главнаяреклама на сайтезаработоксотрудничество Коллекция рефератов Otherreferats
 
 
Сколько стоит заказать работу?   Искать с помощью Google и Яндекса
 





Происхождение солнечной системы

Первые научные космогонические гипотезы о происхождении Земли и Солнечной системы. Теории немецкого философа Иммануила Канта и французского математика Лапласа о возникновении и развитии планетной системы. Эволюция Солнечной системы, гипотеза Джинса.

Рубрика: Астрономия и космонавтика
Вид: реферат
Язык: русский
Дата добавления: 13.09.2009
Размер файла: 28,1 K

Полная информация о работе Полная информация о работе
Скачать работу можно здесь Скачать работу можно здесь

рекомендуем


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Название работы:
E-mail (не обязательно):
Ваше имя или ник:
Файл:


Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы


1. Происхождение солнечной системы
Гипотезы о происхождении солнечной системы. Современная теория происхождения солнечной системы. Солнце – центральное тело нашей планетной системы. Планеты-гиганты. Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.
реферат [181,9 K], добавлена 21.03.2004

2. Происхождение Солнечной системы
Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.
доклад [6,8 K], добавлена 16.10.2002

3. Строение Солнечной системы
Космогония - научная дисциплина, изучающая происхождение и развитие небесных объектов: галактик, звезд и планет. Гипотезы Лапласа, Шмидта и Джинса о возникновении Солнечной системы. Иоганн Кеплер и его законы о движении планет. Закон всемирного тяготения.
творческая работа [236,0 K], добавлена 23.05.2009

4. Солнечная система и Земля
Происхождение Солнечной системы; гипотеза Канта-Лапласа, Джинса-Вулфсона, Шмидта-Литтлтона. Влияние солнечной активности на земные процессы. Появление и развитие жизни на Земле. Ранняя история и геологическая история. Солнечная энергия органического мира.
реферат [103,2 K], добавлена 05.05.2009

5. Современные представления об образовании Солнечной системы
Древнейшая проблема происхождения Солнечной системы. Рождение эволюционных космогонических гипотез образования Солнца, планет и других тел. Происхождение вещества Солнечной системы, пути формирования ее тел и способы становления их механических структур.
реферат [25,4 K], добавлена 28.02.2010

6. Происхождение Солнечной системы
Характеристика и анализ различных гипотез образования Солнечной системы, их положительные и отрицательные стороны, а также сущность общепризнанной теории Шмидта. Выражение эмпирической зависимости закономерностью распределения расстояний планет от Солнца.
реферат [256,0 K], добавлена 21.12.2009

7. Строение Солнечной системы
Расположение планет Солнечной системы в порядке удаления от центра: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Строение комет и метеоритов. Происхождение Солнечной системы. Внутреннее строение и географическая оболочка Земли.
реферат [530,1 K], добавлена 15.02.2014

8. Зарождение Солнечной системы
Образование первичного Солнца. Теории Ньютона и Канта о строении Вселенной. Происхождение и строение планет Солнечной системы, ее закономерности и тайны. Открытие лептонной структуры вещества высоких энергий внутри элементных частиц и атомных ядер.
реферат [25,0 K], добавлена 12.04.2009

9. Происхождение Солнечной системы, её состав
Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.
реферат [115,6 K], добавлена 07.05.2012

10. Происхождение Солнечной системы
Хотя детали процесса рождения звезды из газопылевой туманности еще далеко не ясны, ученые теперь четко представляют, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции. Вопрос о происхождении планетной системы, окружающей наше Солнце, н
доклад [12,4 K], добавлена 09.12.2004


Другие работы, подобные Происхождение солнечной системы


Обзор основных теорий происхождения солнечной системы

Содержание

1. Происхождение солнечной системы

1.1 Теория Канта

1.2 Небулярная теория Лапласа

2. Возникновение и развитие планетной системы

3. Эволюция Солнечной системы

4. Гипотеза Джинса образования планет Солнечной системы

Выводы

1. Происхождение солнечной системы

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

И все же мы до сих пор довольно далеки от решения этой проблемы. Но за последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции.

