Органы чувств. Сенсорные системы

Строение рецепторов и анализаторов органов чувств, механизм их адаптации к внешним раздражителям. Зрительная сенсорная система, строение глаза и физиология зрения. Органы слуха и равновесия, состояние вестибулярного аппарата. Анализаторы обоняния и вкуса.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 24.03.2010
Размер файла 36,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

«Органы чувств. Сенсорные системы»

Живой организм не может существовать, не получая информации о состоянии и происходящих изменениях во внешней и внутренней среде и во всех частях тела. Раздражения из внешней и внутренней среды воспринимаются рецепторами -- специализированными образованиями, трансформирующими (преобразующими) энергию внешнего раздражения в нервные импульсы. Сигналы, поступающие в ЦНС от рецепторов, вызывают либо новые реакции, либо изменяют течение происходящей в данный момент деятельности.

С давних времен известны пять чувств: зрение, слух, осязание, обоняние и вкус и соответственно пять органов чувств: глаз, ухо, кожа, слизистая оболочка носа, язык. Рецепторы органов чувств, несущие информацию в ЦНС об изменениях во внешней среде, называются экстерорецепторами.

И.М. Сеченовым был открыт новый вид чувствительности -- суставно-мышечное чувство, чувство положения и движения конечностей. Закрыв глаза, человек совершенно точно может сказать, в каком положении у него конечности, согнуты или разогнуты крупные суставы, пальцы. Рецепторы суставно-мышечного чувства называются проприорецепторами; к ним сейчас относят и вестибулорецепторы органа равновесия во внутреннем ухе.

Во внутренних органах находятся многочисленные интерорецепторы, улавливающие тончайшие изменения во внутренней среде организма. Имеются рецепторы, реагирующие на изменения химического и газового состава крови -- хеморецепторы; осмотического давления крови -- осморецепторы; температуры -- терморецепторы; объема крови, притекающей к левому предсердию, -- волюмрецепторы; механорецепторы, реагирующие на давление и растяжение органа. Большое количество рецепторов в слизистых оболочках пищеварительного тракта, в стенках кровеносных сосудов и других органах (мочевой, желчный пузырь, легкие, сердце и др.). Многие из них еще недостаточно изучены.

Общие свойства рецепторов. Все рецепторы отличаются очень высокой возбудимостью. Порог раздражения рецепторов, т. е. количество энергии, которое необходимо для возникновения возбуждения, чрезвычайно низок. Так, рецепторы глаза могут возбуждаться единичными квантами света.

С увеличением силы раздражения возрастает интенсивность ощущения. Та минимальная величина прироста раздражения, которая ощущается испытуемым, называется порогом различения. Например, для различения тяжести двух грузов необходимо, чтобы разница в массе составляла не менее 3%; для 100 г это будет масса в 103 г, а для 200 г -- в 206 г.

Почти все рецепторы обладают свойством адаптации, т. е. приспособления к силе действующего раздражителя. Субъективно это выражается в привыкании к действию запаха, шума, давления одежды. Так, человек, входя в помещение, только в первый момент ощущает специфический запах, через некоторое время он перестает его замечать. Нет этого свойства адаптации только у вестибуло- и проприорецепторов.

Механизм адаптации сложный. Изменяется как частота импульсации с рецепторов, так и состояние нервных центров. Каждый род раздражения воспринимается специальным рецептором. Тот вид энергии, к восприятию которого рецептор приспособился в процессе эволюции и чувствительность к которому чрезвычайно велика, носит название адекватного раздражителя. Так, возбуждение рецепторов глаза может возникнуть под действием отдельных квантов света, а органа обоняния -- отдельных молекул пахучего вещества. Поразительна способность собаки улавливать запах следов. Однако сильные неадекватные раздражители могут вызвать возникновение элементарного (простейшего) ощущения. Удар по уху вызывает ощущение звона, давление на глаз -- вспышки света.

Энергия внешнего раздражения трансформируется в рецепторе в нервные импульсы. В этом заключается основная функция рецептора -- менять материальный носитель информации, т. е. кодировать любой вид энергии: химическую, механическую, термическую, световую, в нервные импульсы. По чувствительным (афферентным) нервным путям импульсы проводятся к соответствующим, чувствительным зонам коры большого мозга. Здесь формируется специфическое ощущение: вкусовое, обонятельное, зрительное и др. Ощущение, по В.И. Ленину, «...переход энергии внешнего раздражения в факт сознания».

Понятие об анализаторах. Сложную систему, состоящую из трех звеньев:

ь рецептора,

ь афферентного проводящего пути,

ь зоны коры, куда проецируется данный вид чувствительности, И. Павлов назвал анализатором.

В современной научной литературе анализатор чаще называют сенсорной системой. В корковом конце анализатора происходят анализ и синтез полученной информации.

Деятельность анализаторов отражает внешний материальный мир. Это дает возможность животным приспосабливаться к условиям среды, а человек, познавая законы природы и создавая орудия труда, не только приспосабливается, но активно изменяет внешнюю среду соответственно своим потребностям.

Анализаторы обладают интересной особенностью: ощущение, вызванное каким-либо раздражителем, исчезает не сразу после прекращения его действия. Благодаря этому мы достаточно частые световые вспышки воспринимаем как непрерывный световой раздражитель. Если в темноте быстро описывать круги горящей лучиной, то человек видит светящийся круг, а не движение светящейся точки. Это свойство зрительного анализатора использовано в кино. При показе кинофильмов отдельные кадры подаются на экран с частотой 24 в секунду, при этом мы видим непрерывное изображение и возникает полная иллюзия движения.

