются центросомы, содержащие центриоли. Хотя известны случаи бесцентриолярных астральных митозов (при мейозе некоторых беспозвоночных). От полюсов кроме того расходятся радиальные микротрубочки, не входящие в состав веретена, а образующие звездчатые зоны - цитастеры. В целом же такой тип митотического веретена напоминает скорее гантель.

Анастральный тип митотической фигуры не имеет на полюсах цитастеров. Полярные области веретена здесь широкие, их называют полярными шапочками, в их состав не входят центриоли. Волокна веретена в данном случае не отходят от одной точки, а расходятся широким фронтом (дивергируют) от всей зоны полярных шапочек. Этот тип веретена характерен для делящихся клеток высших растений, хотя иногда встречается и у высших животных. Так, например, в раннем эмбриогенезе млекопитающих при делении созревания ооцита и при I и II делении зиготы наблюдаются бесцентриолярные (дивергентные) митозы. Но уже начиная с третьего клеточного деления и во всех последующих, клетки делятся при участии астральных веретен, в полюсах которых всегда обнаруживаются центриоли.

В целом же для всех форм митоза общими структурами остаются хромосомы с их кинетохорами, полярные тельца (центросомы) и волокна веретена.

Динамика митоза

У клеток, вступивших в цикл деления, фаза собственно митоза, непрямого деления, занимает относительно короткое время, всего около 0,1 времени клеточного цикла. Так, у делящихся клеток меристемы корней интерфаза может составлять 16-30 ч, а митоз занимать всего 1-3 ч. Цикл эпителиальных клеток кишечника мыши длится около 20-22ч, на митоз же приходится всего 1 ч. При дроблении яйцеклеток весь клеточный период, включая митоз, может быть меньше часа.

Процесс митотического деления клеток принято подразделять на несколько основных фаз: профаза, прометафаза, метафаза, анафаза, телофаза. Границы между этими фазами установить точно очень трудно, потому что сам митоз представляет собой непрерывный процесс и смена фаз происходит очень постепенно: одна их них незаметно переходит в другую. Единственная фаза, которая имеет реальное начало, это анафаза - начало движения хромосом к полюсам. Длительность отдельных фаз митоза различна, наиболее короткая по времени анафаза (табл. ).

Длительность фаз митоза

Объект

Продолжительность (в мин)

профаза

метафаза

анафаза

телофаза

Клетки саркомы Иосида

14

31

4

21

Клетки культуры селезенки мыши

20-35

6-15

8-14

9-26

Клетки эндосперма гороха

40

20

12

110

Клетки эндосперма ириса

40-65

10-30

12-22

40-75

Определяется время отдельных фаз митоза лучше всего при прямом наблюдении за делением живых клеток в специальных камерах. Зная время митоза, можно рассчитать длительность отдельных фаз по проценту их встречаемости среди делящихся клеток.

Фазы митоза

Профаза. Уже в конце G2-периода в клетке начинают происходить значительные перестройки. Точно определить, когда наступает профаза невозможно. Лучшим критерием для начала этой фазы митоза может служить появление в ядрах нитчатых структур - митотических хромосом. Этому событию предшествует повышение активности фосфорилаз, модифицирующих гистоны, и, в первую очередь, гистон Н1. В профазе сестринские хроматиды связаны друг с другом бок о бок с помощью белков-когезинов, которые образуют эти связи еще в S-периоде, во время удвоения хромосом. К поздней профаза связь между сестринскими хроматидами сохраняется только в зоне кинетохоров. В профазных хромосомах уже можно наблюдать зрелые кинетохоры, которые не имеют никаких связей с микротрубочками.

Конденсация хромосом в профазном ядре совпадает с резким уменьшением транскрипционной активности хроматина, которая полностью исчезает к середине профазы. В связи с падением синтеза РНК и конденсацией хроматина происходит инактивация и ядрышковых генов. При этом отдельные фибриллярноые центры сливаются так, что превращаются в ядрышко-образующие участки хромосом, в ядрышковые организаторы. Большая часть ядрышковых белков диссоциирует и в свободном виде встречается в цитоплазме клетки или связывается с поверхностью хромосом.

