Междисциплинарный подход к изучению сложных систем опасных природных процессов

Процесс эволюции сложных систем как последовательность структурно-фазовых переходов и возникновение ее экстремальных фаз. Кумулятивно-диссипативный подход к разработке моделей опасных природных процессов с целью повышения эффективности их мониторинга.

Рубрика Биология и естествознание
Вид автореферат
Язык русский
Дата добавления 05.09.2010
Размер файла 9,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для случая каскадных типов взаимодействий и каскадной передачи энергии рассмотрена задача о передаче энергии упругих колебаний от очага землетрясения к поверхности [Иванов О.П., Иванова В.С., 2003].

Важнейшие показатели свойств грунта - радиусы изосейст. Изменение радиуса изосейст характеризует степень изменения сейсмического воздействия с расстоянием от эпицентра и может служить мерой устойчивости (реакции) грунта [Иванов О.П., Иванова В.С.]. Универсальный алгоритм, предложенный в главе 2, можно модифицировать применительно к сейсмическим процессам в виде:

r*n+1 / r*n = i1/m (15)

где r - радиусы изосейст, а i - степень устойчивости.

Алгоритм опробован для 15 крупных землетрясений на территории России. Полученные результаты позволяют дать количественную характеристику как понятию изосейст, так и устойчивости грунтов. Одновременно с помощью оценки адаптивности можно оценить справедливость субъективного трассирования изосейст.

Передача энергии каскадным способом в разнородных средах зачастую вызывает различные "каскадные" катастрофы. Например, землетрясение может вызвать сход оползней, лавин, обвалов. Предложенный алгоритм позволяет производить оценки риска для таких ситуаций за счет нормирования территории по сотрясаемости (адаптации) грунтов от предполагаемых сейсмовоздействий.

Защищаемое положение №3

Впервые показано, что достижение экстремальных фаз эволюции ОПП управляется обобщенными законами и принципами кумуляции силовых и потенциальных полей с образованием конечного ряда кумулятивно-диссипативных форм и структур. Доказано, что специфика форм экстремальных фаз ОПП является прогностическим признаком крайне неравновесных состояний систем. Установлено, что процессы вращения вызывают кумуляцию вещества и энергии и, как следствие, максимизацию углового момента инерции системы.

Из физики плазмы известно, что концентрация какого-либо параметра наиболее эффективно происходит в направлении градиента энергетического перепада и тем самым минимизируются время переноса энергии и энергозатраты на перенос энергомассовых потоков. Этому же принципу отвечает закон Ферма, согласно которому, распространение упругих колебаний в сплошной среде идет по пути минимального времени прохождения. Поэтому волны с глубиной становятся рефрагированными, что минимизирует время их прохождения в среде, так как с глубиной плотность среды возрастает и увеличивается скорость прохождения упругих волн [Иванов О.П., Облогина Т.И. и др., 1972, 1976].

Для анализа высокоэнергетичных процессов нами предложена следующая терминология. Кумуляция - это концентрация в малом объеме силы, энергии, плотности или другого физического параметра, если под малым объемом понимать структуру, удерживающую эту концентрацию, а под концентрацией понимать нелинейное и закономерное повышение плотности любой физической величины к оси вращения или центру фокусирования.

Кумулятивно-диссипативный процесс - это процесс концентрированной диссипации энергии из локальных зон сложной системы в виде структурированных потоков. Основу явлений кумуляции составляют законы кумуляции в силовых и потенциальных полях и процессы фокусировки, создающие типовые формы кумуляции, известные из физики плазмы: плоскостная, цилиндрическая, сферическая и коническая (Высикайло Ф.И., 2003). Кумулятивная эволюция уменьшает число свобод. При сферической кумуляции создается две степени свободы: плоскость вращения и ортогональная к ней ось вращения (галактики, черные дыры) (рис.4).

Рис. 4. Схемы формирования симметрий и свобод в случае сферического (слева) и цилиндрического аттракторов (справа).

При цилиндрической кумуляции в ТЦ образуется три степени свободы:

1) плоскость спиральной фокусировки у поверхности воды, 2) плоскость потоков расфокусированных у тропопаузы, 3) зона у оси вращения (рис.4, правый).

У оси вращения резко нелинейно растут плотности газовой среды, скорости вращения, температуры, плотности плазменной составляющей (рис.5, левый), возникают взрывные (Высикайло Ф.И., 2003), а не диффузионные профили кумуляции (рис.5, правый), возможно появление квазистрат (рис 5, средний).

Рис.5. Специфика распределения параметров в условиях вращения.

Вращение максимизирует угловой момент инерции. На примере выполненного расчета момента инерции не дифференцированной и дифференцированной Земли показано, что дифференциация в условиях вращения приводит к увеличению углового момента инерции на величину 15,091036 кгм2.

Спектр динамических процессов ОПП разнообразен и включает мощную конвекцию, сильную турбулентность, вихревые и спирально-вихревые процессы с соответствующими структурами.