I. Зрительная сенсорная система

Орган зрения -- важнейший из органов чувств. В многообразной трудовой деятельности людей, в выполнении многих самых тонких работ глазу принадлежит первостепенное значение. Глаз тесно связан с головным мозгом, из которого он и развивается.

1. Строение глаза

Орган зрения -- глаз (oculus) -- состоит из глазного яблока (bulbus oculi) и вспомогательного аппарата. Из глазного яблока выходит зрительный нерв (n. opticus), соединяющий его с головным мозгом.

Глазное яблоко имеет форму шара, более выпуклого спереди. Оно лежит в полости глазницы и состоит из внутреннего ядра и окружающих его трех оболочек: наружной, средней и внутренней.

Наружная оболочка называется волокнистой, или фиброзной. Задний отдел ее представляет капсулу цвета вареного белка -- белочную оболочку, или склеру, которая защищает внутреннее ядро глаза и помогает сохранить его форму. Передний отдел представлен более выпуклой прозрачной роговицей, через которую в глаз проникает свет.

Средняя оболочка богата кровеносными сосудами и потому называется сосудистой. В ней выделяют три части: переднюю -- радужку, среднюю -- ресничное тело, заднюю -- собственно сосудистую оболочку.

Радужка (iris) имеет форму плоского кольца, цвет ее может быть голубой, зеленовато-серый или коричневый в зависимости от количества и характера пигмента. Отверстие в центре радужки -- зрачок -- способно суживаться и расширяться. Величину зрачка регулируют специальные глазные мышцы, расположенные в толще радужки: сфинктер (суживатель) зрачка и дилататор зрачка, расширяющий зрачок. Кзади от радужки находится ресничное тело -- круговой валик, внутренний край которого имеет ресничные отростки. В нем заложена ресничная мышца, сокращение которой через специальную связку передается на хрусталик и он меняет свою кривизну. Собственно сосудистая оболочка -- большая задняя часть средней оболочки глазного яблока, содержит черный пигментный слой, который поглощает свет.

Внутренняя оболочка глазного яблока называется сетчаткой (retina), или сетчатой оболочкой. Это светочувствительная часть глаза, которая покрывает изнутри сосудистую оболочку. Она имеет сложное строение. В сетчатке находятся светочувствительные рецепторы -- палочки и колбочки.

Внутреннее ядро глазного яблока составляют хрусталик, стекловидное тело и водянистая влага передней и задней камер глаза.

Хрусталик имеет форму двояковыпуклой линзы, он прозрачен и эластичен, расположен позади зрачка. Хрусталик преломляет входящие в глаз световые лучи и фокусирует их на сетчатке. В этом ему помогают роговица и внутриглазные жидкости. При помощи ресничной мышцы хрусталик меняет свою кривизну, принимая форму, необходимую то для «дальнего», то для «ближнего» видения.

Позади хрусталика находится стекловидное тело -- прозрачная желеобразная масса.

Полость между роговицей и радужкой составляет переднюю камеру глаза, а между радужкой и хрусталиком -- заднюю камеру. Они заполнены прозрачной жидкостью -- водянистой влагой и сообщаются между собой через зрачок. Внутренние жидкости глаза находятся под давлением, которое определяют как внутриглазное давление. При повышении его могут возникнуть нарушения зрения. Повышение внутриглазного давления является признаком тяжелого заболевания глаз -- глаукомы.

Вспомогательный аппарат глаза состоит из защитных приспособлений, слезного и двигательного аппарата.

К защитным образованиям относятся брови, ресницы и веки. Брови предохраняют глаз от пота, стекающего со лба. Ресницы, находящиеся на свободных краях верхнего и нижнего века, защищают глаза от пыли, снега, дождя. Основу века составляет соединительнотканная пластинка, напоминающая хрящ, снаружи она покрыта кожей, а изнутри -- соединительной оболочкой -- конъюнктивой. С век конъюнктива переходит на переднюю поверхность глазного яблока, за исключением роговицы. При сомкнутых веках образуется узкое пространство между конъюнктивой век и конъюнктивой глазного яблока -- конъюнктивальный мешок.

Слезный аппарат представлен слезной железой и слезовыводящими путями. Слезная железа занимает ямку в верхнем углу латеральной стенки глазницы. Несколько ее протоков открывается в верхний свод конъюнктивального мешка. Слеза омывает глазное яблоко и постоянно увлажняет роговицу. Движению слезной жидкости в сторону медиального угла глаза способствуют мигательные движения век. Во внутреннем углу глаза слеза скапливается в виде слезного озера, на дне которого виден слезный сосочек. Отсюда через слезные точки (точечные отверстия на внутренних краях верхнего и нижнего век) слеза попадает сначала в слезные канальцы, а затем в слезный мешок. Последний переходит в носослезный проток, по которому слеза попадает в полость носа.

Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Выделяют четыре прямые мышцы глазного яблока (верхняя, нижняя, латеральная и медиальная) и две косые мышцы (верхняя и нижняя). Мышцы действуют таким образом, что оба глаза движутся совместно и направлены в одну и ту же точку. От сухожильного кольца начинается также мышца, поднимающая верхнее веко. Мышцы глаза исчерченные и сокращаются произвольно.

2. Физиология зрения

Светочувствительные рецепторы глаза (фоторецепторы) -- колбочки и палочки, располагаются в наружном слое сетчатки. Фоторецепторы контактируют с биполярными нейронами, а те в свою очередь -- с ганглиозными. Образуется цепочка клеток, которые под действием света генерируют и проводят нервный импульс. Отростки ганглиозных нейронов образуют зрительный нерв.