Переходя к изложению различных космогонических гипотез, сменявших одна другую на протяжении двух последних столетий, начнем с гипотезы великого немецкого философа Канта и теории, которую спустя несколько десятилетий независимо предложил французский математик Лаплас. Предпосылки к созданию этих теорий выдержали испытание временем.

1.1 Теория Канта

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в XVIII веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений. Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Иммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжелые и плотные из них под действием силы притяжения соединялись друг с другом, образуя центральный сгусток - Солнце, которое, в свою очередь, притягивало более удаленные, мелкие и легкие частицы. Таким образом, возникло некоторое количество вращающихся тел, траектории которых взаимно пересекались. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счете, были втянуты в единый поток и образовали кольца газообразной материи, расположенные приблизительно в одной плоскости и вращающиеся вокруг Солнца в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более легкие частицы, формируя шаровидные скопления материи; так складывались планеты, которые продолжали кружить вокруг Солнца в той же плоскости, что и первоначальные кольца газообразного вещества

1.2 Небулярная теория Лапласа

В 1796 году французский математик и астроном Пьер-Симон Лаплас выдвинул теорию, несколько отличную от предыдущей. Лаплас полагал, что Солнце существовало первоначально в виде огромной раскаленной газообразной туманности (небулы) с незначительной плотностью, но зато колоссальных размеров.

Эта туманность, согласно Лапласу, первоначально медленно вращалась в пространстве. Под влиянием сил гравитации туманность постепенно сжималась, причем скорость ее вращения увеличивалась. Возрастающая в результате центробежная сила придавала туманности уплощенную, а затем и линзовидную форму. В экваториальной плоскости туманности соотношение между притяжением и центробежной силой изменялось в пользу этой последней, так что в конечном счете масса вещества, скопившегося в экваториальной зоне туманности, отделилась от остального тела и образовала кольцо. От продолжавшей вращаться туманности последовательно отделялись все новые кольца, которые, конденсируясь в определенных точках, постепенно превращались в планеты и другие тела солнечной системы. В общей сложности от первоначальной туманности отделилось десять колец, распавшихся на девять планет и пояс астероидов - мелких небесных тел. Спутники отдельных планет сложились из вещества вторичных колец, оторвавшихся от раскаленной газообразной массы планет.

Вследствие продолжавшегося уплотнения материи температура новообразованных тел была исключительно высокой. В то время и наша Земля, по П. Лапласу, представляла собой раскаленный газообразный шар, светившийся подобно звезде. Постепенно, однако, этот шар остывал, его материя переходила в жидкое состояние, а затем, по мере дальнейшего охлаждения, на его поверхности стала образовываться твердая кора. Эта кора была окутана тяжелыми атмосферными парами, из которых при остывании конденсировалась вода. Поскольку наука не располагала в то время более приемлемыми объяснениями, у этой теории было в XIX веке множество последователей.

Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сперва возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты.

Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Эти две теории взаимно дополняли друг друга, поэтому и принято называть эту концепцию “гипотезой Канта-Лапласа”.

Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом - Солнцем и планетами.

Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как “запас вращения” системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет.

Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.

С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы), так как масса последнего была значительно меньше основной туманности (“протосолнца”), то полный момент количества движения кольца должен быть много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения “протосолнца”, а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

Для гипотезы Лапласа эта трудность оказалась непреодолимой.

2. Возникновение и развитие планетной системы

Астрономы прошлого предложили множество теорий образования Солнечной системы, а в сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце, вращаясь вокруг центра Галактики, захватило облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела - планетезимали.