В диссертации сформулированы основные принципы возникновения регулярных кумулятивно-диссипативных систем ОПП. Определена роль среды, введено понятие нормальной плотности обобщенного энергомассового потока, характерной частоты, характерных размеров, по которым диссипативные системы макроквантуются в пространстве и образуют кумулятивные формы и структуры.

Защищаемое положение №4

Впервые разработана основа новой естественнонаучной методологии комплексного междисциплинарного системного анализа возникновения, эволюции и проявления ОПП как сложных систем. Методология основана на совокупности принципов и признаков эволюции, взаимодействия, кумуляции и кумулятивной диссипации, а также принципа их целостной взаимосвязи.

Методология представлена в виде совокупности трех групп принципов: эволюции, взаимодействия и кумулятивной диссипации. Обобщающий принцип взаимосвязи делает эту совокупность целостной и превращает ее в систему. Признаки и свойства придают методологии прикладные свойства.

Концептуальные основы междисциплинарной методологии анализа самоорганизации сложных систем ОПП.

I. Принципы эволюции сложных систем

1. Мир системен, системы квазиоткрыты и взаимодействуют друг с другом, коэволюционируя по сложности за счет обмена энергией между собой и с окружающей средой.

2. Цель эволюции - развитие по сложности. Это необходимое условие адаптации при неуклонном нарастании системности и вариабельности окружающей среды.

3. Основа эволюции сложных систем - диалектическое единство процессов аккумуляции и диссипации энергии по схеме: Аккумуляция > Кумуляция > Диссипация> Кумулятивная диссипация.

4. Процесс эволюции сложных систем дискретен, переходы между усложняющимися состояниями иерархичны, последовательности переходов могут быть аппроксимированы различными степенными закономерностями.

5. Эволюция реализуется на основе принципа минимакса: максимум аккумуляции системой внешней энергии и минимум ее диссипации (минимум энтропии). Т.е., если допустимо не единственное состояние системы (процесса), а совокупность состояний, то в соответствии с законами сохранения энергии и топологией связей, наложенных на систему (процесс), реализуется то состояние, которому отвечает максимум накопления внешней энергии и ее минимальное рассеяние, или минимальный рост энтропии.

II. Принципы взаимодействия сложных систем

1. Взаимодействия сложных систем осуществляется в соответствии с системной иерархией: а) от надсистемы к подсистеме, б) от сильно неравновесной системы к менее неравновесной, в) последовательно по каскаду событий.

2. Воздействие на системы может быть ритмообразующим, модифицирующим, и поражающим.

3. Воздействие может быть дистантным или контактным. Наиболее эффективный энергообмен происходит при контактном способе передачи энергии. Возможен смешанный или ретрансляционный спирально-автоволновой способ передачи энергии.

3. Системы - мишени способны принимать и кумулировать энергию, входить в неравновесные и кумулятивно-диссипативные состояния, а также испытывать разрушение частично или полностью в зависимости от уровня воздействия поражающих факторов.

Признаки взаимодействия систем:

1. Внутрисистемные признаки определяют состояние системы, ее структурированность и поведение (тип нелинейности, резонансности, неравновесности), степень и характер самоорганизации (кумулятивной, диссипативной и кумулятивно-диссипативной), уровень динамики (конвекция, турбулентность, вихри, струи, страты).

2. Признаки на границах систем характеризуют степень неравновесности, адаптивности и устойчивости границ (самоорганизованная критичность, фликкер-шумы, фрактальность зон взаимодействия).

3. Признаки контактного взаимодействия со средой характеризуют активность среды и способность ее к самоорганизации (взрывные и резонансные явления, волны-солитоны, автоволновой обмен энергией).

4. Каскадность развития экстремальных процессов свидетельствует об иерархичности среды и дискретной адаптивности ее отклика (последовательное развитие солнечно-земных связей, сход лавин и селей от воздействия землетрясений и т.д.).

5. Признаки поражения окружающей среды и систем свидетельствуют о высокоэнергетичном воздействии, превышающем адаптивные возможности.

III. Принципы кумуляции и кумулятивной диссипации

1. Потенциальные и силовые поля стремятся при достижении неравновесности макроквантоваться (конвекция, разломообразование) с установлением дальнего и ближнего порядка и самоорганизовываться в компактные кумулятивные формы и структуры.

2. Специфика кумуляции определяется видом степенных законов кумуляции, геометрией концентраторов и диссипаторов и типом процессов.

3. Кумулятивные процессы модифицируют среду, упорядочивают структуру возникающих систем, усиливают системные степени свободы, создают гиперскорости распространения энергии.

4. Вращение - всеобщее средство кумуляции энергии в компактные формы (по скорости, плотности, температуре, приведенной силе, приведенному потенциалу, по нарушению нейтральности и т.д.), максимизации углового момента инерции и трансформации кинетической энергии в энергию магнитных полей. Оно минимизирует число степеней свободы (симметрий) сложной системы и задает тип структурирования относительно проявленных симметрий с движением модифицированных струйных потоков вдоль них. Одновременно - это способ спирального автоволнового питания кумулятивного процесса в цилиндрических структурах и поддержания его динамической устойчивости.