По выходе из глаза зрительный нерв делится на две половины. Внутренняя перекрещивается и вместе с наружной половиной зрительного нерва противоположной стороны направляется к латеральному коленчатому телу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны коры в затылочной доле полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхних холмиков пластинки крыши среднего мозга. Эти ядра, так же как и ядра латеральных коленчатых тел, представляют собой первичные (рефлекторные) зрительные центры. От ядер верхних холмиков начинается тектоспинальный путь, за счет которого осуществляются рефлекторные ориентировочные движения, связанные со зрением. Ядра верхних холмиков также имеют связи с парасимпатическим ядром глазодвигательного нерва, расположенным под дном водопровода мозга. От него начинаются волокна, входящие в состав глазодвигательного нерва, которые иннервируют сфинктер зрачка, обеспечивающий сужение зрачка при ярком свете (зрачковый рефлекс), и ресничную мышцу, осуществляющую аккомодацию глаза.

Адекватным раздражителем для глаза является свет, -- электромагнитные волны длиной 400--750 нм. Более короткие -- ультрафиолетовые и более длинные -- инфракрасные лучи глазом человека не воспринимаются.

Преломляющий световые лучи аппарат глаза -- роговица и хрусталик, фокусирует изображение предметов на сетчатке. Луч света проходит через слой ганглиозных и биполярных клеток и достигает колбочек и палочек. В фоторецепторах различают наружный сегмент, содержащий светочувствительный зрительный пигмент (родопсин в палочках и йодопсин в колбочках), и внутренний сегмент, в котором находятся митохондрии. Наружные сегменты погружены в черный пигментный слой, выстилающий внутреннюю поверхность глаза. Он уменьшает отражение света внутри глаза и участвует в обмене веществ рецепторов.

В сетчатке насчитывают около 7 млн. колбочек и примерно 130 млн. палочек. Более чувствительны к свету палочки, их называют аппаратом сумеречного зрения. Колбочки, чувствительность к свету которых в 500 раз меньше,-- это аппарат дневного и цветового видения. Цветоощущение, мир красок доступен рыбам, амфибиям, рептилиям и птицам. Доказывается это возможностью выработать у них условные рефлексы на различные цвета. Не воспринимают цвета собаки и копытные животные. Вопреки прочно установившемуся представлению, что быки очень не любят красный цвет, в опытах удалось доказать, что они не могут отличить зеленого, синего и даже черного от красного. Из млекопитающих только обезьяны и люди способны воспринимать цвета.

Колбочки и палочки распределены в сетчатке неравномерно. На дне глаза, напротив зрачка, находится так называемое пятно, в центре его есть углубление -- центральная ямка - место наилучшего видения. Сюда фокусируется изображение при рассматривании предмета.

В центральной ямке имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а число палочек возрастает. Периферия сетчатки содержит только палочки.

Недалеко от пятна сетчатки, ближе к носу, расположено слепое пятно. Это место выхода зрительного нерва. В этом участке нет фоторецепторов, и оно не принимает участия в зрении. Мы обычно не замечаем пробела в поле зрения, но его легко доказать с помощью опыта Мариотта. Если закрыть левый глаз, а правым пристально рассматривать нарисованный на бумаге крестик, медленно приближая рисунок к глазу, то можно заметить, что при определенном расстоянии белое пятно на рисунке исчезает. Это происходит, когда его изображение окажется на слепом пятне. Мы его не замечаем, так как смотрим двумя глазами и на слепое пятно каждого из глаз проецируются различные участки изображения. Кроме того, при рассматривании предметов глаз все время движется скачками по контуру и отдельным местам рисунка. Изображение предмета очень быстро перемещается по сетчатке, а это дает возможность видеть все его части.

Непрерывные, мелкие, скачкообразные движения глаз обусловлены свойствами его рецепторов. Рецепторы передают в мозг информацию не о непрерывно действующем раздражителе, а лишь об изменениях световых сигналов импульсы в зрительном нерве возникают только в момент включения и выключения света. А.Л. Ярбус укреплял на роговицу очень маленькую присоску с источником света, движения которого фотографировали. Так как источник света двигался вместе с глазом, то свет падал все время на одни и те же элементы сетчатки. В этом случае испытуемый видит свет только в момент его включения -- неподвижное изображение глаз не видит. Лягушка, у которой глаз неподвижен, видит мир затянутым серой пеленой. Зато появление летающей мошки отлично воспринимается рецепторами ее глаза.

Построение изображения на сетчатке. Луч света достигает сетчатки, проходя через ряд преломляющих поверхностей и сред: роговицу, водянистую влагу передней камеры, хрусталик и стекловидное тело. Лучи, исходящие из одной точки внешнего пространства, должны быть сфокусированы в одну точку на сетчатке, только тогда возможно ясное видение. Глаз представляет собой сложную оптическую систему, но оказалось, что для построения изображения в глазу можно пользоваться упрощенной моделью, так называемым редуцированным глазом.

Редуцированный глаз имеет одну преломляющую поверхность -- роговицу и одну среду -- стекловидное тело. Узловая точка в редуцированном глазу, т. е. точка оптической системы, через которую лучи идут, не преломляясь, расположена на расстоянии 7,5 мм от вершины роговицы и 15 мм от сетчатки (длина нормального глаза составляет 22,5 мм).