Одновременно с этим происходит фосфорилирование ряда белков ламины, ядерной оболочки, которая распадается. При этом теряется связь ядерной оболочки с хромосомами. Затем ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают.

Параллельно этим процессам происходит активация клеточных центров. В начале профазы разбираются микротрубочки в цитоплазме и начинается бурный рост множества астральных микротрубочек вокруг каждой из удвоившиеся диплосом. Скорость роста микротрубочек в профазе почти в два раза выше роста интерфазных микротрубочек, но лабильность их в 5-10 раз выше цитоплазматических. Так если время полужизни микротрубочек в цитоплазме составляет около 5 мин, то во время первой половины митоза - всего лишь 15 секунд. Здесь еще в большей степени проявляется динамическая нестабильность микротрубочек. Все микротрубочки, отходящие от центросом, растут вперед своими (+)-концами.

Активированные центросомы - будущие полюса веретена деления - начинают расходиться друг от друга на некоторое расстояние. Механизм такого профазного расхождения полюсов заключается в следующем: идущие навстречу друг другу антипараллельные микротрубочки взаимодействуют между собой, что приводит к их большей стабилизации и расталкиванию полюсов. Это происходит за счет взаимодействия с микротрубочками динеино-подобных белков, которые в центральной части веретена выстраивают межполюсные микротрубочки параллельно друг другу. Одновременно с этим продолжается их полимеризация и рост, которые сопровождаются одновременно с их расталкиванием в направлении к полюсам за счет работы кинезино-подобных белков. В это время при образовании веретена микротрубочки с кинетохорами хромосом еще не связаны.

В профазе одновременно с разборкой цитоплазматических микротрубочек происходит дезорганизация эндоплазматического ретикулума (он распадается на мелкие вакуоли, лежащие по периферии клетки) и аппарата Гольджи, который теряет свою околоядерную локализацию, распадается на отдельные диктиосомы, без порядка разбросанные в цитоплазме.

Прометафаза. После разрушения ядерной оболочки митотические хромосомы без особого порядка лежат в зоне бывшего ядра. В прометафазе начинается их движение и перемещение, которое в конечном итоге приведет к образованию экваториальной хромосомной “пластинки”, к упорядоченному расположению хромосом в центральной части веретена уже в метафазе. В прометафазе наблюдается постоянное движение хромосом или метакинез, при котором они то приближаются к полюсам, то уходят от них к центру веретена, пока не займут среднее положение, характерное для метафазы (конгрессия хромосом).

В начале прометафазы хромосомы, лежащие ближе к одному из полюсов образующегося веретена, начинают быстро к нему приближаться. Это происходит не одномоментно, но занимает определенное время. Было найдено, что такой первичный асинхронный дрейф хромосом к разным полюсам происходит с помощью микротрубочек. Используя видео-электронное усиление фазового контраста в световом микроскопе, удалось на живых клетках наблюдать, что отдельные отходящие от полюсов микротрубочки случайно достигают одного из кинетохоров хромосомы и связываются с ним, “захватываются” кинетохором. После этого происходит быстрое, со скоростью около 25 мкм\мин, скольжение хромосомы вдоль микротрубочки по направлению к её (-)-концу. Это приводит к тому, что хромосома приближается к полюсу, от которого произошла эта микротрубочка. Важно отметить, что кинетохоры могут контактировать с боковой поверхностью таких микротрубочек. Во время такого движения хромосомы микротрубочки не разбираются. Вероятнее всего, что за такое быстрое перемещение хромосом отвечает моторный белок, аналогичный цитоплазматическому динеину, обнаруженному в короне кинетохоров.