Наша Солнечная система - не единственная во Вселенной Элементы этой теории используются в современной космогонии. Согласно компьютерным расчетам, первоначальная масса газопылевого облака, в котором образовалась Солнечная система, была более 104 М . Первоначальный размер облака существенно превышал размеры Солнечной системы, а его состав был аналогичен тому, что наблюдается в плотных холодных межзвездных туманностях, то есть 99 % межзвездного газа и 1 % межзвездной пыли. У нескольких десятков звезд в настоящее время обнаружены планетные системы. Телескопом им. Кека на Гавайских островах была исследована молодая звезда HR 4796. На полученных изображениях в инфракрасном диапазоне вокруг нее виден диск радиусом примерно 200 а.е. Центральная часть диска свободна от пыли. Считают, что в центральной области из пыли уже сформировались крупные планетные тела, а во внешней части продолжают формироваться кометы. В настоящее время общепризнанной является теория формирования планетной системы в четыре этапа. Планетная система формируется из того же протозвездного пылевого вещества, что и звезда, и в те же сроки. Первоначальное сжатие протозвездного пылевого облака происходит при потере им устойчивости. Центральная часть сжимается самостоятельно и превращается в протозвезду. Другая часть облака с массой, примерно в десять раз меньше центральной части, продолжает медленно вращаться вокруг центрального утолщения, а на периферии каждый фрагмент сжимается самостоятельно. При этом стихает первоначальная турбулентность, хаотичное движение частиц. Газ конденсируется в твердое вещество, минуя жидкую фазу. Образуются более крупные твердые пылевые крупинки - частицы. Чем крупнее образовавшиеся крупинки, тем быстрее они падают на центральную часть пылевого облака. Часть вещества, обладающая избыточным моментом вращения, образует тонкий газопылевой слой - газопылевой диск. Вокруг протозвезды формируется протопланетное облако - пылевой субдиск. Протопланетное облако становится все более плоским, сильно уплотняется. Из-за гравитационной неустойчивости в пылевом субдиске образуются отдельные мелкие холодные сгустки, которые, сталкиваясь друг с другом, образуют все более массивные тела - планетезимали. В процессе формирования планетной системы часть планетезималей разрушилась в результате столкновений, а часть объединилась. Образуется рой допланетных тел размером около 1 км, количество таких тел очень велико - миллиарды. Затем допланетные тела объединяются в планеты. Аккумуляция планет продолжается миллионы лет, что очень незначительно по сравнению со временем жизни звезды. Протосолнце становится горячим. Его излучение нагревает внутреннюю область протопланетного облака до 400 К, образовав зону испарения. Под действием солнечного ветра и давления света легкие химические элементы (водород и гелий) оттесняются из окрестностей молодой звезды. В далекой области, на расстоянии свыше 5 а.е., образуется зона намерзания с температурой примерно 50 К. Это приводит к различиям в химическом составе будущих планет.