Чтобы построить изображение в редуцированном глазу, надо от двух крайних точек предмета провести через узловую точку два луча. Эти лучи, проходящие через узловую точку без преломления, называются направляющими, а угол, образуемый ими,-- углом зрения. Изображение на сетчатке получается действительное, перевернутое и уменьшенное. Несмотря на то что изображение перевернуто, мы воспринимаем предметы в прямом виде. Это происходит потому, что деятельность одних органов чувств проверяется другими. Для нас «низ» там, куда направлена сила земного притяжения. В свое время Страттон поставил очень интересный опыт. Вместо очков он надел стекла с оптической системой, поставившей мир «вверх ногами». Уже через 4 дня он видел ландшафт в прямом виде.

Острота зрения. Остротой зрения называется способность глаза видеть раздельно две точки. Нормальному глазу это доступно, если величина их изображения на сетчатке равна 4 мкм, а угол зрения составляет 1 мин. При меньшем угле зрения ясного видения не получается, точки сливаются. Для объяснения этого явления обратимся к известному факту. Если рассматривать с большого расстояния иллюминированное электрическими лампочками здание, оно кажется украшенным светящимися линиями. При приближении вместо сплошных линий становятся видны отдельные лампочки. Чем это объясняется? Если падающие на сетчатку лучи возбуждают сплошной ряд колбочек, то глаз видит линию. Если же при этом возбуждаются колбочки, стоящие через одну, то глаз видит отдельные точки.

Для раздельного видения двух точек необходимо, чтобы между возбужденными колбочками находилась минимум одна невозбужденная. Так как диаметр колбочек в месте наибольшей остроты зрения, в центральной ямке пятна, равен 3 мкм, то раздельное видение возможно при условии, если изображение на сетчатке не менее 4 мкм. Такая величина изображения получается, если угол зрения 1 мин.

Остроту зрения определяют по специальным таблицам, на которых изображены 12 рядов букв. С левой стороны каждой строки написано, с какого расстояния она должна быть видна человеку с нормальным зрением. Испытуемого помещают на определенном расстоянии от таблицы и находят строку, которую он прочитывает без ошибок.

Острота зрения увеличивается при яркой освещенности и очень низка при слабом свете.

Поле зрения. Все пространство, видимое глазу при неподвижно устремленном вперед взоре, называют полем зрения.

Различают центральное (в области желтого пятна) и периферическое зрение. Наибольшая острота зрения в области центральной ямки. Здесь только колбочки, диаметр их небольшой, они тесно примыкают друг к другу. Каждая колбочка связана с одним биполярным нейроном, а тот в свою очередь -- с одним ганглиозным, от которого отходит отдельное нервное волокно, передающее импульсы в головной мозг.

Периферическое зрение отличается меньшей остротой. Это объясняется тем, что на периферии сетчатки колбочки окружены палочками и каждая уже не имеет отдельного пути к мозгу. Группа колбочек заканчивается на одной биполярной клетке, а множество таких клеток посылает свои импульсы к одной ганглиозной. В зрительном нерве примерно 1 млн. волокон, а рецепторов в глазу около 140 млн.

Периферия сетчатки плохо различает детали предмета, но хорошо воспринимает их движения. Боковое зрение имеет большое значение для восприятия внешнего мира. Для водителей различного вида транспорта нарушение его недопустимо.

Поле зрения определяют при помощи особого прибора -- периметра, состоящего из полукруга, разделенного на градусы, и подставки для подбородка.

Испытуемый, закрыв один глаз, вторым фиксирует белую точку в центре дуги периметра впереди себя. Для определения границ поля зрения по дуге периметра, начиная от ее конца, медленно продвигают белую марку и определяют тот угол, под которым она видна неподвижным глазом.

Поле зрения наибольшее кнаружи, к виску -- 90°, к носу и кверху и книзу -- около 70°. Можно определить границы цветового зрения и при этом убедиться в удивительных фактах: периферические части сетчатки не воспринимают цвета; цветовые поля зрения не совпадают для различных цветов, самое узкое имеет зеленый цвет.

Аккомодация. Глаз часто сравнивают с фотокамерой. В нем имеется светочувствительный экран -- сетчатка, на которой с помощью роговицы и хрусталика получается четкое изображение внешнего мира. Глаз способен к ясному видению разноудаленных предметов. Эта его способность носит название аккомодации.

Преломляющая сила роговицы остается постоянной; тонкая, точная фокусировка идет за счет изменения кривизны хрусталика. Эту функцию он выполняет пассивно. Дело в том, что хрусталик находится в капсуле, или сумке, которая через ресничную связку прикреплена к ресничной мышце. Когда мышца расслаблена, связка натянута, она тянет капсулу, которая сплющивает хрусталик. При напряжении аккомодации для рассматривания близких предметов, чтения, письма ресничная мышца сокращается, связка, натягивающая капсулу, расслабляется и хрусталик в силу своей эластичности становится более круглым, а его преломляющая сила увеличивается.

С возрастом эластичность хрусталика уменьшается, он отвердевает и утрачивает способность менять свою кривизну при сокращении ресничной мышцы. Это мешает четко видеть на близком расстоянии. Старческая дальнозоркость (пресбиопия) развивается после 40 лет. Исправляют ее с помощью очков -- двояковыпуклых линз, которые надевают при чтении.

Аномалия зрения. Встречающаяся у молодых аномалия чаще всего является следствием неправильного развития глаза, а именно его неправильной длины. При удлинении глазного яблока возникает близорукость (миопия), изображение фокусируется впереди сетчатки. Отдаленные предметы видны неотчетливо. Для исправления близорукости пользуются двояковогнутыми линзами. При укорочении глазного яблока наблюдается дальнозоркость (гиперметропия). Изображение фокусируется позади сетчатки. Для исправления требуются двояковыпуклые линзы.