В результате такого первичного прометафазного движения хромосомы оказываются случайным образом приближены к полюсам веретена, где продолжает происходить образование новых микротрубочек. Очевидно, что чем ближе к центросоме будет находиться хромосомный кинетохор, тем будет выше случайность его взаимодействия с другими микротрубочками. В этом случае новые, растущие (+)-концы микротрубочек “захватываются” зоной короны кинетохора; теперь с кинетохором оказывается связанным пучок из микротрубочек, рост которых продолжается на их (+)-конце. При росте такого пучка кинетохор, а вместе с ним и хромосома, должен перемещаться к центру веретена, удаляться от полюса. Но к этому времени от противоположного полюса ко второму кинетохору другой сестринской хроматиды подрастают свои микротрубочки, пучок которых начинает тянуть хромосому к противоположному полюсу. Наличие такой тянущей силы доказывается тем, что если лазерным микролучом перерезать пучок микротрубочек у одного из кинетохоров, то хромосома начинает двигаться к противоположному полюсу. В нормальных же условиях хромосома, совершая небольшие перемещения в сторону то одного, то другого полюса, в результате постепенно занимает срединное положение в веретене. В процессе прометафазного дрейфа хромосом происходит удлинение, наращивание микротрубочек на (+)-концах, когда кинетохор движется от полюса, и разборка , укорачивание микротрубочек тоже на (+)-конце, когда сестринский кинетохор движется по направлению к полюсу.

Эти переменные движения хромосом то туда, то сюда приводят к тому, что они, в конце концов, оказываются в экваторе веретена и выстраиваются в метафазную пластинку.

Метафаза. В метафазе, также как и в других фазах митоза, несмотря на некоторую стабилизацию пучков микротрубочек, продолжается их постоянное обновление за счет сборки и разборки тубулинов. Во время метафазы хромосомы располагаются так, что их кинетохоры обращены к противоположным полюсам. В это же время происходит постоянная переборка и межполюсных микротрубочек, число которых в метафазе достигает максимума. Если на метафазную клетку посмотреть со стороны полюса, то можно видеть, что хромосомы располагаются так, что их центромерные участки обращены к центру веретена, а плечи - к периферии. Такое расположение хромосом носит название “материнской звезды” и характерно для клеток животных. У растений часто в метафазе хромосомы лежат в экваториальной плоскости веретена без строгого порядка.

К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи лежат параллельно друг другу, между ними хорошо видна их разделяющая щель. Последним местом, где контакт между хроматидами сохраняется, является центромера; вплоть до самого конца метафазы хроматиды во всех хромосомах остаются связанными в центромерных участках.

Анафаза начинается внезапно, что хорошо можно наблюдать при витальном исследовании. Анафаза начинается с разъединения всех сразу хромосом в центромерных участках. В это время происходит одновременная деградация центромерных когезинов, которые связывали до этого времени сестринские хроматиды. Такое одновременное отделение хроматид позволяет начать их синхронное расхождение. Хромосомы все вдруг теряют центромерные связки и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам веретена. Скорость движения хромосом равномерная, она может достигать 0,5-2 мкм/мин.

Анафаза - самая короткая стадия митоза (несколько % от всего времени), но за это время происходит целый ряд событий. Главными из них являются сегрегация двух идентичных наборов хромосом и транспорт их в противоположные концы клетки.

При движении хромосом они меняют свою ориентацию и часто принимают V-образную форму. Вершина их направлена в сторону полюсов деления, а плечи как бы откинуты к центру веретена. Если перед анафазой произошел разрыв плеча хромосомы, то во время анафазы оно не будет участвовать в движении хромосом и останется в центральной зоне. Эти наблюдения показали, что именно центромерный участок вместе с кинетохором отвечает за движение хромосом. Создается впечатление, что за центромеру хромосома оттягивается к полюсу. У некоторых высших растений (ожика) нет выраженной центромерной перетяжки, и волокна веретена контактируют со многими точками на поверхности хромосом (полицентрические и голоцентрические хромосомы). В этом случае хромосомы располагаются поперек волокон веретена.