IY. Общесистемный принцип целостности. Реализуется в виде обратной кольцевой взаимосвязи всех принципов.

Защищаемое положение №5

На основе нового подхода систематизирована иерархия взаимодействий сложных природных систем и создана генетическая классификация ОПП. Разработаны новые качественные модели возникновения сильных прибрежных землетрясений и тектонических мегацунами, универсальная модель русловых и устьевых наводнений, а также модели цунамигенных и нагонных наводнений. Сформулированы рекомендации по совершенствованию систем прогнозирования, мониторинга и повышения эффективности превентивных мер защиты.

Системная классификация ОПП построена по принципу иерархического подчинения и взаимодействия от надсистемы к подсистеме и между системами.

Выделена следующая последовательность групп взаимодействий: космогенные ОПП, космогенно - климатические ОПП, атмосферные ОПП, гидрологические и гидрогеологические ОПП, геологические ОПП и метеогенно - биогенные ОПП. Группы ОПП детализированы по убывающим масштабам и соподчинению [Мазур И.И., Иванов О.П., 2004]. Классификация используется в АГЗ МЧС.

Модель сильных прибрежных и цунамигенных землетрясений

Общепринятой моделью возникновения цунами является клавишная модель (Лобковский Л.И., 2005). Ее суть состоит в следующем. Невулканическая дуга зоны поддвига литосферных плит разбита разломами на мелкие микроблоки протяженностью 100-200 км - "клавиши". При поддвиге клавиши верхней плиты поджимаются за счет трения и неоднородностей поверхности пододвигаемой плиты. Магнитуда землетрясения будет определяться шириной клавиши, величиной и скоростью вертикального выброса "клавиши" и длиной зоны разломообразования, ориентированной поперек клавиши.

Магнитуду землетрясения можно определить через сейсмический момент:

(16)

где М0 -- сейсмический момент в Дж ? м. В свою очередь сейсмический момент равен:

(17)

здесь ? -- модуль сдвига горных пород, порядка 30 ГПа; A - площадь зоны разломообразования; u - среднее смещение вдоль разломов.

Очень важную роль играет длина зоны разломообразования. Так для крупнейших прибрежных цунамигенных землетрясений нами получено эмпирическое соотношение:

М = 6,34 + 0,82 lg L (18)

Оно неплохо аппроксимирует реальные ситуации (табл. 2, правый столбец). В случае локального цунами длина зон разрушения составляет лишь 100-200 км (ширина "клавиши") и магнитуда землетрясения не превышает 7 - 7,5 баллов по Рихтеру. При мегацунами она может превышать 1000 км (ширина мезоблока). Следовательно, в основе возникновения мегацунами лежит механизм образования гиперпротяженных зон разрушения.

Табл. 2. Сильнейшие цунамигенные землетрясения с 1900 г. В правом столбце магнитуды землетрясений рассчитанные по формуле (16).

Возможны две принципиально различных ситуации: а) ортогональный поддвиг; б) косой поддвиг. В первом случае возможен отклик объединенного мезоблока клавиш (3-4 клавиши) на поддвиг приподнятого рельефа плиты, как это было при землетрясениях 15 и 17 ноября 2006 г. на Курильских островах [Иванов О.П., Свешников А.А., Дубинин Е.П., 2007]. Ширина взломанного блока и ширина пододвигаемой возвышенности совпадают (?500 км) (рис.8).

Рис. 8. Слева контур отломившегося мезоблока верхней плиты, построенный по эпицентрам афтершоков, справа - батиметрический профиль пододвигаемой плиты, стрелка - направление поддвига.

Первичное сейсмогенерирующее взламывание происходит ортогонально побережью (от №3 к №10 на левом рис.8). Ширина сейсмогенной стороны около 150 км. Однако такой механизм не может создать более протяженные зоны, ибо резко нарастает толщина плиты и площадь взлома.

Все сильнейшие цунамигенные землетрясения возникали в ситуациях косого поддвига одной плиты под другую. Здесь вектор движения можно разложить на две составляющие: ортогонально и параллельно поддвигу. При возрастании угла косого поддвига, возрастает составляющая по прижиманию "клавиш" друг к другу, что увеличивает между ними величину трения. Со временем происходит как бы "приваривание" соседних микроблоков-клавиш. Создается новый крупный мезоблок, откликающийся на поддвиг, как единое целое. Подобную ситуацию хорошо описывает предложенная автором на рисунке 9 поликлавишная модель [Иванов, 2006, Иванов О.П., 2007, 2007].

Рис.9. Схема образования и динамики взбрасываемого тектонического мезоблока [Иванов О.П., 2006].