Нарушение зрения, называемое астигматизмом, возникает в случае неправильной кривизны роговицы или хрусталика. При этом изображение в глазу искажается. Для исправления нужны цилиндрические стекла, подобрать которые не всегда легко.

Адаптация глаза. При выходе из темного помещения на яркий свет мы вначале ослеплены и даже можем испытывать боль в глазах. Очень быстро эти явления проходят, глаза привыкают к яркому освещению.

Уменьшение чувствительности рецепторов глаза к свету называется адаптацией. При этом происходит выцветание зрительного пурпура. Заканчивается световая адаптация в первые 4--6 мин.

При переходе из светлого помещения в темное происходит темновая адаптация, продолжающаяся более 45 мин. Чувствительность палочек при этом возрастает в 200 000--400 000 раз. В общих чертах это явление можно наблюдать при входе в затемненный кинозал. Для изучения хода адаптации существуют специальные приборы -- адаптомеры.

Фотохимические процессы в сетчатке. Светочувствительность рецепторов сетчатки обусловлена наличием в них зрительных пигментов. В наружных сегментах палочек находится зрительный пурпур, или родопсин, придающий темноадаптированной сетчатке красный цвет. На свету родопсин выцветает, обесцвечивается и разлагается на ретинин -- производное витамина А и белок опсин, палочки при этом становятся неэффективными. В темноте зрительный пурпур восстанавливается. При недостатке витамина А в пище развивается заболевание куриная слепота (гемералопия): человек в сумерках почти не видит.

В колбочках имеется пигмент йодопсин, видимо, несколько его разновидностей.

Восприятие цвета. Цветовое зрение, помимо эстетического удовольствия, радости, испытываемой при рассмотрении цветовой гаммы, имеет большое практическое значение: оно улучшает видимость предметов и обеспечивает дополнительную информацию о них.

Восприятие цвета обеспечивается колбочками. В сумерках, когда функционируют только палочки, цвета не различаются. Существует семь видов колбочек, реагирующих на лучи различной длины и вызывающих ощущение различных цветов. В анализе цвета принимают участие не только рецепторы глаза, но и центральная нервная системам

Цветовая слепота. Нарушение цветового зрения называется дальтонизмом. Им страдают примерно 8% мужчин и 0,5% женщин. Различают форму нарушения цветового зрения, при которой отсутствует восприятие красного цвета,-- протанопию, зеленого -- дейтеранопию и фиолетового-- тританопию (встречается редко). Очень редко выявляется полная слепота на цвета -- ахромазия. Для таких людей мир окрашен во все оттенки серого как на бесцветной фотографии. Не воспринимающий красный цвет не отличает светло-красный от темно-зеленого, а пурпурный и фиолетовый от синего; те, у кого отсутствует восприятие зеленого цвета, смешивают зеленые цвета с темно-красными.

Нарушения цветового зрения устанавливают при помощи специальных таблиц. Люди, страдающие дальтонизмом, не могут быть водителями транспорта, так как не различают цветовых дорожных сигналов.

Бинокулярное зрение и его значение. Глаз способен воспринимать размер, форму, объем предмета, рисунок, цвет, яркость, движение, положение в пространстве и расстояние. Большое значение при этом имеет зрение двумя глазами, или бинокулярное зрение.

Стереоскопия, или способность видеть предмет рельефным, объемным, основана на неодинаковом восприятии предмета левым и правым глазом. Левый глаз видит больше с левой стороны предмета, правый -- с правой. Это можно доказать, сделав снимок предмета сначала с положения левого глаза, а потом -- правого. Снимки будут отличаться. Если лучи, идущие от обоих снимков, совместить при помощи специальных линз, как это делается в стереоскопе, то получается рельефное изображение предмета.

В определении расстояния до предмета играют роль напряжение аккомодации и сведение зрительных осей. При рассматривании близких предметов зрительные оси скрещиваются на предмете тем сильнее, чем он ближе. Если смотреть на отдаленный предмет, то происходит расхождение зрительных осей, они устанавливаются параллельно. В жизни, проверяя расстояние при помощи других анализаторов, мы выучиваемся определять расстояние на глаз. Если известна величина предмета, то величина его изображения на сетчатке также играет роль в определении расстояния.

II. Орган слуха и равновесия

Орган слуха и равновесия почти полностью расположен в пирамиде височной кости и делится на наружное, среднее и внутреннее ухо.

Наружное ухо состоит из ушной раковины и наружного слухового прохода, оно предназначено для улавливания и проведения звуковых колебаний.

Ушная раковина образована эластическим хрящом сложной формы, покрытым кожей. В ней различают завиток, образованный свободным загнутым краем хряща, и идущий параллельно ему валик -- противозавиток. У переднего края ушной раковины выделяется выступ -- козелок. Кзади от него расположен противокозелок, отделенный от козелка вырезкой. Внизу ушная раковина заканчивается кожной складкой, не содержащей хряща,-- долькой ушной раковины, или мочкой. Ушная раковина прикрепляется к височной кости связками и имеет рудиментарные мышцы, являющиеся остатками мышц, хорошо выраженных у животных.

Наружный слуховой проход состоит их хрящевой и костной частей. Хрящевая часть является продолжением хряща ушной раковины и составляет 1/3 его длины, остальные 2/3 образованы костным каналом височной кости. В месте перехода одной части в другую наружный слуховой проход сужен и изогнут. Он выстлан кожей и богат железами, выделяющими ушную серу. Его внутренний конец замыкает барабанная перепонка.