Собственно расхождение хромосом слагается из двух процессов: 1- расхождение хромосом за счет кинетохорных пучков микротрубочек, 2 - расхождение хромосом вместе с полюсами за счет удлинения межполюсных микротрубочек. Первый из этих процессов носит название “анафаза А”, второй - “анафаза В”.

Во время анафазы А, когда группы хромосом начинают двигаться по направлению к полюсам, происходит укорачивание кинетохорных пучков микротрубочек. Можно было ожидать, что в этом случае деполимеризация микротрубочек должна происходить на их (-)-концах, концах ближайших к полюсу. Однако было доказано, что микротрубочки действительно разбираются, но большей частью (80%) с (+)-концов, прилежащих к кинетохорам. В эксперименте в живые клетки культуры ткани с помощью метода микроинъекции был введен тубулин, связанный с флуорохромом. Это позволяло витально видеть микротрубочки в составе веретена деления. В начале анафазы пучок веретена одной из хромосом был облучен световым микролучом примерно посередине между полюсом и хромосомой. При таком воздействии исчезает флуоресценция в облученном месте. Наблюдения показали, что облученный участок к полюсу не приближается, но хромосома достигает его при укорачивании кинетохорного пучка. Следовательно, разборка микротрубочек кинетохорного пучка происходит в основном с (+)-конца, в месте его соединения с кинетохором, а хромосома движется по направлению к (-)-концу микротрубочек, который расположен в зоне центросомы. Оказалось, что такое движение хромосом зависит от присутствия АТФ и от наличия достаточной концентрации ионов Са+. То, что в составе короны кинетохора, в которую вмонтированы (+)-концы микротрубочек, обнаружен белок динеин, позволило считать, что именно он является мотором, который подтягивает хромосому к полюсу. Одновременно с этим происходит деполимеризация кинетохорных микротрубочек на (+)-конце.

После остановки хромосом у полюсов происходит дополнительное их расхождение за счет удаления полюсов друг от друга (анафаза В). Показано, что при этом происходит наращивание (+)-концов межполюсных микротрубочек, которые могут значительно увеличиваться в длину. Взаимодействие между этими антипараллельными микротрубочками, приводящее к их скольжению друг относительно друга, определяется другими моторными кинезин-подобными белками. Кроме того, полюса дополнительно подтягиваются к периферии клетки за счет взаимодействия с астральными микротрубочками динеино-подобных белков на плазматической мембране.

Последовательность анафаз А и В и их вклад в процесс расхождения хромосом может быть различным у разных объектов. Так, у млекопитающих стадии А и В протекают практически одновременно. У простейших В анафаза может приводить к 15-кратному увеличению длины веретена. В растительных клетках стадия В отсутствует.

Телофаза начинается с остановки хромосом (ранняя телофаза, поздняя анафаза) и кончается началом реконструкции нового интерфазного ядра (ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез).

В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки - к полюсу, теломерные - к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы начинает строиться новая ядерная оболочка, которая раньше всего образуется на латеральных поверхностях хромосом и позже - в центромерных и теломерных участках. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в G1-период новой интерфазы.

В телофазе начинается и заканчивается процесс разрушения митотического аппарата - разборка микротрубочек. Он идет от полюсов к экватору бывшей клетки: именно в средней части веретена микротрубочки сохраняются дольше всего (остаточное тельце).

Одно из главных событий телофазы - разделение клеточного тела, цитотомия или цитокинез. Выше уже говорилось, что у растений деление клетки происходит путем внутриклеточного образования клеточной перегородки, а у клеток животных - путем перетяжки, впячивания плазматической мембраны внутрь клетки.