3. Эволюция Солнечной системы

Как только масса пропланеты достигает 1-2 масс Земли, она способна захватывать атмосферу. Протоюпитер буквально за сотню лет увеличил свою массу за счет захвата газов в десятки раз. Затем скорость аккреции падает, т.к. весь газ непосредственно на пути планеты уже вобран, а снаружи он поступает достаточно медленно (за счет диффузии). В нашей Солнечной системе на периферии образовались планеты-гиганты, способные удержать возле себя газовые оболочки. Сначала сформировались ядра планет-гигантов, а затем планеты «нарастили» себе оболочку из водорода и гелия. Двухступенчатая модель образования гигантов подтверждается фактами. Массы ядер планет-гигантов примерно одинаковы и равны 15-20 М . Количество водорода уменьшается с увеличением расстояния. Чем больше масса планеты, тем быстрее идет аккреция газа на нее. По современным расчетам, рост Юпитера продолжался десятки миллионов лет, а рост Сатурна - сотни миллионов. У планет-гигантов возникли собственные минидиски из газа и пыли, из которых затем сформировались кольца и многочисленные спутники. При формировании Юпитера именно в районе его орбиты проходила граница конденсации водяных паров. По современным расчетам, на более близких расстояниях, в поясе астероидов, летучие вещества находились в газообразном состоянии. Это привело к тому, что рост допланетных тел в районе будущего Юпитера ускорился, а в районе пояса астероидов замедлился. Именно поэтому массивный Юпитер обогнал по скорости роста протопланету, более близкую к Солнцу. Но после своего «рождения» Юпитер стал тормозить образование этой планеты в поясе астероидов. Разогнанные тяготением планет-гигантов сгустки вещества выбрасывались на окраину Солнечной системы, где становились кометами. Гравитационные возмущения со стороны Юпитера и сейчас сильно воздействуют на астероиды. Уран и Нептун росли еще медленнее. К тому времени газа в Солнечной системе из-за действия солнечного ветра осталось еще меньше, поэтому Уран и Нептун содержат меньше водорода в процентном содержании, чем Юпитер. Основными составляющими этих планет-гигантов являются вода, метан и аммиак. В центре Солнечной системы сформировались менее массивные планеты. Здесь солнечный ветер выдул мелкие частицы и газ. А вот более тяжелые частицы, наоборот, стремились к центру. Рост Земли продолжался сотни миллионов лет. Ее недра прогрелись до 1000-2000 К благодаря гравитационному сжатию и участвовавшим в аккумуляции крупным телам (до сотен километров в поперечнике). Падение таких тел сопровождалось образованием кратеров с очагами повышенной температуры под ними. Другой и основной источник тепла Земли - распад радиоактивных элементов, в основном, урана, тория и калия. В настоящее время температура в центре Земли достигает 5000 К, что гораздо выше, чем в конце аккумуляции. Солнечные приливы затормозили вращение близких к Солнцу планет - Меркурия и Венеры. С появлением радиологических методов был точно определен возраст Земли, Луны и Солнечной системы - около 4,6 млрд. лет. Компьютерные эксперименты продемонстрировали замечательное свойство нашей планетной системы: пролет звезды с массой порядка 0,1 массы Солнца через ее внешние области мало изменит орбиты планет земной группы. Этого нельзя сказать об удаленных объектах, расположенных в облаке Оорта, для которых расстояние от Солнца в сотни раз больше, чем радиус орбиты Земли. Гравитационное поле Галактики возмущает орбиты малых тел на окраине Солнечной системы и даже вызывает их появление внутри орбиты Земли. Что касается Солнца, центрального тела Солнечной системы, то это - типичная звезда главной последовательности, равновесие которой обусловлено равенством сил газового давления и гравитации. Солнце существует 5 миллиардов лет и еще столько же будет излучать практически неизменный поток энергии вследствие протекающих в его недрах ядерных реакций. Затем, в соответствии с законами звездной эволюции, Солнце превратится в красный гигант, и его радиус значительно увеличится, станет больше орбиты Земли. После этого газовая оболочка рассеется, и на месте Солнца останется белый карлик. Этот остаток нашего бывшего светила будет высвечивать запасы тепловой энергии в течение миллиардов лет, постепенно превращаясь в невидимый холодный объект. При этом температура на Земле сначала увеличится до 10 000°C, а затем уменьшится практически до абсолютного нуля. Современная планетная космогония встречается со многими вопросами, которые требуют строгого решения. Один из таких вопросов - парадокс вращательного момента. Протопланетные диски имеют небольшую массу, в 10-100 раз меньшую центральной звезды. Так, например, в Солнечной системе 99,8 % массы заключается в Солнце. Тем не менее, основной вращательный момент приходится именно на планеты. Поэтому вопрос о перераспределении вращательного момента из центральной части конденсирующегося газопылевого облака к периферии очень актуален и до сих пор не решен. Астрономы древности полагали, что Вселенная и Солнечная система существовали вечно и будут существовать еще столько же в неизменном виде. С появлением христианства возраст Солнечной системы значительно уменьшился. Джордано Бруно первым предположил, что звезды, подобно Солнцу, окружены планетными системами, которые непрерывно рождаются и умирают. В 1745 году французский ученый Бюффон высказал гипотезу, что планеты образовались из вещества, выброшенного из Солнца после столкновения Солнца с кометой. Немецкий философ Иммануил Кант в 1755 году впервые изложил идею о возникновении Солнечной системы из облака холодных пылинок, находящихся в хаотическом движении. Планеты по Канту формируются из того же газопылевого облака, что и Солнце. В 1796 году французский ученый Пьер Симон Лаплас описал образование Солнца и Солнечной системы из медленно вращающейся раскаленной газовой туманности. Под действием гравитации центральная часть протосолнца сжималась, скорость его вращения увеличивалась, поэтому оно приобретало сплюснутую форму. Сгустки отделялись от протосолнца и затем охлаждались. Вещество, из которого образовались планеты, первоначально по Лапласу было в горячем, расплавленном состоянии. Но потом стало ясно, что Земля никогда не была ни газовой, ни раскаленной.