Барабанная перепонка (membrana tympani) находится на границе между наружным и средним ухом. Она замыкает внутренний конец наружного слухового прохода и стоит наклонно, образуя острый угол с нижней стенкой прохода. Барабанная перепонка овальная и представляет собой тонкую фиброзную пластинку, втянутую внутрь барабанной полости. Она покрыта снаружи истонченной кожей, а изнутри -- слизистой оболочкой. В верхнем отделе она особенно тонкая и не содержит фиброзной основы (ненатянутая часть).

Среднее ухо лежит внутри пирамиды височной кости и состоит из барабанной полости и слуховой (евстахиевой) трубы, соединяющей среднее ухо с носоглоткой.

Барабанная полость представляет собой пространство между слуховым проходом и внутренним ухом -- лабиринтом. В ней находится цепь слуховых косточек: молоточек, наковальня и стремя, соединенных при помощи суставов подвижно и передающих колебания барабанной перепонки лабиринту. По форме барабанную полость сравнивают с низким цилиндром (барабаном), поставленным на ребро и наклоненным в сторону наружного слухового прохода. Объем ее 0,75 см . В ней различают шесть стенок. Наружная -- перепончатая стенка образована барабанной перепонкой, внутренняя -- лабиринт-стенкой, в которой два отверстия: овальное окно преддверия, закрытое основанием стремени, и окно улитки, круглое, замкнутое вторичной барабанной перепонкой. Задняя -- сосцевидная -- стенка прилежит к сосцевидному отростку; отверстие в ней ведет в сосцевидную пещеру (antrum mastoideum). На передней -- сонной -- стенке находится отверстие слуховой (евстахиевой) трубы. Верхняя -- покрышечная -- стенка прилежит к средней черепной ямке, а нижняя -- яремная -- к яремной ямке височной кости. Слуховая (евстахиева) труба имеет костную и хрящевую части. Костная часть является нижним полуканалом мышечно-трубного канала, а хрящевая образована эластическим хрящом, имеющим вид желоба, укрепленного на наружном основании черепа, и под острым углом подходящим к боковой стенке носоглотки.

Внутреннее ухо образовано сложно устроенными костными каналами, лежащими в пирамиде височной кости и получившими название костного лабиринта. Он расположен между барабанной полостью и внутренним слуховым проходом, через который к лабиринту подходит преддверно-улитковой нерв (VIII пара). Внутри костного лабиринта расположен перепончатый лабиринт.

Костный лабиринт состоит из трех отделов: преддверия, улитки и полукружных каналов. Преддверие (vestibulum) образует среднюю часть лабиринта и сообщается сзади с полукружными каналами и спереди с улитковым протоком (канал улитки). На наружной его стенке, обращенной к барабанной полости, имеется овальное окно, и преддверие, закрытое основанием стремени. Круглое окно, окно улитки, затянутое барабанной перепонкой, находится у начала канала улитки. Через отверстия на медиальной стенке преддверия, обращенной к внутреннему слуховому проходу, в преддверие проникают ветви нерва. Костные полукружные каналы -- три дугообразно изогнутых хода -- расположены в трех взаимно перпендикулярных плоскостях: горизонтальной, сагиттальной и фронтальной. Каждый из них имеет две ножки, причем одна расширена в виде ампулы.

Улитка (cochlea) представляет собой спиральный канал, который свернут наподобие раковины улитки и образует 2 1/2 оборота. Ее основание обращено к внутреннему слуховому проходу. Костный стержень, пронизанный каналами для нервов, вокруг которого свертываются ходы улитки, лежит горизонтально. В полость канала улитки на всем протяжении от стержня отходит костная спиральная пластинка, в основании которой находится спиральный канал, сообщающийся с каналами стержня. В нем лежат нервные узлы улитковой части нерва.

Перепончатый лабиринт расположен внутри костного и в основном повторяет его очертания. Стенки его образованы тонкой соединительнотканной пластинкой. Лабиринт заполнен прозрачной жидкостью -- эндолимфой. Перепончатый лабиринт несколько меньше костного, а пространство между их стенками заполнено перилимфой. В преддверии расположены две части перепончатого лабиринта: эллиптический мешочек, или маточка, и несколько вытянутый сферический мешочек.

Маточка пятью отверстиями (две ножки полукружных каналов предварительно сливаются) Сообщается с полукружными перепончатыми каналами, повторяющими форму костных. Сферический мешочек соединяется узким каналом с перепончатым улитковым протоком. На разрезе улитковый проток имеет форму треугольника. Одна его стенка срастается со стенкой костного канала улитки, две другие отделяют его от перилимфатического пространства и называются базилярной и пред дверной мембранами. Проток разделяет перилимфатическое пространство улиткового канала на две лестницы: барабанную, сообщающуюся с областью расположения окна улитки, и пред дверную, сообщающуюся с перилимфатическим пространством преддверия.

В ампулах полукружных протоков находятся гребешки, а в полости маточки и мешочка -- пятна, представляющие собой рецепторные (воспринимающие) участки вестибулярного (статического) аппарата. В рецепторных участках вестибулярного аппарата заканчиваются периферические отростки клеток вестибулярного узла, расположенного во внутреннем слуховом проходе. Эти клетки являются первым нейроном вестибулярного пути. Центральные отростки клеток вестибулярного узла образуют вестибулярную (пред дверную) часть преддверно-улиткового нерва (VIII пара) и подходят в его составе к ядрам, проецирующимся на ромбовидную ямку (второй нейрон). Эти ядра имеют многочисленные связи с двигательными ядрами ствола мозга, мозжечком и спинным мозгом. Отростки клеток вестибулярных ядер направляются в таламус (третий нейрон), а затем к коре полушарий большого мозга.