Для тектонического разрушения мезоблока разломом требуются значительные напряжения. Возможен вариант каскада срывов вдоль объединенных микроблоков. Возникает зона разрушения протяженностью 1000 км и более, которая направлена параллельно побережью и ограничена глубиной 25-30 км). Именно по этой причине вспарывание поверхности края Андаманской микроплиты 26 декабря 2004 года длилось около 8 минут и имело две фазы (обычная продолжительность подобных процессов в случае отдельных "клавиш" не превышает минуты). При этом возник трапецевидный блок между старым андаманским разломом и вновь возникшим разломом. Часть мезоблока у гипоцентра испытала взбросо-сдвиг. Вертикальные подвижки достигли 5 м., а горизонтальные - 11 м. Область активных подвижек охватила зону 600300 км, а более слабые нарушения распространились на расстояние более 1 300 км.

Это подтверждается геолого-геофизическими данными и характером фокальных механизмов. Анализ зоны сильнейшего Чилийского цунамигенного землетрясения 1960 г., а также зон Андаманской и Алеутской дуг показывает, что наличие косого поддвига является обязательным условием формирование крупных мезоблоков для возникновения мегацунами.

На основании новой модели предложены рекомендации по повышению эффективности мониторинга и прогноза цунамигенных землетрясений.

1. С точки зрения цунамигенности главное внимание следует уделять геодинамическим обстановкам зон косого поддвига.

2. На основании рассмотренных данных (таблица 1) мониторинг должен проводиться в прибрежных районах зон поддвига, охватывающих полосу, в пределах которой располагаются эпицентры крупных цунамигенных землетрясений с глубиной очага землетрясения в пределах 25-35 км.

3. В пределах такой полосы необходимо заранее по сейсмологическим и геодезическим данным определить формирующийся мезоблок (по признаку монолитности отклика). На ближнем к косому взаимодействию конце и в окружении мезоблока распределяются с необходимой частотой геодезические реперы для мониторинга по слежению за характером относительных перемещений внутри блока и обрамления блока. Параллельно ведется мониторинг состава вод, газовых эманаций, форшокового процесса и проводится анализ универсального предвестника геомеханических катастроф. Последний критерий используется в два этапа; 1) сначала в зоне ближнего контакта регистрируется уменьшение частоты наблюдаемых волновых возмущений, 2) затем анализируется уменьшение декремента затухания апериодических возмущений (Дубровский В.А., Сергеев В.Н., 2004). Момент сейсмического затишья характеризуется максимальными скоростями движения плиты под блоком и это должно сопровождаться резким увеличением высыпания электронов в ионосферу накануне цунамигенного землетрясения.

С точки зрения управления процессом можно предложить использование МГД-генераторов, которые смогли бы создать сейсмическую разрядку и разрушение монолитности мезоблока, за счет освобождения "клавиш" от сильного связующего трения.

4. Зоны с ортогональным поддвигом представляют опасность только в плане интенсивности землетрясений и поэтому для них должно быть обязательным картирование батиметрии пододвигаемой поверхности и анализ эффектов воздействия продолжений краевых зон пододвигаемых поднятий на структуре нависающей плиты.

Качественные модели наводнений. В случае цунамигенных наводнений главным в предлагаемом подходе является эффект сжатия длины цунамической волны за счет трения в условиях склона и шельфа. Сжатие по длине происходит от нескольких сотен до нескольких десятков километров (рис.6).

Рис.6. Схема наводнения от цунами.

При этом возникает подъем уровня вод в прибрежной части достигающий 3-4 м. Приподнятый пласт воды длиною в первые десятки километров надвигается на берег с большой скоростью (более 40 км/ч). Это создает разрушительный потоковый эффект на значительных расстояниях вглубь берега.

Такой подход принципиально отличается от подходов, основанных на общепринятых шкалах цунами Ииды и Имамуры или Амбрасейса, где главной является высота передовой волны, которая разрушается в окрестности пляжа.

В случае нагонных наводнений тоже присутствует аналогичный эффект. В его основе лежит барическое и кинематическое кумулятивное действие циклона. Понижение атмосферного давления в центре циклона только на 1 мм ртутного столба, вызывает повышение уровня океана в этом месте на 13 мм (всасывающий эффект). При падении давления на десятки миллиметров на поверхности воды за счет барического эффекта может появляться возвышенность размерами более метра в высоту и диаметром более 150 - 200 км (длинная волна). Максимум подъема сосредоточен под "глазом" бури (10 - 60 км).

Максимальные изменения возникают, когда центр с ураганными ветрами приближается к берегу. В условиях мелководья соединяются два кумулятивных эффекта: 1) длинная волна первой испытывает сжатие и кумулятивный подъем до уровня 2-3 м за счет трения на мелководье; 2) нагон сжимает ветровые волны и тоже приподнимает уровень воды. На суше высота ветровых волн значительно падает, и размер затопления определяется объемом надвигаемого ветром и затаскиваемого циклоном общего приподнятого пласта воды. Ливни, сопровождающие циклон являются третьей составляющей наводнения. Это утверждение подтверждают следующие данные.

1). Зарегистрированы случаи прихода к берегу и подъема на мелководье передовой волны за счет сжатия за полчаса до прихода сильных ветровых волн.