4. Гипотеза Джинса образования планет Солнечной системы

Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса. Однако в настоящее время специалисты не поддерживают эту теорию. В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда была разорвана силами гравитации при тесном сближении с другой, третьей звездой. Девятью годами позже Хойл высказал теорию, что Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система. В сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела - планетезимали. Элементы многих из перечисленных выше теорий использует современная космогония.

Остановимся на гипотезе Джинса, получившей распространение в первой трети текущего столетия. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая.

Исходная материя, из которой потом образовались планеты, была выброшена из Солнца (которое к тому времени было уже достаточно “старым” и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам.

Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной.

Солнце - плазменный шар (плотность 1,4 г/см3, с температурой поверхности 6 тыс. К) в атмосфере которого -- короне -- происходят вспышки -- протуберанцы. Излучение Солнца -- солнечная активность -- имеет цикл 11 лет.

Источником солнечной энергии, по-видимому, являются термо-ядерные реакции превращения водорода в гелий, о чем свидетельствует наличие этих элементов в солнечной хромосфере. Первым теоретические расчеты необходимой для ядерной реакции температуры произвел Артур Эддингтон. Немецкий физик Ганс Бете (Нобелевская премия 1967 г.) рассчитал реакции термоядерного синтеза гелия из водорода на Солнце, но прямых подтверждений пока нет, так как отсутствуют данные о внутреннем строении Солнца.

Скорость движения Солнца вокруг оси галактики 250 км/с. Солнечная система совершает один полный оборот вокруг галактического центра за 180 млн лет. Ближайшие к Солнцу звезды а Центавра и Сириус.

Возраст Солнечной системы, зафиксированный по древнейшим метеоритам, около 5 млрд лет. Общепринята гипотеза, по которой Земля и все планеты сконденсировались из космической пыли, расположенной в окрестностях Солнца. Предполагается, что частицы пыли состояли из железа с примесью никеля, либо из силикатов, в состав которых входит кремний. Конденсировались также присутствовавшие газы, образуя органические соединения, в состав которых входит углерод. Затем образовались углеводороды и соединения азота.

Из гипотез происхождения Солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика X. Альвена, усовершенствованная Ф. Хойлом. Альвен исходил из предположения, что некогда Солнце обладало очень сильным электромагнитным полем. Туманность, окружавшая светило, состояла из нейтральных атомов. Под действием излучений и столкновений атомы ионизировались. Ионы попадали в «ловушки» из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло вращательный момент, передавая его газовому облаку.

Слабость предложенной гипотезы заключалась в том, что атомы наиболее легких элементов должны были ионизироваться ближе к Солнцу, атомы тяжелых элементов -- дальше. Значит, ближайшие к Солнцу планеты должны были бы состоять из наилегчайших элементов -- водорода и гелия, а более отдаленные -- из железа и никеля. Наблюдения говорят об обратном.