Митоз не всегда заканчивается разделением тела клетки. Так, в эндосперме многих растений могут некоторое время идти множественные процессы митотического деления ядер без деления цитоплазмы: образуется гигантский многоядерный симпласт. Так же без цитотомии синхронно делятся многочисленные ядра плазмодиев миксомицетов. На ранних этапах развития зародышей некоторых насекомых также происходит неоднократное деление ядер без деления цитоплазмы.

В большинстве случаев закладка перетяжки при делении клеток животных происходит строго в экваториальной плоскости веретена. Здесь в конце анафазы, в начале телофазы, образуется кортикальное скопление микрофиламентов, которые образуют сократимое кольцо. В состав микрофиламентов кольца входят актиновые фибриллы и короткие палочковидные молекулы из полимеризованного миозина II. Взаимное скольжение этих компонентов приводит к уменьшению диаметра кольца и к появлению вдавления плазматической мембраны, что в конце приводит к перетяжке исходной клетки надвое.

После цитотомии две новые (дочерние) клетки переходят в стадию G1 клеточного периода. К этому времени возобновляются цитоплазматические синтезы, происходит реставрация вакуолярной системы, диктиосомы аппарата Гольджи снова концентрируются в околоядерной зоне в ассоциации с центросомой. От центросомы начинается отрастание цитоплазматических микротрубочек и восстановление интерфазного цитоскелета.

Митоз растительной клетки

Митотическое деление клеток высших растений имеет ряд характерных особенностей, которые касаются начала и конца этого процесса.

В интерфазных клетках различных меристем растений микротрубочки располагаются в кортикальном подмембранном слое цитоплазмы, образуя кольцевые пучки микротрубочек. Периферические микротрубочки контактируют с ферментами, образующими фибриллы целлюлозы, с целлюлозосинтетазами, которые являются интегральными белками плазматической мембраны. Они синтезируют целлюлозу на поверхности плазматической мембраны. Считается, что в процессе роста целлюлозной фибриллы эти ферменты передвигаются вдоль подмембранных микротрубочек.

Митотическая перестройка элементов цитоскелета происходит в начале профазы. При этом исчезают микротрубочки в периферических слоях цитоплазмы, но в примембранном слое цитоплазмы в экваториальной зоне клетки возникает кольцевидный пучок микротрубочек - препрофазное кольцо, в которое входит более 100 микротрубочек. Иммунохимически в этом кольце обнаружен также актин. Важно отметить, что препрофазное кольцо микротрубочек располагается там, где в телофазе будет образовываться клеточная перегородка, разделяющая две новые клетки. Позднее в профаза это кольцо начинает исчезать, и новые микротрубочки появляются по периферии профазного ядра. Их число больше в полярных зонах ядер, они как бы оплетают всю ядерную периферию. При переходе к прометафазе возникает биполярное веретено, микротрубочки которого подходят к т.н. полярным шапочкам , в составе которых наблюдаются лишь мелкие вакуоли и неопределенной морфологии тонкие фибриллы; никаких признаков центриолей в этих полярных зонах не обнаруживается. Так формируется анастральное веретено.

В прометафазе при делении растительных клеток также наблюдается сложный дрейф хромосом, их осцилляция и перемещение такого же типа, какие встречаются в прометафазе клеток животных. События в анафазе также схожи с таковыми в астральном митозе. После расхождения хромосом возникают новые ядра, также за счет деконденсации хромосом и образования новой ядерной оболочки.

Процесс же цитотомии растительных клеток резко отличается от деления перетяжкой клеток животного происхождения. В данном случае в конце телофазы также происходит разборка микротрубочек веретена в полярных областях. Но микротрубочки основной части веретена между двумя новыми ядрами остаются, более того здесь происходит образование новых микротрубочек. Так образуются пучки микротрубочек, с которыми связаны многочисленные мелкие вакуоли. Эти вакуоли произошли от вакуолей аппарата Гольджи и содержат пектиновые вещества. С помощью микротрубочек многочисленные вакуоли движутся к экваториальной зоне клетки, где сливаются друг с другом и образуют в середине клетки плоскую вакуоль - фрагмопласт, который разрастается к периферии клетки, включая все новые и новые вакуоли.