2). Сильный уровень нагона держится до 10 - 15 мин., а более слабый до получаса. Это результат надвигания суммарного протяженного пласта воды сформированного на мелководье и пополняемого на суше ливневыми потоками.

Важная роль кумулятивного сжатия длинной волны и ветровых волн на мелководье подчеркивается впервые.

В случае речных наводнений также полезен кумулятивно-диссипативный подход [Иванов О.П., Винник М.А., 2009]. Можно выделить два основных типа наводнений: русловые (половодья, паводки, зажорные, заторные, завальные, завально-прорывные) и устьевые (нагонные, цунамигенные).

Динамика реки и русловых наводнений напрямую зависит от трех основных "параметров порядка": площади водосборного бассейна, возможностей его наполнения (источников питания) и перепада высот между ним и дельтой. Водосборный бассейн выступает как фокусировщик гравитационной энергии воды. Русло - в качестве кумулятивного стока, а дельта - и как постоянный диссипатор гравитационной энергии реки и как временный кумулятор от цунамигенных и нагонных наводнений. На основании тесной аналогии водосборного бассейна с водостоком предложена универсальная модель всех типов наводнений, основанная на расширенной модели водостока (рис.7, левый).

Рис. 7. Слева - расширенная модель водостока соединяющая водосбор и дельту с помощью реки. В центре - сценарий затопления территорий (заштрихованная область) в ситуации половодья, паводка, затора, зажора, завала. Справа - сценарии нагонного и цунамигенного наводнений. Направление нагона и движения цунами в зону дельты реки показано стрелкой [Иванов О.П., Винник М.А., 2009].

В случае руслового наводнения в качестве временного промежуточного диссипатора может выступить любой участок русла, где возникают трудности руслового стока (низкие борта русла, перегораживание русла). Репером являются затапливаемые структурные особенности реки такие, как поймы и террасы. Данная модель позволяет обоснованно ранжировать превентивные меры защиты на три основных группы: в зоне водосбора, русловые и устьевые.

Рекомендации по мониторингу цунами. Вблизи эпицентра цунами, сразу же после землетрясения со спутника определяются основные параметры: длина, высота и скорость волн цунами. Вычисляются масса, объем и кинетическая энергия движущейся волны. На основании батиметрии склона и шельфа и параметризации волн оценивается величина сжатия волн и подъема уровня вод у побережья. Расчет кинетической энергии совместно с гипсометрией побережья позволяют оценить возможный уровень "забега" волн на берег и ранжировать уровень опасности. Статистика по сопоставлению исторических данных позволяет ранжировать любой берег по параметру забегания потоков вод. Неожиданный экстремальный случай легко пересчитывается на основе поступивших оперативных данных мониторинга. Это позволит нормировать строительство и правила безопасности в прибрежных зонах.

Рекомендации по мониторингу нагонных наводнений. Для улучшения качества прогноза нагонных наводнений предлагается осуществлять мониторинг параметров длинной волны, скорости движения ТЦ, угла его подхода к берегу, батиметрии шельфовой зоны и гипсометрии прибрежной зоны.

Заключение

Основой защищаемой диссертации является разработка нового междисциплинарного системного подхода к изучению эволюции сложных систем, включая ОПП. Сложные системы (на примере ОПП) рассматриваются как кумулятивно-диссипативные диалектически взаимосвязанные явления, возникающие и развивающиеся в условиях взаимодействия с другими системами и окружающей средой. Эволюция систем - это последовательность структурно-фазовых переходов, которую можно представить в виде диаграмм или сценариев. Предложен и обоснован универсальный алгоритм, позволяющий в зонах бифуркации исследовать иерархию переходов через параметры адаптивности и устойчивости за счет сравнения с решениями обобщенного уравнения золотой пропорции. Исследованы самоподобие и фрактальность структурно-фазовых переходов и самоуправляемость синтеза новых структур за счет обратной связи и автомодельности.

Следующую часть подхода составляет анализ специфики взаимодействий сложных систем как способа энергообеспечения систем ОПП. Рассмотрена типология взаимодействий. Доказано, что для анализа степени взаимодействий применимы методы фрактального анализа, фликкер-шума и методы моделирования автоволновых процессов. Для анализа ситуаций каскадного развития взаимодействий использован универсальный алгоритм. Алгоритм опробован и показал возможность перехода к количественной оценке устойчивости грунтов на основе изосейст интенсивности землетрясений.

Третью часть подхода составляют исследования принципов возникновения и развития экстремальных кумулятивных и кумулятивно-диссипативных динамических состояний ОПП. Показано, что основу его составляют макроквантование высокоэнергетических процессов ОПП, подчинение законам кумуляции силовых и потенциальных полей, всеобщность вращения, идентичность кумулятивных форм и структур, трансмутация вещества и образование новых степеней свобод.