1. Слуховая сенсорная система

В области улиткового протока, на его базилярной пластинке, состоящей из фиброзных волокон разной длины, расположен спиральный (кортиев) орган, являющийся рецепторным аппаратом органа слуха. Спиральный орган состоит из пяти рядов рецепторных клеток, имеющих на конце по 60--70 волосков. В спиральном органе 24 000 волосковых клеток, которые рядами тянутся вдоль завитков перепончатой улитки по всей их длине. Они располагаются на базилярной (основной) пластинке, отделяющей улитковый проток от барабанной лестницы. Базилярную пластинку сравнивают со струнами арфы. Она состоит из поперечных фиброзных нитей неодинаковой длины. Самые короткие (135 мкм) находятся у основания улитки, а самые длинные (234 мкм) -- у ее купола. Над волосковыми клетками нависает подвижная мембрана -- покрышка. Один ее край свободен, а второй прикреплен к базилярной мембране.

Восприятия звука. Ушная раковина собирает звуки и направляет их в наружный слуховой проход. На границе его и среднего уха наклонно натянутая барабанная перепонка вибрирует под действием звуковых волн.

Полости среднего уха через слуховую трубу сообщены с полостью глотки, обеспечивая одинаковое давление по обе стороны барабанной перепонки. Иначе при очень больших перепадах наружного давления, при сильных звуках или быстром подъеме на самолете мог бы произойти разрыв барабанной перепонки.

Система косточек среднего уха передает колебания барабанной перепонки через окно преддверия в лестницу преддверия, слуховые косточки уменьшают амплитуду колебаний барабанной перепонки и увеличивают их силу. Жидкость несжимаема, но, поскольку лестница преддверия через отверстие на куполе улитки соединяется с барабанной лестницей, волна давления звука передается на перилимфу последней, вызывая выбухание вторичной барабанной перепонки круглого окна улитки. Так как мембраны улиткового протока очень тонкие, то в колебание вовлекается и эндолимфа, и спиральный орган. При этом волоски сенсорных клеток касаются покровной пластинки, деформируются и в рецепторах возникает рецепторный потенциал, а в окончаниях слухового нерва -- нервные импульсы. Человек воспринимает звуки с частотой 16-- 20 000 Гц. Звуки речи имеют частоту 150--2500 Гц. К старости человек воспринимает звуки только с частотой до 15 000 Гц, поэтому звук сверчка старики не слышат. Собаки воспринимают звуки с частотой до 38 000 Гц, кошки -- до 70 000 Гц (функция слухового анализатора изучается у животных методом условных рефлексов).

Возбуждение от волосковых клеток спирального органа передается через слуховой нерв, ганглиозные клетки которого находятся в спиральном узле улитки. Второй нейрон располагается в продолговатом мозге, третий -- в медиальном коленчатом теле и нижнем холмике пластинки крышки среднего мозга, четвертый -- в височных долях коры больших полушарий. Большинство слуховых путей перекрещивается. В слуховой зоне коры нервные импульсы декодируются в слуховые ощущения.

2. Вестибулярный аппарат (орган равновесия)

Рецепторы вестибулярного аппарата раздражаются наклоном или движением головы; при этом возникают рефлекторные сокращения мышц, способствующие выпрямлению тела и сохранению позы. При помощи рецепторов вестибулярного аппарата происходит восприятие положения головы в пространстве, а также восприятие движения тела.

Разрушение полукружных каналов и преддверия вызывает потерю чувства равновесия. Голубь после разрушения лабиринтов не может лететь. Если у морской свинки путем закапывания в ухо хлороформа выключить с одной стороны лабиринт, она начинает кататься по столу, вращаясь вокруг продольной оси тела.

У человека ориентация в пространстве осуществляется, помимо органа равновесия, при помощи зрения, проприоцептивной и тактильной (кожной) чувствительности. Так, давление на подошвы ног, воспринимаемое тактильными рецепторами, свидетельствует о направлении действия силы земного притяжения. У глухонемых вестибулярный аппарат не функционирует. Наклон головы они ощущают при помощи проприорецепторов шеи.

В преддверии перепончатого лабиринта имеются два участка, называемые пятнами. В этих участках находятся волосковые сенсорные клетки, к которым подходят чувствительные волокна вестибулярного нерва. Волоски сенсорных клеток погружены в желеобразную массу, содержащую отолиты, состоящие из мелких кристалликов карбоната кальция.

В мешочке пятно расположено в вертикальной плоскости, а в маточке -- в горизонтальной. При нормальном положении тела сила тяжести заставляет отолиты оказывать давление на определенные волосковые клетки. Когда голова повернута теменем вниз, отолит провисает на волосках; при боковом наклоне головы один отолит давит на волоски, а другой провисает. Изменение давления отолитов вызывает возбуждение волосковых сенсорных клеток, сигнализирующие о положении головы в пространстве.

Чувствительные клетки гребешков в ампулах полукружных каналов возбуждаются при движениях эндолимфы. Поскольку три полукружных канала расположены в трех плоскостях, то движение головы в любом направлении вызывает движение эндолимфы. Человек привык к движениям в горизонтальной плоскости, а непрерывные движения вверх и вниз или в стороны при подъеме на лифте или морской качке могут вызвать головокружение, чувство тошноты и рвоту. Тренировка (качели) понижает возбудимость органа равновесия и предотвращает нежелательные явления.