Чтобы преодолеть это противоречие, английский астроном Ф. Хойл предложил новый вариант гипотезы. Солнце зародилось в недрах туманности. Оно быстро вращалось, и туманность становилась все более плоской, превращаясь в диск. Постепенно диск начинал тоже разгоняться, а Солнце тормозилось. Момент количества движения переходил к диску. Затем в нем образовались планеты. Если предположить, что первоначальная туманность уже обладала магнитным полем, то вполне могло произойти перераспределение углового момента.

Солнечная система состоит из девяти планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Все планеты движутся в одном направлении, в единой плоскости (за исключением Плутона) по почти круговым орбитам. От центра до окраины Солнечной системы (до Плутона) 5,5 световых часов. Расстояние от Солнца до Земли 149 млн км (107 диаметром Солнца).

Малые планеты, как и большинство спутников планет, не имеют атмосферы, так как сила тяготения на их поверхности недостаточна для удержания газов. В атмосфере Венеры преобладает углекислый газ, в атмосфере Юпитера -- аммиак. На Луне и Марсе имеются кратеры вулканического происхождения.

Согласно гипотезе Ж. Л. Бюффона, выдвинутой в 1945 году, планеты образовались из вещества, вырванного из Солнца в результате столкновения с гигантской кометой.

Среди последующих космогонических теорий можно найти и теорию «катастроф», согласно которой наша Земля обязана своим образованием некоему вмешательству извне, например, близкой встрече Солнца с какой-то блуждающей звездой, вызвавшей извержение части солнечного вещества. В результате расширения раскаленная газообразная материя быстро остывала и уплотнялась, образуя большое количество маленьких твердых частиц, скопления которых были чем-то вроде зародышей планет. В последние годы американскими и советскими учеными был выдвинут ряд новых гипотез. Если раньше считалось, что в эволюции Земли происходил непрерывный процесс отдачи тепла, то в новых теориях развитие Земли рассматривается как результат многих разнородных, порой противоположных процессов. Одновременно с понижением температуры и потерей энергии могли действовать и другие факторы, вызывающие выделение больших количеств энергии и компенсирующие таким образом убыль тепла. Одно из этих современных предположений его автор американский астроном Ф.Л. Уайпль (1948) назвал «теорией пылевого облака». Однако по существу это ничто иное как видоизмененный вариант небулярной теории Канта-Лапласа. Любопытно, что на новом уровне, вооруженные более совершенной техникой и более глубокими познаниями о химическом составе солнечной системы, астрономы вернулись к мысли о том, что Солнце и планеты возникли из обширной, нехолодной туманности, состоящей из газа и пыли. Мощные телескопы обнаружили в межзвездном пространстве многочисленные газовые и пылевые «облака», из которых некоторые действительно конденсируются в новые звезды. В связи с этим первоначальная теория Канта-Лапласа была переработана с привлечением новейших данных; она может сослужить еще хорошую службу в деле объяснения процесса возникновения солнечной системы. Каждая из этих космогонических теорий внесла свой вклад в дело выяснения сложного комплекса проблем, связанных с происхождением Земли. Все они рассматривают возникновение Земли и солнечной системы как закономерный результат развития звезд и вселенной в целом. Земля появилась одновременно с другими планетами, которые, как и она, вращаются вокруг Солнца и являются важнейшими элементами солнечной системы.

Выводы

Многообразие гипотез связано с тем, что планеты Солнечной системы достаточно сильно различаются между собой: Меркурий, Венера, Марс, Земля - твердые планеты; Юпитер, Сатурн, Уран, Нептун - газообразные; Плутон - несформировавшаяся твердая планета.

Такое странное расположение планет, а также существование пояса астероидов между орбитами Марса и Юпитера (вероятно это остатки еще одной планеты) и объясняет тот факт, что до сих пор отсутствует общепризнанная теория Солнечной системы, дающая непротиворечивые ответы на эти и другие вопросы.


Скачать работу можно здесь Скачать работу "Происхождение солнечной системы" можно здесь
Сколько стоит?

Рекомендуем!

база знанийглобальная сеть рефератов