На основе анализа сценариев эволюции различных сложных систем (усталостное разрушение сплавов, кристаллизация, зоны поддвига литосферных плит, ТЦ, торнадо, Биосферы) в диссертации впервые разработаны концептуальные основы междисциплинарной методологии комплексного анализа ОПП. Методология базируется на совокупности принципов эволюции, взаимодействия, кумуляции и кумулятивной диссипации сложных систем ОПП. Принципы эволюции опираются на открытость систем и всеобщность их взаимодействия, диалектическое единство процессов накопления энергии и диссипации, а также дискретность эволюционного процесса за счет иерархичности фазовых переходов.

Предложенные разработки являются принципиально новым теоретическим достижением и составляют суть нового научного направления в теории ОПП. Показано, что метод структурно-фазового анализа дает возможность управлять эволюцией ОПП в целях превентивной защиты. Практическая значимость нового подхода определяется разработками классификации ОПП и ряда новых качественных моделей ОПП, а также соответствующими к ним рекомендациями в области мониторинга, прогноза и превентивных мероприятий.

Перспективы дальнейшего развития подхода обширны. Это исследования спектра процессов внутри отдельных структурно-фазовых переходов различных ОПП с целью разработки методик управления различными опасными процессами, детальное сопоставление различных сценариев эволюции, существенные корректировки систем мониторинга, прогноза и превентивной защиты. Наконец, - это пролог к общей теории эволюции сложных систем.

Публикации по теме диссертации

Монографии

1. Ушаков С.А., Галушкин Ю.И., Гапоненко Г.И., Дубинин Е.П., Иванов О.П., Каверзнев К.М., Шимараев В.Н. Гравитационное поле и рельеф дна Мирового океана. -Л.: Недра, 1979. -295 с.

2. Иванов О.П., Оксогоев А.А. Синергетика и фракталы сложных систем. -ТГУ. 2008. -280с.

Учебно-методические разработки и материалы

1. Мазур И.И., Иванов О.П. Опасные Природные Процессы. Учебник. -М.: Экономика. 2004. -702 с.

2. Иванов О.П. и др. Геоэкология: наука о Земле. Уч. пособие. -М.: ФГОУ ВПО МГАВМиБ, 2003. -377 с.

3. Иванов О.П., Шах Махмуд Нек. Историческая геология с основами палеонтологии. Лабораторный практикум. Ч.I. Литолого-фациальный анализ. -Кабул, КПИ, 1984. -121 с.

4. Иванов О.П., Рейхов Ю.Н., Тугушов К.В., Шаповалова Г.Н. Методические рекомендации по изучению дисциплины "Опасные природные процессы". Учебно-методическое пособие. -Новогорск, АГЗ МЧС. 2005. Инв№ 2061к/197, 120с.

Статьи в изданиях, рекомендованных ВАК.

1. Иванов О.П., Облогина Т.И., Пийп В.Б., Юдасин Л.А. Преобразование временных разрезов в глубинные в средах с линейным законом изменения скорости //Вестник МГУ, серия геологич. 1972., вып. №4 - с.101-103.

2. Иванов О.П., Облогина Т.И., Юдасин Л.А. Особенности временных разрезов в двумерно-неоднородных средах//Изв. АН СССР.Физика Земли.-1976, №2-С.32-43.

3. Иванов О.П., Ушаков С.А., Хаин В.Е., Шабалин Н.В. Концепция семинара по теоретической геодинамике на геологическом факультете МГУ //Вестник МГУ, серия геологическая. -1976. Вып.4. -С.10-12.

4. Иванов О.П., Хрянина Л.П. Структура метеоритных кратеров и астроблемы // ДАН СССР. -1977. т. 233, №2 - С. 12-18.

5. Ушаков С.А., Галушкин Ю.И., Иванов О.П. Природа складчатости на дне Черного моря в зоне перехода к Крыму и Кавказу //ДАН СССР. 1977. т.233, №5 - С.932-935.

6. Иванов О.П., Винник М.А. Кумулятивно-диссипативное расширение синергетики //Вестник РУДН. Сер. философия. -2008, №2 - С.78-85.

7. Иванов О.П. Специфика циклонических обстановок для авиаполетов //Науч. Вестник МГТУ ГА. Сер. Эксплуатац. воздушн. транспорта. -2008, №134 - С.63-67.

8. Иванов О.П., Винник М.А. Геодинамический анализ наводнений на реках //Изв. РАН, сер.географич. -2009. №3 - С.1-10.

9. Иванов О.П., Иванова В.С. Анализ эволюции сложных систем методом структурно-фазовых переходов //Естеств. и техн. науки. Сер. науки о Земле. Геоинформатика. -2009. №2 (40) - С.229-232.

Основные статьи по теме в других научных изданиях.

1. Иванов О.П., Прозоров Ю.И, Хуманюн Ш.А. Обзор сейсмотектонических исследований территории Афганистана и прилегающих районов. - М.: 1988. -Деп. ВИНИТИ 05.08.88. №6301-В8837.

2. Иванов О.П., Ясаманов Н.А. Карта риска природных катастроф территории Советского Союза принципы построения и некоторые результаты /Сб. Катастрофы: Взгляд в прошлое и будущее.- М.: Изана. 1990. -С 14-18.