Невесомость. В невесомости в результате потери массы отолитами и эндрлимфой ориентация в пространстве может осуществляться только посредством зрения. Возбудимость вестибулярного аппарата повышается, что может вызвать нарушение вегетативных функций: давления, дыхания, частоты сердечных сокращений и др. Отсутствие нагрузки на опорно-двигательный аппарат уменьшает импульсы от проприорецепторов, что ведет к снижению тонуса коры больших полушарий и скелетных мышц. При длительном пребывании в состоянии невесомости, если не производить специальных мышечных упражнений, возможна атрофия мышц и скелета вследствие выделения больших количеств кальция и фосфора.

III. Анализаторы обоняния и вкуса

Обонятельные рецепторы -- хеморецепторы -- располагаются в слизистой оболочке верхней носовой раковины, поэтому вдыхаемый воздух достигает их медленно.

Нюхающий человек производит специальные движения носом, направляющие воздух к обонятельным клеткам. Эти клетки разбросаны поодиночке в слизистой оболочке. На поверхности каждой обонятельной клетки 6--12 обонятельных волосков, что увеличивает обонятельную поверхность. Увидеть волоски можно с помощью электронного микроскопа. Молекулы пахучих веществ растворяются в слизи желез и раздражают хеморецепторы обонятельной области. Острота обоняния очень велика, следовательно, порог раздражения низкий.

Обонятельные рецепторы быстро адаптируются и мы перестаем ощущать запах. Интересно, что при этом чувствительность к другим запахам остается нормальной.

У человека обоняние имеет большое значение для определения пригодности пищи и вдыхаемого воздуха. Чувствительность обонятельного анализатора у многих животных несравненно выше и играет доминирующую роль в пищевой, половой, охранительной и ориентировочной деятельности.

Вкусовые рецепторы являются хеморецепторами, чувствительными к химическому составу пищи. Они расположены в слизистой оболочке языка, мягком небе, на задней стенке глотки; 10--15 рецепторных клеток, снабженных волосками, образуют вкусовую почку, иннервируемую 2--3 чувствительными нервными волокнами.

Различают четыре вида вкусовых рецепторов, чувствительных к четырем основным вкусовым раздражителям: сладкому, кислому, горькому и соленому.


Подобные документы

  • Восприятие раздражения из внешней и внутренней среды. Понятие об анализаторах. Строение глаза и слезного аппарата. Орган слуха и равновесия. Колебания барабанной перепонки. Воздушная и костная проводимость звука. Основные анализаторы обоняния и вкуса.

    презентация [6,9 M], добавлен 03.05.2016

  • Рассмотрение специализированной периферической анатомо-физиологической системы, обеспечивающей получение и анализ информации. Эволюция органов чувств у беспозвоночных и позвоночных. Значение органов зрения, слуха, равновесия, вкуса, осязания, обоняния.

    презентация [1,9 M], добавлен 20.11.2014

  • Понятие и функции органов чувств. Строение глаза, механизм фокусировки изображения. Восприятие звуковой информации с помощью уха. Составные части языка и носа, их значение. Структура кожи, ответственной за осязание. Характеристика вестибулярного аппарата.

    реферат [28,5 K], добавлен 20.05.2012

  • Пресмыкающиеся как класс преимущественно наземных пойкилотермных животных, включающий в себя современных крокодилов, черепах, ящериц, змей, амфисбен, клювоголовых. Характеристика органов чувств рептилий: зрения, обоняния, вкуса, равновесия и слуха.

    реферат [292,9 K], добавлен 25.05.2013

  • Разновидности органов обоняния, особенности их деятельности и значение в жизнедеятельности организма. Виды запахов и восприимчивость их мозгом. Чувство вкуса и деятельность вкусовых рецепторов. Строение органов слуха и расположение органов осязания.

    реферат [23,2 K], добавлен 18.05.2009

  • Значение органов чувств, виды ощущений. Зрение, формирование изображения на сетчатке. Функции уха, слуховое восприятие. Органы равновесия, мышечного и кожного чувства, обоняния и вкуса. Потребности, поведение и психика. Рефлекторная теория поведения.

    реферат [17,5 K], добавлен 06.07.2010

  • Слух — способность биологических организмов воспринимать и различать звуковые колебания окружающей среды специальными органами. Ухо - слуховой анализатор: функция, строение вестибулярного аппарата; физиология восприятия звука; слуховая сенсорная система.

    реферат [925,7 K], добавлен 16.05.2013

  • Зрительный анализатор. Основной и вспомогательный аппарат. Верхнее и нижнее веко. Строение глазного яблока. Вспомогательный аппарат глаза. Цвета радужной оболочки глаз. Аккомодация и конвергенция. Слуховой анализатор - наружное, среднее и внутреннее ухо.

    презентация [7,4 M], добавлен 16.02.2015

  • Изучение органов нервной системы как целостной морфологической совокупности взаимосвязанных нервных структур, обеспечивающих деятельность всех систем организма. Строение механизмов зрительного анализатора, органов обоняния, вкуса, слуха и равновесия.

    реферат [23,5 K], добавлен 21.01.2012

  • Сенсорные модальности в животном мире. Зрительные приспособления к неблагоприятным условиям среды. Органы чувств, заменяющие зрение. Зрительное опознание жертвы и хищника. Проекция сетчатки на претектальную область таламуса и поведение избегания.

    курсовая работа [781,4 K], добавлен 08.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.