Так происходит образование первичной клеточной стенки. В конце концов, мембраны фрагмопласта сливаются с плазматической мембраной: происходит обособление двух новых клеток, разделенных новообразованной клеточной стенкой. По мере расширения фрагмопласта пучки микротрубочек перемещаются все больше к периферии клетки. Вероятно, что процессу растяжения фрагмопласта, отодвигания на периферию пучков микротрубочек способствуют пучки актиновых филаментов, отходящих от кортикального слоя цитоплазмы в том месте, где было препрофазное кольцо.

После разделения клетки микротрубочки, участвовавшие в транспорте мелких вакуолей, исчезают. Новое поколение интерфазных микротрубочек образуется на периферии ядра, а затем располагается в кортикальном примембранном слое цитоплазмы.

Таково общее описание деления растительных клеток, однако этот процесс изучен крайне недостаточно. В полярных зонах веретен не обнаружены белки, входящие в состав ЦОМТ животных клеток. Было обнаружено, что в растительных клетках в этой роли может выступать ядерная оболочка, от которой (+)-концы микротрубочек направлены к периферии клетки, а (-)-концы к ядерной оболочке. При образовании же веретена кинетохорные пучки ориентированы (-)-концом к полюсу, и (+)-концом к кинетохорам. Как происходит такая переориентация микротрубочек остается не выясненным.

При переходе к профазе вокруг ядра появляется плотная сеть микротрубочек, напоминающая корзинку, которая затем по форме начинает напоминать веретено. При этом микротрубочки образуют ряд сходящихся пучков, направленных в сторону полюсов. Позднее в прометафазе происходит связь микротрубочек с кинетохорами. В метафазе кинетохорные фибриллы могут формировать общий центр схождения - миниполюса веретена, или центры конвергенции микротрубочек. Вероятнее всего, образование таких миниполюсов происходит за счет объединения (-)-концов микротрубочек, связанных с кинетохорами. Можно предположить, что в клетках высших растений процесс реорганизации цитоскелета, в том числе и образование митотического веретена, связан с самоорганизацией микротрубочек, которая, как и в клетках животных, происходит при участии моторных белков.


Подобные документы

  • Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация [7,6 M], добавлен 21.02.2013

  • Митотическое деление клетки, особенности ее строения. Митоз как универсальный способ деления клеток растений и животных. Постоянство количества и индивидуальность хромосом. Продолжительность жизни, старение и смерть клеток. Формы размножения организмов.

    реферат [22,8 K], добавлен 07.10.2009

  • Значение роста и развития клеток. Жизненный и митотический циклы клеток. Продолжительность жизни разных типов клеток в многоклеточном организме. Рассмотрение митоза как универсального способа размножения, сохраняющего постоянство числа хромосом в клетках.

    презентация [4,1 M], добавлен 05.12.2014

  • Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация [799,4 K], добавлен 25.10.2011

  • Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.

    реферат [759,3 K], добавлен 28.01.2011

  • Митоз как непрямое деление клетки, в результате которого образуются соматические клетки. Стадии клеточного цикла. Подготовка к делению эукариотических организмов. Основные этапы кариокинеза. Разделение цитоплазмы с органоидами между дочерними клетками.

    презентация [2,3 M], добавлен 06.11.2013

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция [169,6 K], добавлен 27.07.2013

  • Периоды и фазы клеточного цикла. Последовательное прохождение клеткой периодов цикла без пропуска или возврата к предыдущим стадиям. Деление исходной клетки на две дочерние клетки. Циклины и циклин-зависимые киназы; деление эукариотической клетки; митоз.

    контрольная работа [25,0 K], добавлен 21.11.2009

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.