3. Иванов О.П., Ясаманов Н.А. Карта риска природных катастроф территории Советского Союза принципы построения и некоторые результаты /Сб. Катастрофы: Взгляд в прошлое и будущее. -М.: Изана. 1990. -С.1-4.

4. Ясаманов Н.А., Иванов О.П. Неистовая Земля //Земля и Вселенная. 1991, №5 - С.26-32.

5. Иванов О.П., Ясаманов Н.А., Скрипко К.А. Природные катастрофы и экология /Сб. Жизнь Земли. 1991. -С.64-75.

6. Иванов О.П., Ясаманов Н.А. Природные ритмы и биосфера //Циклы природных процессов, опасных явлений и экологическое прогнозирование: Труды междунар. науч. конф., 1991. Вып. №1. -С. 89-98.

7. Иванов О.П., Ясаманов Н.А. Экстремальные зоны Земли и геофизический риск /Сб. Жизнь Земли. 1992. -С.55-62.

8. Иванов О.П. Особенности эндогенной эволюции Земли //Циклы природных процессов, опасных явлений и экологическое прогнозирование: Труды междунар. науч. конф., 1992. Вып. №2, -С.152-158.

9. Иванов О.П. Эволюция и катастрофы //Циклы природных процессов, опасных явлений и экологическое прогнозирование 6 Труды междунар. науч. конф. 1993. Вып. №3, -С.114-121.

10. Иванов О.П. Воздействие космических тел на биосферу Земли /Сб. Жизнь Земли. Природа и общество /М.: МГУ. 1993. -С.56-65.

11. Иванов О.П., Скрипко К.А. Метеориты и их классификация /Сб.Жизнь Земли. 1993. -С. 174-179.

12. Иванов О.П. Сущность экологических проблем в зонах экологических бедствий /Сб. Экология, безопасность, жизнь. Общероссийские дни защиты от экологической опасности в зонах экологических бедствий: Мат. Всесоюзн. конф. -М.: 1994. -С. 99-102.

13. Иванов О.П. Экология и экологические проблемы //Человек: социальная политика в период осуществления экономических реформ: Мат. межд. Конгресса. -М.: 1994. -С. 209-212.

14. Иванов О.П. Основные принципы эволюции Земли и Биосферы /Сб. Циклы природных процессов, опасных явлений и экологическое прогнозирование. /РАЕН. 1995. Вып.4. -С.93-100.

15. Иванов О.П. Особенности эволюции сложных систем /Сб. ВИНИТИ. /Проблемы риска и безопасности человека, охраны окружающей среды и природных ресурсов. -1996, вып.1. -С.21-26.

16. Иванов О.П. Кольцевые структуры Земли /Сб. Жизнь Земли. Строение и эволюция литосферы. 1996. -С.241-244.

17. Иванов О.П., Рукин М.Д. Модель образования Логарского гипербазитового массива Афганистана //Геоинформатика.-1998. №4 - С.14-22.

18. Иванов О.П. Особенности самоорганизации Земли и Биосферы в процессе эволюции /Сб. Труды семинара Синергетика. -М.: МГУ. 1998. Вып.1. -С.17-36.

19. Иванов О.П. Методология и методы решения глобальных проблем современности /Сб. Тр. семинара Синергетика. -М.: МГУ. 1999. Т. 2. -С. 1-24.

20. Иванов О.П. Синергетика в Музее Землеведения МГУ /Сб. Жизнь Земли. -М:.МГУ, 2000.

21. Иванов О.П, Рукин М.Д. Проблемы экологии с позиций синергетики, экологическое воспитание и просвещение /Тр.конф. Защита окр. среды в нефтегазовом комплексе /М:.РАО "Нефтегазстрой"., -2000.№ 6-7 - С. 10-17.

22. Иванов О.П. Особенности самоорганизации сложных систем в процессе эволюции /Труды семинара Синергетика. -М.: МГУ, 2000. Т.3. -С. 264-272.

23. Иванов О.П. Глобальные экологические проблемы и эволюция /Сб. Глобализация: синергетический подход. Мат. междун. Конф. -М.: РАГС 2001. -С.153 - 166.

24. Иванов О.П., Малинецкий Г.Г., Рагозин А.Л. Синергетика природных опасностей и рисков /Труды семинара Синергетика.- М.:МГУ.2001,т.4,с. 57-74.

25. Иванов О.П. Законы эволюции Биосферы и экологические следствия /Этика и наука будущего. На пути к духовной цивилизации /Мат.2-й Российской междисциплиной научной конференции. -М.: Дельфис, 2002. -С.96-100.

26. Иванов О.П., Малинецкий Г.Г. Стратегии жизни в условиях планетарного экологического кризиса /Методология исследования глобальных проблем современности. -СПБ ГУ.: 2002, т1, с.97-115.

27. Иванов О.П. Синергетический анализ эволюции Биосферы и Общества /Сб. Байкальские чтения. -Улан - Уде. 2002. -С.23 -27.

28. Иванов О.П., Иванова В.С. Нелинейная дискретная сейсмология в свете универсальных хаотических динамических систем /Сб. Синергетика. -2003.Т. 5. -С.128-151.

29. Иванов О.П. Синергетический анализ эволюции Биосферы и Общества //Академические записки РНАН, -2003, № 2 - С. 30 -42.

30. Иванов О.П. Причины различия эволюции Биосферы и Общества, экологические следствия и методология выхода /Тр. Семинара Синергетика. Естественнонаучные, социальные и гуманитарные аспекты. -М.: МГУ. 2003, т.7. -С.51-68.

30. Иванов О.П., Рукин М.Д., Спиридонов Э.С. Техногенная деятельность и природные катастрофы /Энергия, экономика, техника, экология /Тр. Междунар. Конф. 2005. -С.27-35.

31. Иванов О.П., Высикайло Ф.И. Взаимодействие природных систем и экстремальные явления /Сб. трудов АГЗ МЧС. 2005 -С.30-57.

32. Иванов О.П. Природа мегацунами и возможности прогноза /Тр. семинара Синергетика /Мат. Конф. Самоорганизация и синергетика. -М:.МГУ. 2006. №8 - С.294-307.

33. Высикайло Ф.И., Иванов О.П. Гипотеза о роли кумулятивных свойств диссипативных структур (аттракторов) в экстремальных явлениях природы. Синергетика. Труды семинара. Материалы конференции "Самоорганизация и синергетика". -М.: МГУ, 2006. №8 -С.119-137.

34. Иванов О.П., Высикайло Ф.И. Кумулятивно-диссипативные процессы и структуры (новое в синергетике) /Сб. Синергетика геосистем. 2007. -С.36-42.

35. Иванов О.П., Дубинин Е.П., Свешников А.А. Синергетический анализ зон столкновения литосферных плит /Сб. Синергетика геосистем. 2007. -С.88-93.

36. Иванов О.П. Взаимодействие сложных систем и синергетика кумулятивных видов энергий //Прикладная синергетика в нанотехнологиях: 5-й Междун. Междисц. Симпозиум. -М:. 2008. -С.90-95.

37. Иванова В.С., Шанявский А.А., Иванов О.П. Управление физическими макропроцессами путем управления процессами на наноуровне //Прикладная синергетика в нанотехнологиях: 5-й Междун. Междисц. Симпозиум. -М:. 2008. -С.472-474.

Общее количество научных публикаций автора - около 160 наименований.


Подобные документы

  • Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе. Современные подходы к анализу сложных самоорганизующихся систем. Особенности синергетики. Экономика с точки зрения синергетики.

    курсовая работа [23,1 K], добавлен 01.10.2010

  • Самоорганизующиеся системы как предмет изучения синергетики. Подходы к изучению синергетики, ее диалогичность. Модели самоорганизации в науках о человеке и обществе. Сверхбыстрое развитие процессов в сложных системах. Коэволюция, роль хаоса в эволюции.

    курсовая работа [47,0 K], добавлен 30.01.2010

  • Условия причинности и причинных отношений в природном мире. Характеристика параметров устойчивости и надежности природных систем как результата их постоянного обновления. Переход человека от охоты к ведению сельского хозяйства и неолитическая революция.

    контрольная работа [19,6 K], добавлен 06.08.2013

  • Мир живого как система систем. Открытость - свойство реальных систем. Открытость. Неравновесность. Нелинейность. Особенности описания сложных систем. Мощное научное направление в современном естествознании - синергетика.

    реферат [24,1 K], добавлен 28.09.2006

  • Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.

    реферат [53,9 K], добавлен 18.11.2007

  • Организация открытых систем в пространстве и во времени. Энтропия как мера необратимости природных процессов. Синтез белка в клетке, понятие матричных реакций. Признаки и свойства одноклеточных простейших организмов. Характеристика структуры популяций.

    контрольная работа [43,4 K], добавлен 16.04.2014

  • Современное понятие "открытая система". Проблема анализа целостных свойств открытых систем в зависимости от времени. Общность процессов типа 1/f (процессов типа фликкер-шума) для всех систем. Старое и новое математическое описание процессов типа 1/f.

    курсовая работа [344,8 K], добавлен 23.11.2011

  • Разработка рецептурных форм для лекарственных средств. Применение природных полимеров. Изучение стойкости оболочек к действию протеолитических ферментов. Затруднения при диффузии субстрата к молекулам фермента.

    статья [16,3 K], добавлен 14.06.2007

  • Образование первичной атмосферы. Этапы биохимической эволюции. Синтез простых и сложных органических соединений. Матричный синтез. Эксперимент Миллера. Воссоздание аминокислот. Появление протобионтов. Возникновение организмов, имеющих клеточное строение.

    презентация [1,9 M], добавлен 12.01.2014

  • Прогресс как направление эволюции. Развитие от архантропов до неоантропов. Корреляции и координации систем и органов в филогенезе. Мутационный процесс как фактор микроэволюции. Специализация и ее роль в эволюции. Правило прогрессивной специализации.

    контрольная работа [185,4 K], добавлен 08.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.